Bounds for minors of certain block matrices

A k-minor of a matrix B is a the determinant of a k& x k submatrix of B.
The largest absolute value of all minors of B is denoted by

A = A(B) = max {|det(M)|: M is a minor of B}
It is in general hard to determine A as there are (7;) (Z) minors of B given that
B is an m x n matrix. Computing all of them quickly becomes infeasible with
growing values of m and n. This is why we are interested in finding good upper
bounds for A. For general matrices we have Hadamard’s inequality which states
that
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where m; denotes the i-th column of M. Whenever all columns of M are non-
zero, the inequality is satisfied with equality if and only if the m; are pairwise
orthogonal.

We are interested in matrices of a special form. Namely, let B € Z™*" be a
block matrix of the form
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where ai, ..., as € Nj and I, is the r X r-identity matrix.

The task of this thesis is to investigate upper bounds for A(B), potentially
restricting the choices of r, s as well as the entries of the column vectors ai,
. Can you find conditions which allow you to determine an upper bound

that is tlghter than Hadamard’s inequality?
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