J-ideals of sets of matrices

Let $A \in \mathbb{Z}^{n \times n}, p$ a prime and $k \in \mathbb{N}$. We define the p^{k}-ideal of A as

$$
N_{p^{k}}(A)=\left\{f \in \mathbb{Q}[x] \mid f(A) \in p^{k} \mathbb{Z}^{n} \times n\right\}
$$

The publications [1, 2] contain a thorough study of these ideals including an algorithm to compute their generating sets (which is implemented in SageMath).

The aim of this thesis is to study p^{k}-ideal of sets of matrices. For set \mathcal{A} of matrices in $\mathbb{Z}^{n \times n}$, we define its p^{k}-ideal as

$$
N_{p^{k}}(\mathcal{A})=\bigcap_{A \in \mathcal{A}} N_{p^{k}}(A)
$$

In particular, the following problems are open:

1. Necessary or sufficient conditions on \mathcal{A} for $N_{p^{k}}(\mathcal{A})$ to be equal to $N_{p^{k}}(B)$ for a matrix $B \in \mathbb{Z}^{n \times n}$.
2. Necessary or sufficient conditions on \mathcal{A} for $N_{p^{k}}(\mathcal{A})$ to be a principal ideal?
3. Necessary or sufficient conditions on \mathcal{A} to be $N_{p^{k}}(\mathcal{A})$ trivial?

More generally, these question could be studied for matrices in $R^{n \times n}$ where R is a principal ideal domain (or even more general). The results in [1, 2] hold for principal ideal domains. For a domain R with quotient field K, an ideal J of R, and a matrix $A \in R^{n \times n}$ we define the J-ideal of A as

$$
N_{J}(A)=\left\{f \in K[x] \mid f(A) \in J^{n \times n}\right\}
$$

Analogously, the J-ideal of a set of matrices is the intersection of the individual J-ideals.
[1] Clemens Heuberger and Roswitha Rissner, Computing J-ideals of a matrix over a principal ideal domain, Linear Algebra Appl. 527 (2017), 12-31.
[2] Roswitha Rissner, Null ideals of matrices over residue class rings of principal ideal domains, Linear Algebra Appl. 494 (2016), 44-69.

For further details and literature talk to

Roswitha Rissner

- Raum N.2.25

ป: +43 46327003149
, roswitha.rissner@aau.at

