Bounds for minors of certain block matrices

A *k*-minor of a matrix B is a the determinant of a $k \times k$ submatrix of B. The largest absolute value of all minors of B is denoted by

$$\Delta = \Delta(B) = \max\{|\det(M)| \colon M \text{ is a minor of } B\}$$

It is in general hard to determine Δ as there are $\binom{m}{k}\binom{n}{k}$ minors of B given that B is an $m \times n$ matrix. Computing all of them quickly becomes infeasible with growing values of m and n. This is why we are interested in finding good upper bounds for Δ . For general matrices we have Hadamard's inequality which states that

$$|\det(M)| \le \prod_{i=1}^k \|\boldsymbol{m}_i\|$$

where \boldsymbol{m}_i denotes the *i*-th column of M. Whenever all columns of M are non-zero, the inequality is satisfied with equality if and only if the \boldsymbol{m}_i are pairwise orthogonal.

We are interested in matrices of a special form. Namely, let $B\in\mathbb{Z}^{m\times n}$ be a block matrix of the form

where $a_1, \ldots, a_s \in \mathbb{N}_0^r$ and I_r is the $r \times r$ -identity matrix.

The task of this thesis is to investigate upper bounds for $\Delta(B)$, potentially restricting the choices of r, s as well as the entries of the column vectors a_1 , ..., a_s . Can you find conditions which allow you to determine an upper bound that is tighter than Hadamard's inequality?

For further details and literature talk to

Roswitha Rissner •: Raum N.2.25 J: +43 463 2700 3149 •: roswitha.rissner@aau.at