Bounds for minors of certain block matrices

A k-minor of a matrix B is a the determinant of a $k \times k$ submatrix of B. The largest absolute value of all minors of B is denoted by

$$
\Delta=\Delta(B)=\max \{|\operatorname{det}(M)|: M \text { is a minor of } B\}
$$

It is in general hard to determine Δ as there are $\binom{m}{k}\binom{n}{k}$ minors of B given that B is an $m \times n$ matrix. Computing all of them quickly becomes infeasible with growing values of m and n. This is why we are interested in finding good upper bounds for Δ. For general matrices we have Hadamard's inequality which states that

$$
|\operatorname{det}(M)| \leq \prod_{i=1}^{k}\left\|\boldsymbol{m}_{i}\right\|
$$

where \boldsymbol{m}_{i} denotes the i-th column of M. Whenever all columns of M are nonzero, the inequality is satisfied with equality if and only if the \boldsymbol{m}_{i} are pairwise orthogonal.

We are interested in matrices of a special form. Namely, let $B \in \mathbb{Z}^{m \times n}$ be a block matrix of the form

where $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{s} \in \mathbb{N}_{0}^{r}$ and I_{r} is the $r \times r$-identity matrix.
The task of this thesis is to investigate upper bounds for $\Delta(B)$, potentially restricting the choices of r, s as well as the entries of the column vectors \boldsymbol{a}_{1}, $\ldots, \boldsymbol{a}_{s}$. Can you find conditions which allow you to determine an upper bound that is tighter than Hadamard's inequality?

For further details and literature talk to

Roswitha Rissner

- Raum N.2.25
$\boldsymbol{\Sigma}:+4346327003149$
, roswitha.rissner@aau.at

