Correspondence Coloring
 Combinatorial Optimization • Graph Theory

Given a graph $G=(V, E)$, a k-coloring of G assigns (up to) k colors to the vertices of G, such that no two adjacent vertices are colored the same. Checking whether a graph has a valid k-coloring reduces to checking whether the k-cover of G has a stable set of size k. This graph is obtained by blowing up every vertex of G with a k-clique:

2-coloring of C_{4}

2-cover of C_{4}

Stable set in the cover

A new variant of the graph coloring problem known as correspondence coloring (or $D P$ coloring) was introduced by Dvořák and Postle in 2018. Here we are given, in addition to the graph $G=(V, E)$, an integer k, and (partial) matchings $M_{e} \subseteq K_{k, k}$ for every edge $e \in E$. The matchings M_{e} fix how the colors of the different vertices correspond to each other, and may add twists to the cover graph:

2-cover with a twist
We say that G is k - M-colorable if the correspondence graph has a stable set of size k. More generally, we call a graph k-correspondence-colorable, if G is k - M-colorable for every choice of matchings M. It can be shown that C_{4} is 3 -correspondence-colorable, i.e., as soon as we have three choices for each vertex we can always find a valid coloring, no matter how the colors correspond to each other.

Main tasks

Give an overview of the literature on the correspondence coloring. Implement an algorithm to check for k - M-colorability based on integer or semidefinite programming, and explore ideas for the harder question of k-correspondence-colorability.

Daniel Brosch: \quad Room N.2.26 \boldsymbol{D} daniel.brosch@aau.at

