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Abstract—The majority of commercial and open-source au-
topilot software for uncrewed aerial vehicles rely on the tried
and tested extended Kalman filter (EKF) to provide the state
estimation solution for the inertial navigation system (INS). While
modern implementations achieve remarkable robustness, it is
often due to the careful implementation of exception code for
a multitude of corner cases along with significant skilled tuning
effort. In this paper, we use the data wealth of the ArduPilot
community to identify and highlight the most common real-
world challenges in INS state estimation, including sensor self-
calibration, robustness in static conditions, global navigation
satellite system (GNSS) outliers and shifts, and robustness to
faulty inertial measurement units (IMUs). We propose a novel
equivariant filter (EqF) formulation for the INS solution that
exploits a Semi-Direct-Bias symmetry group for multi-sensor
fusion with self-calibration capabilities and incorporates equiv-
ariant velocity-type measurements. We augment the filter with
a simple innovation-covariance inflation strategy that seamlessly
handles GNSS outliers and shifts without requiring coding of
a whole set of exception cases. We use real-world data from
the Ardupilot community to demonstrate the performance of
the proposed filter on known cases where existing filters fail
without careful exception handling or case-specific tuning and
benchmark against the ArduPilot’s EKF3, the most sophisticated
EKF implementation currently available.

I. INTRODUCTION

The simple formulation and its computationally efficient
implementation have made the extended Kalman filter (EKF)
and its derivates the dominant state estimator for applications
in robotics and on unmanned aerial vehicles (UAVs). Over
the years, sophisticated approaches have been developed to
tackle their limitations. Suboptimal linearization properties can
be tackled by using the unscented Kalman filter formula-
tion [1], challenges related to discretization and observability
can be managed by utilizing first-estimate Jacobians [2] and
observability constrained techniques [3], high computational
complexity is tackled by careful management of state di-
mension [4], and difficulties in effectively extracting infor-
mation can be tackled by the design of information-rich
trajectories [5]. Despite these extensions, EKF based state
estimators remain fragile to unmodelled noise and model
uncertainty and continue to have a non-negligible failure rate
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Figure 1. EqF shape simulated flight. In blue is the estimated path from
the proposed EqF, in red is the estimated path from the ArduPilot internal
estimator EKF3, labeled XKF1, and in green is the ground truth trajectory,
labeled SIM.

under real world conditions. With community-driven EKF
based autopilot systems such as PX4 [6] and ArduPilot [7]
gaining interest due to their open-source nature, versatility,
and widespread adoption, there is an increasing demand of
reliable and accurate estimation capabilities. The vast amount
of flight tests and failure data available to these communities
has led to highly sophisticated failure mitigation modules that
handle corner failure cases for EKF formulations in PX4
and ArduPilot. Indeed, ArduPilot’s EKF3, including all its
safety modules, health monitors, and verification routines,
is arguably the most sophisticated and robust EKF based
estimator available for real-world UAVs.

Geometry-based estimators, such as the recently published
invariant extended Kalman filter (IEKF) [8] and equivariant
filter (EqF) [9], provide promising results in terms of im-
proved estimator consistency, convergence rate, and basin of
convergence without requiring the same suite of health and
safety modules as the multiplicative extended Kalman filter
(MEKF) [10] and classical EKF algorithms. The unified geo-
metric description of navigation and bias states [11, 12, 13], for
the EqF formulation, ensure additional benefits, particularly
in the transients [12, 13]. The published results on these
filters, however, are still research implementations without
several of critical real-world modules. Adding elements such



as sensor extrinsic calibration and velocity measurements
(doppler GNSS) are of paramount importance for state-of-the-
art open source code but requires finding new symmetries for
the problem at hand, which is not as trivial as for the EKF.

In this paper, we propose an EqF that incorporates all
the usual sensor measurements (IMUs, magnetometers, GNSS
position and velocity) and that is capable of online sensor
self-calibration, aiming at enhancing the system’s robustness
and accuracy in real-world situations. The design is based
on a semi-direct product symmetry that integrates bias states
into the geometric framework and avoids over-parametrisation
of the state. The symmetry is extended from previous work
[13] to include calibration states and velocity measurements.
We conduct experimental evaluation of the proposed filter in
the Ardupilot software in the loop (SITL) environment, as
well as evaluating on real-world flight data from multicopter
platforms to validate the effectiveness and reliability of the
proposed approach. Furthermore, we leverage the wealth of
data available to the ArduPilot community to identify a suite
of real-world scenarios that are challenging for currently
established estimators. These sequences include online sensor
self-calibration; robustness to prolonged static conditions such
as the case of an aircraft waiting for takeoff; GNSS outliers,
commonly referred to as glitches; as well as sudden changes
in the GNSS solution due to a different satellite constellation
or as environmental occlusions diminish, commonly referred
as GNSS shifts; and robustness to noisy and faulty IMU
experiencing high vibrations, or aliasing. The proposed filter is
inherently robust to most of these difficulties, and along with a
single simple and highly robust uncertain observation handling
strategy to process output measurements, we are able to
achieve state-of-the-art performance across these challenging
scenarios without case-specific tuning and the suite of code
to manage corner cases and exceptions. Our motivation is
to develop a state estimation algorithm for an INS solution
targeted at small-scale robotic systems that does not require
expert knowledge to tune and is robust to the wide variety of
real-world failure scenarios that real systems encounter.

The main contributions of the paper are:

● A novel equivariant filter formulation extending the previ-
ously introduced Semi-Direct-Bias symmetry group [13]
to encompass extrinsic calibration states of sensors, in-
cluding lever arm calibration for GNSS receivers and
rotational calibration for magnetometers.

● Incorporation of velocity-type measurements within the
equivariant filter achieving third-order linearization error
of the output map through equivariance, enhancing the
overall accuracy of the estimation.

● Application of an innovation-covariance inflation tech-
nique to handle uncertain observations and measurement
outages across different scenarios based on the concept
of generalized covariance union (GCU) [14, 15] with a
flexible convergence rate.

Experiments are conducted under challenging scenarios using
both simulated data in software in the loop environment and

real-world flight data from diverse platforms. The evaluations
focus on the behavior of the proposed EqF, using the same
fixed tuning parameters throughout all tests in this paper to
demonstrate its insensitivity to (expert-)tuning.

II. NOTATION AND MATHEMATICAL PRELIMINARIES

In this paper, we use the following notation. Bold lowercase
letters are used to indicate vector quantities. Bold capital
letters are used to indicate matrices. Regular letters are used
to indicate elements of a manifold or a symmetry group.

Frames of reference are denoted as {A} and {B}. A vector
encoding the translation between a frame of reference {A} and
a frame of reference {B} expressed the in frame of reference
{A} is denoted ApB . Similarly, a vector encoding the relative
velocity of a moving frame of reference {B} expressed in
a frame of reference {A} are denoted by AvB . In general,
vectors describing physical quantities expressed in a frame of
reference {A} are denoted by Ax. Rotation matrices encoding
the orientation of a frame of reference {B} with respect to
a reference {A} are denoted by ARB ; in particular, ARB

expresses a vector Bx defined in the {B} frame of reference
into a vector Ax = ARB

Bx expressed in the {A} frame of
reference. Finally, In ∈ Rn×n is the n×n identity matrix, and
0n×m ∈ Rn×m is the n ×m zero matrix.

Let G be a Lie group, and g its Lie algebra. The Lie
algebra g is isomorphic to a vector space Rn of dimension
n = dim (g). Define the wedge map and its inverse, the vee
map, as linear mappings between the vector space and the Lie
algebra

(⋅)∧ ∶ Rn → g,

(⋅)∨ ∶ g → Rn.

Define the Adjoint matrix for the group, and the adjoint
matrix for the algebra, to be, respectively the maps

Ad∨X ∶ Rn → Rn,

ad∨u ∶ Rn → Rn,

for every X ∈ G and u∧, v∧ ∈ g. The two adjoint matrices
commute in the sense that

Ad∨Xad∨u = ad
∨
Ad∨

X
uAd∨X .

For all a, b, c ∈ R3 ∣ (a, b, c) ∈ R9, define the maps

Π (⋅) ∶ se2(3) → se(3), Π ((a, b, c)∧) = (a, b)∧ ∈ se(3).

For all X = (A,a, b) ∈ SE2(3) ∣ A ∈ SO(3), a, b ∈ R3,
define the maps

Γ (⋅) ∶ SE2(3) → SO(3), Γ (X) = A ∈ SO(3),
χ (⋅) ∶ SE2(3) → SE(3), χ (X) = (A,a) ∈ SE(3).



III. THE BIASED INERTIAL NAVIGATION PROBLEM

Consider a UAV receiving angular velocity and acceleration
measurements form an IMU, as well as measurements from
a GNSS receiver and measurements of the magnetic north
direction from a magnetometer. We will refer to the global
inertial frame of reference as {G}, the frame of reference
associated with the IMU as {I}, and the frame of reference
associated with the magnetometer as {M}. Let GRI denote
the rigid body orientation, and GpI and GvI denote the
rigid body position and velocity expressed in the {G} frame,
respectively. The gravity vector Gg is expressed in frame {G}.
The gyroscope measurement and bias are written Iω and Ibω .
The accelerometer measurement and bias are written Ia and
Iba . The rotational calibration of the magnetometer is denoted
as IRM , whereas the GNSS sensor lever arm is denoted as It.
Assuming a non-rotating, flat Earth scenario, the deterministic
(noise-free) continuous-time system is defined as follows.

˙GRI = GRI (Iω − Ibω)
∧
, (1a)

Gv̇I = GRI (Ia − Iba) + Gg , (1b)
GṗI = GvI , (1c)
I ˙bω = 03×1, (1d)
I
ḃa = 03×1, (1e)
˙IRM = 0∧3×1, (1f)

I
ṫ = 03×1. (1g)

The state space of the biased inertial navigation systems
is M= SO(3) ×R3 ×R3 ×R3 ×R3 × SO(3) ×R3 where the
five copies of R3 model velocity, position, and angular velocity
and acceleration bias, and the GNSS sensor lever arm respec-
tively, and SO(3) is the SO(3)-torsor with rotation matrices
representing coordinates of orientation rather than physical
rotation of space. An element ξ of the system’s state, and
an element u of the input space are written

ξ = (GRI ,
GvI ,

GpI ,
Ibω ,

Iba ,
IRM , It) ∈M,

u = (Iω , Ia, 03×1, 03×1, 03×1, 03×1) ∈ L ⊂ R18.

We now define the three measurement models considered in
this work. Firstly, consider the case where measurements of
the known magnetic north direction Gm are received in the
magnetometer frame Mm. The output space associated with
such measurements is N ∶= S2, and the configuration output
hm ∶ M → Nm is given by

hm (ξ) = IR⊺M
GR⊺I

Gm ∈ Nm. (2)

Secondly, consider the case where position measurements
Gπ = GpI + GRI

It, are received from a GNSS receiver. The
associated output space is Np ∶= R3, and, to benefit from
the equivariance, the configuration output hp ∶ M → Np is
defined according to [13]

hp (ξ) = GR⊺I (
Gπ − (GpI + GRI

It)) ∈ Np. (3)

Table I
SYMMETRY GROUP ELEMENTS

(C,γ) SE2(3) ⋉ se(3)
A = Γ (C)

B = χ (C)

SO(3)

SE(3)
δ R3

E SO(3)

Table II
SYMMETRY GROUP INVERSE AND GROUP PRODUCT

XY (CXCY , γX +AdCX
[γY ] , δX +AXδY ,EXEY )

X−1 (C−1,−AdB−1 [γ] ,−A
⊺δ,E⊺)

Finally, consider the case where velocity measurements
Gν = GvI + GRI

Iω∧ It, are received from a GNSS receiver.
The associated output space is Nv ∶= R3. To achieve third-
order linearization error of the output map through equiv-
ariance, we propose the idea of extending the configuration
output in Equ. (3) to the velocity measurements. Thus, we
define the configuration output hv ∶ M → Nv as

hv (ξ) = GR⊺I (
Gν − (GvI + GRI

Iω∧ It)) ∈ Nv. (4)

In the latter two measurement models, position and velocity
measurements are reformulated by constructing the vectors π ,
and ν with raw position and velocity measurements respec-
tively, and assuming hp (ξ) = hv (ξ) = 03×1. More details on
the fundamental derivations for the position measurements are
provided in our prior work [13].

IV. INS SYMMETRY

In the following section, we quickly recall the Semi-Direct-
Bias symmetry GSD of the biased inertial navigation system
introduced in our previous work [13] and extend it to include
the calibration states of the sensors suite considered in this
work.

Let T = (GRI ,
GvI ,

GpI) denotes the extended pose of
the system [8], and b = (Ibω, Iba) denotes the IMU biases.
Let S = IRM , and t = It denote the calibration states of
the magnetometer and GNSS antenna respectively. Define the
matrices

G = (03×1,Gg , 03×1)
∧ ∈ se2(3) ⊂ R5×5,

B = (Ibω, Iba, 03×1)
∧
∈ se2(3) ⊂ R5×5,

W = (Iω , Ia, 03×1)
∧ ∈ se2(3) ⊂ R5×5,

N =
⎡⎢⎢⎢⎢⎢⎣

03×3 03×1 03×1
01×3 0 1
01×3 0 0

⎤⎥⎥⎥⎥⎥⎦
∈ R5×5.

The first three equations of the system in Equ. (1) can then
be written in a compact way as follows [13]

Ṫ = T (W −B +N) + (G −N)T, (5)

Let X,Y ∈ G be two elements of the symmetry group
G ∶= (SE2(3) ⋉ se(3)) ⋉R3 × SO(3), whose elements are



Table III
SYMMETRY GROUP ACTIONS

ϕ ∶ G ×M → M (TC,Ad∨
B−1
(b − γ∨) ,A⊺ (t − δ) ,A⊺SE)

ρm ∶ G ×Nm → Nm E⊺ym

ρp ∶ G ×Np → Np A⊺ (yp − b + δ)

ρv ∶ G ×Nv → Nv A⊺ (yv − a − δ∧ Iω)

defined as in Tab. I, then the group product and the group
inverse are defined as in Tab. II. Note that A,B in Tab. I
are sub-elements of C computed through the maps defined in
Sec. II. Actions of the symmetry group on the state space and
output space are defined in Tab. III, where ym ∈ Nm, yp ∈ Np

and yv ∈ Nv

The existence of a transitive group action of the symmetry
group G on the state space M guarantees the existence of a
lift [16] Λ ∶ M ×L → g.

Theorem 4.1. Define the lift Λ (ξ, u) with the four maps
Λ1 (ξ, u) ,Λ2 (ξ, u) ,Λ3 (ξ, u) ,Λ4 (ξ, u) as follows

Λ1 (ξ, u) ∶= (W −B +N) + T−1 (G −N)T, (6)
Λ2 (ξ, u) ∶= adb∧ [Π (Λ1 (ξ, u))] , (7)

Λ3 (ξ, u) ∶= t∧ (Iω − bω) , (8)

Λ3 (ξ, u) ∶= S⊺ (Iω − bω) . (9)

The map Λ (ξ, u) is a lift for the system in Equ. (1) with
respect to the symmetry group G.

V. EQUIVARIANT FILTER DESIGN

The derivation of the linearized error dynamics, as well as
linearized output, are defined according to [9, 13] for the case
of equivariant output, that is:

ε̇ ≈A0
t ε − De∣ξ̊ ϑ (e) DE ∣I ϕξ̊ (E) [∆] ,

A0
t = De∣ξ̊ ϑ (e) Dξ ∣ξ̂ ϕX̂−1 (ξ) DE ∣I ϕξ̂ (E)

Dξ ∣ϕX̂(ξ̊)
Λ (ξ, u) De∣ξ̊ ϕX̂ (e) Dε ∣0 ϑ

−1 (ε) ,

δ (h (e)) = δ (ρX̂−1 (h (ξ))) ≈C
⋆ε +O(ε3),

C⋆ε = 1

2
Dy ∣̊y δ (y) (DE ∣I ρE (ẙ) + DE ∣I ρE (ρX̂−1 (y))) ε

∧.

In this work, we choose the state origin to be the identity
of the state space, thus ξ̊ = id, and we make use of normal
coordinates introduced in [9]. Therefore, let G be the sym-
metry group, let ϕX̂−1 (ξ) denote the equivariant error, then

define normal coordinates ε = ϑ (e) ∶= log (ϕ−1
ξ̊
(e))

∨
∈ Rn,

where log ∶ G → g is the logarithm of the symmetry group.

Let ε ∈ R21, then the linearized error state matrix
A0

t ∣ ε̇ ≃A0
t ε is defined according to

A0
t =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b̂∧ 03×3 03×3 03×3

06×3 06×6 06×3 06×3

06×3 06×6 03×3 03×3 3A 03×3

− 3A 06×6 I3 03×3 03×3 3A

1A
I6 06×3 06×3

2A

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (10)

where

1A =
⎡⎢⎢⎢⎢⎢⎣

03×3 03×3 03×3
Gg∧ 03×3 03×3
03×3 I3 03×3

⎤⎥⎥⎥⎥⎥⎦
∈ R9×9,

2A = ad
∨
((Π(AdĈ[W]+G)+γ̂)

∨) ∈ R
6×6

3A = (Â Iω + γ̂ω)
∧
∈ R3×3.

Let ym, yp, yv represent the raw measurements of direction,
position, and velocity, respectively. Then, given the configura-
tion output in Equ. (2, 3, 4), the actions on the output space
defined in Tab. III, and the use of normal coordinates, the three
linearized output matrices yield

C⋆m = Gm∧ [03×15 1
2
(Gm + Êyd)

∧
03×3] , (11)

C⋆p = [ 12 (yp + b̂ − d̂)
∧

03×3 −I3 03×9 I3] , (12)

C⋆v = [ 12 (yv + â −
Iω∧d̂)

∧
−I3 03×12 Iω∧] . (13)

VI. UNCERTAIN OBSERVATION HANDLING

Uncertain observation and signal outages are particularly
common in inertial navigation scenarios. typical solutions rely
on χ2 rejection tests. However, binary rejection strategies
are often insufficient and very sensitive to tuning parameters.
In the present subsection, we present the strategy for robust
uncertain observation handling, based on the concept of gen-
eralized covariance union GCU [14, 15] for which tuning is a
simple choice of convergence rate.

Let y represent an observation and R the observation
covariance. Let C⋆ represent the linearized output matrix, and
Σ be the estimated state covariance. Let ỹ be the innovation
computed via the output action, and S be the innovation
covariance. Let α ∈ [0.5, 1] be a scalar value used to control
the convergence rate (the lower, the faster). Then, before
updating the filter states according to [9], we compute an
inflated innovation covariance S′ as follows:

r = ỹ⊺S−1 ỹ = ỹ⊺ (C⋆ΣC⋆⊺ +R)
−1

ỹ ,

β =
⎧⎪⎪⎨⎪⎪⎩

(1+√r)2
1+r if r < 1

2 otherwise
,

S′ = β (C⋆ΣC⋆⊺ + αỹ ỹ⊺) +R.

The underlying idea is to inflate the innovation covariance
in the direction of the innovation and in such a way that after
the inflation the quantity ỹ⊺S′−1 ỹ is smaller than 1 [14, 15].



Figure 2. Comparison of the proposed EqF and the ArduPilot’s EKF3
for a simulated quadcopter flight, generated in SITL. Top, Position, and
attitude estimates. Bottom, Estimation of GNSS lever arm It (left) and
magnetometer rotational calibration IRM (right) using the proposed EqF.
Dashed lines represent reference values, y-axes are in meters and degrees,
x-axes in hh:mm::ss format.

VII. EXPERIMENTS

In the following subsections, we present and analyze various
experiments conducted using both simulated data within the
ArduPilot’s software in the loop (SITL) environment and
real-world flight data. These experiments aim to evaluate the
performance of the proposed methodologies under challenging
scenarios outlined in Sec. I. Each experiment includes a
flying aircraft equipped with multiple IMUs, GNSS receivers,
magnetometers, and other sensors such as barometers. The
ArduPilot EKF3 was set to use any available sensor, whereas
the proposed EqF is set to fuse the measurements from IMUs,
GNSS receivers, and magnetometers. In each experiment, the
ArduPilot EKF3 is set with accurate truth values for calibration
states. In contrast, the EqF was initialized with zero GNSS
lever arm and identity magnetometer rotational calibration –
these states are self-calibrated online. Additionally, in all the
experiments, the tuning parameters of the filters were left
unchanged to their default values. For all experiments, we used
original parameters provided by ArduPilot for both their SITL
environment and EKF3. We refer the reader to the ArduPilot
documentation for the complete set of values. The proposed
EqF was set with a similar but less inflated selection of default
parameters that were found to work well in practice.

A. SITL: software in the loop simulations

In the SITL environment, we conducted three distinct ex-
periments. The first experiment was targeted at showing the
self-calibration capabilities of the proposed EqF. To achieve
this, we simulated a quadcopter with magnetometer rotational
calibrations at angles of 20○, 30○, and 20○, along with a GNSS
lever arm of −0.4m, 0.2m, 0.1m in the xyz axes, respec-
tively. The outcomes, depicted in Fig. 2, show the estimated

positions and attitudes generated by both, the proposed EqF
and the ArduPilot’s EKF3. Additionally, the estimated sensor
extrinsic calibration by the equivariant filter is illustrated. The
results indicate that while both filters generally exhibit good
performance, the EqF achieves effective estimation of all the
states, including the sensor’s extrinsic parameters, without
prior knowledge of these parameters.

The second experiment was targeted at showing the consis-
tent nature of the proposed EqF under static conditions. EKFs
suffer from spurious information gains when receiving position
updates under constant velocity or static conditions, leading to
what is commonly termed as false observability [8]. Results
in Fig. 3 highlight the behavior of the proposed EqF and the
ArduPilot’s EKF3 in a prolonged simulated static scenario.
In this scenario, the EqF achieves zero error in position and a
constant error in attitude, mainly due to the initial yaw estimate
of 0○, whereas the actual yaw is approximately 7○. On the
contrary, the EKF3 displays the classical symptoms of the false
observability problem. It incorrectly gains spurious informa-
tion, resulting in an erroneous and non-constant estimation of
the yaw. Constant velocity motion and static conditions are
common scenarios in autonomous missions, and hence, the
ability to handle such situations without the need for exception
code is of paramount importance.

The final experiment in the SITL environment is targeted at
evaluating the behavior of the filters in the presence of GNSS
signal outages. In particular, we analyze the gating system
of the ArduPilot’s EKF3, and the inflation strategy discussed
in Sec. VI and applied to the proposed EqF. Fig. 4 shows
that both filters are unaffected by GNSS glitches and keep
providing a good estimate (the EKF3 due to code modules for
exception-handling, our EqF inherently due to the proposed
innovation-covariance inflation). Furthermore, Fig. 4 shows
the behavior of the EKF3 and the EqF on a scenario where
a GNSS shift happens. The ArduPilot’s EKF3 jumps to the
new solution after 10s a shift is observed due to exception
code. The conditions for the jump include outlier rejection
identification criteria, the period to wait before resetting the
state, and modifications for the covariance during the period
that the outliers are rejected. In contrast, the EqF behavior is
dependent only on the parameter α that governs the inflation
rate. The transition can be tuned to perform a smooth transition
or a semi-smooth transition. The flexibility of the proposed
EqF allows it to work properly with different controller
implementations.

B. SpringValley: outdoor quadcopter flight

In this subsequent experiment, real-world flight data from a
quadcopter was collected to validate the previously discussed
results in the software in the loop simulation environment.
Due to the absence of ground truth data, our analysis focuses
on the position and velocity error norms in relation to the
measurements obtained from a real time kinematics (RTK)
GNSS. The error plots in Fig. 5 depict a comparison between
the proposed EqF and the ArduPilot’s EKF3. Notably, the EqF
achieves lower error compared to the EKF3.



Figure 3. Position error norm (left) and attitude error norm (right) using
the proposed EqF and the ArduPilot’s EKF3 in a simulated static scenario.
The EKF3 exhibits a wrong estimate, showing the typical symptoms of
inconsistency due to false observability in static conditions. On the contrary,
the proposed EqF achieves a consistent estimate.

Figure 4. Behavior of the ArduPilot’s EKF3 and the proposed EqF in case of
GNSS shifts. The plots show the behavior of the filters following a GNSS shift
happening at 22 ∶ 58 ∶ 20. Top left, smooth transition of the proposed EqF
implementing the strategy discussed in Sec. VI with α = 1. Top right, semi-
smooth transition of the proposed EqF implementing the strategy discussed
in Sec. VI with α = 0.5. Bottom, behavior of the ArduPilot’s EKF3 and the
proposed EqF in case of multiple GNSS glitches highlighted with red circles.

Figure 5. Position and velocity estimation error when compared to raw RTK
GNSS measurements, using the proposed EqF and the ArduPilot’s EKF3 on
a real world quadcopter flight.

Figure 6. Performance comparison of the proposed EqF and the EKF3
receiving measurements from two different IMUs, one of which is faulty.
On the top, the low-pass filtered acceleration along the x (left) and y (right)
axes for two IMUs. It is observed that IMU[0] (in red) is faulty and suffers
from high amplitude components at high frequency, while IMU[1] (in green)
is healthy. On the bottom left, the plot shows the estimates obtained from
both the proposed EqF and an instance of the ArduPilot’s EKF3 when used
with measurements from the faulty IMU. The bottom right plot compares
the estimate from the proposed EqF when used with measurements from the
faulty IMU and a second instance of the ArduPilot’s EKF3 that relies on
measurements from the healthy IMU. The EKF3 fails to provide accurate
estimation when dealing with data from the faulty IMU, while the proposed
EqF demonstrates superior robustness by effectively dealing with it.

C. BraveHeart: outdoor quadcopter flight with faulty IMU

In this concluding experiment, we evaluate the ability of the
filters to handle a faulty IMU afflicted by high amplitude, high-
frequency components, potentially stemming from excessive
vibrations and aliasing effects. An illustration of this scenario
is presented in Fig. 6, showing the low-passed filtered signal
from two accelerometers recorded from an actual quadcopter
flight. The accelerometer from IMU[0] is faulty and exhibits
substantial high-frequency artifacts, setting it apart from the
healthy IMU[1].

In this experiment, we demonstrate the superior robustness
of the proposed EqF. It effectively provides an accurate
estimate when used with the faulty IMU, eliminating the
need for specialized parameter adjustments. In particular, we
compare the EqF run with the faulty IMU and with standard
tuning parameters with two instances of the ArduPilot’s EKF3,
one with the faulty IMU, and the second one with the healthy
IMU. Fig. 6 shows that the EqF succeeds in providing an
accurate estimate when paired with the faulty IMU while the
EKF3 encounters challenges, only succeeding under specific
tuning conditions involving high process noise and reduced
observation noise.

VIII. CONCLUSION

In this study, we introduced a new EqF design and imple-
mentation: We derived a multi-sensor fusion algorithm with



self-calibration capabilities, extending the previously intro-
duced Semi-Direct-Bias symmetry group [13] with velocity
measurements and effectively incorporating extrinsic calibra-
tion parameters for GNSS receivers and magnetometers. Our
formulation achieves third-order linearization error of the out-
put map leading to improved estimation performance. Through
a series of experiments conducted in both the software in
the loop simulation environment and real-world scenarios, we
demonstrated that the proposed EqF provides an effective solu-
tion to challenging scenarios encountered in UAV operations.

The proposed algorithm achieves consistent and good es-
timation results requiring minimal parameter tuning and no
knowledge about the sensors’ extrinsic parameters. Even when
used with noisy and faulty IMUs, the proposed solution
achieves remarkable robustness. Furthermore, in case of mea-
surement shift, the implemented innovation covariance infla-
tion strategy allows for different behaviors to be set, making
the proposed EqF a flexible solution for different controller
implementations.

Future work includes the extension to other sensor modal-
ities available to commercial UAV such as barometer and
optical flow sensors.
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