Construction of irreducible polynomials with prescribed fixed divisor

For a prime number p, the localization of \mathbb{Z} at p is defined as

$$
\mathbb{Z}_{(p)}=\left\{\frac{a}{b}: a, b \in \mathbb{Z} \text { and } b \notin p \mathbb{Z}\right\} .
$$

Consider the ring $\mathbb{Z}_{(p)}[x]$ of univariate polynomials with coefficients in $\mathbb{Z}_{(p)}$, that is, the set of elements of the form $f=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ with coefficients a_{0}, \ldots, a_{n} in $\mathbb{Z}_{(p)}$. A polynomials $f \in \mathbb{Z}_{(p)}[x]$ is called irreducible if $f=g h$ for $g, h \in \mathbb{Z}_{(p)}[x]$ implies that g or h are units in $\mathbb{Z}_{(p)}[x]$.

For $f \in \mathbb{Z}_{(p)}[x]$ we define the fixed divisor $\mathrm{d}(f)$ of f (in $\left.\mathbb{Z}_{(p)}\right)$ to be the largest prime power p^{t} with $t \in \mathbb{N}_{0}$ such that $p^{t} \mid f(a)$ for all $a \in \mathbb{Z}_{(p)}$.

The aim of thesis is to investigate whether and under which conditions it is possible to construct polynomials in $\mathbb{Z}_{(p)}[x]$ with prescribed fixed divisor.

For further details and literature talk to

Roswitha Rissner

P: Raum N.2.25
C: +4346327003149
, roswitha.rissner@aau.at

