
Learning Software Project Management by
Simulation – Experience and Recommendations

from 20 Years of Teaching
Andreas Bollin

Department of Informatics Didactics
University of Klagenfurt

Klagenfurt, Austria
Andreas.Bollin@aau.at

Abstract—Learning software project management skills can
be supported in various of ways. In particular, using business
games or simulators represents added value in the classroom
but also has some drawbacks and should be supported by an
adequate didactic concept. This paper summarizes extensive data
collected over nearly two decades from the AMEISE simulation
environment used in European universities. It focuses on the
output of simulation runs and aims to achieve three objectives:
first, reporting on the setting, secondly, sharing lessons learned;
and, finally, providing 34 recommendations for educational and
training contexts. The paper starts by describing the simulation
environment and its use in the lectures over the past 20 years;
then, it presents an analysis of qualitative data collected, showing
that, according to students, the simulation is one of the best parts
of a course. Following the structure of a typical didactic handout,
challenges in preparation and implementation, as well as external
factors influencing the quality of teaching, are then highlighted,
and approaches to solutions or improvements are systematically
derived. Most of the recommendations in this paper also apply
to courses without simulators, which can improve software
engineering education in the long term.

Index Terms—software project management, simulation, di-
dactic guidelines, experience report, education, game based
learning

I. INTRODUCTION

Learning software project management at universities is
difficult due to the lack of real-life experience and the in-
herent complexity of software projects. Although traditional
classroom methods like reading books and listening to lectures
can provide a solid foundation, they often need to capture the
intricacies and unpredictability encountered in real-world situ-
ations [10], [17], [27], [30]. However, engaging in simulation
runs offers an effective and hands-on approach to learning,
as they allow students to practice decision-making, problem-
solving, and communication skills in a controlled environment.
By mimicking real-life project scenarios and providing the
opportunity to learn from mistakes, simulations can signif-
icantly enhance students’ understanding and preparation for
real-world challenges [4], [11]. Thus, while classroom learning
is essential, incorporating simulation runs in the curriculum
can significantly improve the effectiveness of software project
management education, bridging the gap between theoretical
knowledge and practical experience [3].

In 2001, researchers at the University of Klagenfurt, the
Johannes Kepler University Linz, the University of Stuttgart,
and the Carinthia University of Applied Sciences initiated
a project known as AMEISE (A Media Education Initiative
for Software Engineering), with the primary objectives of (a)
providing a highly accurate simulation environment akin to a
flight simulator for individuals to gain hands-on experience
in software project management, and (b) ensuring that the
environment is not perceived as a game, but rather as a realistic
representation of real-world scenarios. To accomplish these
objectives, AMEISE incorporates a simulation core from the
University of Stuttgart [13], which contains data and rules
from thousands of software projects meticulously collected
and analyzed to create a comprehensive and authentic simula-
tion. The project enables participants to immerse themselves
in various project management situations, effectively bridging
the gap between theoretical knowledge and practical applica-
tion while promoting the development of essential skills for
successful software project management.

The simulation environment has been used at several Euro-
pean universities for two decades. Extensive data (partially
with gaps) on simulation results have been collected. This
information has now been combined to learn more about the
impact of our classroom interventions. Here, we mainly focus
on the output of simulation runs, and so the objectives of this
paper are as follows:

• first, to report on the setting that enabled us to collect
different types of data;

• second, to present the valuable lessons learned from
this wealth of information, highlighting the successes,
challenges, and opportunities for improvement;

• third, to derive didactically and methodologically sound
recommendations, which hold relevance not only for
simulation environments but also for a broader range of
educational and training contexts.

With that, the paper contributes to the discourse on practi-
cal education by emphasizing the importance of experiential
learning and essential skill development across domains.



The paper is structured as follows: Section two addresses
related work and discusses ways of learning and training
project management skills. Section three briefly describes
the AMEISE environment and presents the didactic concept
behind the lectures. Section four presents classroom observa-
tions and derives recommendations, and finally, Section five
concludes with a summary and an outlook.

II. RELATED WORK

Management and simulation games are widely used in
the educational sector to teach practical and engaging skills.
There are football managers, managers for amusement parks
or hospitals - some of them finding their way into the field of
education. A typical simulation game is SimCity, which allows
players to design and manage their city, making decisions
about infrastructure, zoning, and public services. It has been
used in several studies [1], [15], but whereas general planning,
spatial and management skills are trained, such environments
do not support typical software engineering (SE) activities.

Business simulation games and game-based learning (GBL)
are more relevant in our context and have been employed
to teach software engineering and related processes in recent
years. Lin et al. [19] have explored the need for simulating
the processes of SE, while Kellner et al. [18] focused on
offering a set of simulations as practical guides. Simulation in
requirements engineering has also been investigated [29]. Pfahl
et al. [24] emphasized the importance of providing computer
science and SE students with an understanding of typical
phenomena occurring in industrial software projects. Chen and
Chong [9] demonstrated that SE education could benefit from
simulations that cover collaborative software development,
team projects, and social aspects. The role and importance of
games and gamification are also mentioned by Bucchiarone
et al. in their summary of the 6th International Workshop on
Games and Software Engineering [7].

On the other hand, games/simulations to learn software
project management are scarce. Wangenheim et al. [31] intro-
duced SCRUMIA, an educational game to teach SCRUM, and
observed its effectiveness in undergraduate project manage-
ment courses. Other researchers [2], [12], [25] have also ex-
perimented with teaching SE through games in small software
projects, highlighting the importance of using real projects
in addition to simulations. Game-based learning has been
employed in various fields and is particularly useful for foster-
ing collaboration and active student participation [2]. Studies
have shown that learning results from GBL are comparable to
traditional methods [14] and that games can improve abilities
and skills in software engineering education [8].

Despite the potential advantages, GBL has its drawbacks,
such as the need for careful planning and monitoring and the
possibility of creating pressure or embarrassment for learners.
Hainey et al. [16] suggested considering initial knowledge and
educational levels when employing GBL. Paraskeva et al. [23]
emphasized the importance of characteristics such as rules,
goals, objectives, outcomes, feedback, conflict, interaction, and
story representation in successful games. Systematic reviews

Fig. 1. AMEISE is built around the simulation environment SESAM and
extends it by a set of features and supervisory/motivation components for
both the trainers (e.g., via Administration, Monitoring, or Evaluation tools)
and the trainees (e.g., via the Friendly Peer or Advisor agents).

by Boyle et al. [6] and Connolly et al. [10] explored various
aspects of game-based learning, indicating that understanding
game enjoyment, cognitive and emotional involvement, and
matching desired learning outcomes is crucial for successful
game integration in learning.

The AMEISE environment differs from the abovementioned
approaches as it explicitly supports trainers and trainees via
tools. Furthermore, it is not a game, as its simulation engine
relies on a vast set of empirically validated rules. Its virtual
developers have their edges and idiosyncrasies; as in real
life, events are not always deterministic. Thus, enjoyment and
emotional involvement are part of the approach, and being in
use for more than 20 years shows that the environment is still
a valuable asset for our lectures.

III. THE AMEISE ENVIRONMENT

Since its start in 2001, the simulator (free for academic
institutions) has been used in schools, universities, and indus-
try. Installation and maintenance can be learned in irregularly
offered but free workshops. Apart from the fact that it is not
a commercial product, AMEISE is easy to use by trainers and
trainees, and this section briefly describes the environment and
its components.

A. Components and Models

AMEISE is a Client/Server system that uses a simulation en-
gine called SESAM. Developed by the University of Stuttgart,
SESAM is an educational model written in Ada95 and a
proprietary rule-based language that the AMEISE team used
as an initial prototype, evolving it in a series of iterations to
the currently available AMEISE system. The system comprises
around 140,000 lines of Ada95, C, and Java code. It utilizes
a MySQL database to store crucial data from simulation steps
for later assessment and visualization. Developed between
2001 and 2005, the project has been in the maintenance phase,
with a significant extension in 2007. This extension introduced
a tool for generating ODP files from simulation runs to
present key data and decision effects in the classroom. Over
45 developers have contributed to the system, and its stable
32-bit version can handle 300 client requests simultaneously,
accommodating larger classroom settings smoothly.

The system has been designed for blended learning situa-
tions (see Fig. 1 for a rough overview of the existing modules).



Fig. 2. The QA model is document-driven and implements a Waterfall-like
development process. However, a trainee can switch between phases at will
during a simulation.

It offers immediate feedback and help during simulation runs,
distinguishing it from SESAM. The system includes a Client,
an administration environment for user management, three
supervisory, and two motivation components, all written in
Java. The ”heart” of AMEISE is the MYSQL database, which
contains simulation settings, active simulation states, and the
complete trace of historical simulation runs. The simulation
core itself is not multi-user capable. Still, by storing states in
and retrieving states from the database, the system can handle
simulation requests from several clients at a time. The system
provides supervisory components such as a Friendly Peer (an
agent process that takes action and can intervene when bad
decisions are made), an Advisor (a plug-in that simulates an
experienced colleague to whom you can go with questions),
and an Evaluation Component (that produces diagrams and
tables for visualizing critical data from simulation runs). At the
same time, Redo and Comparison Components are available
for motivational reasons (although, as we will see later, these
extensions are usually hidden during the first simulation run).

Two models of different complexity and learning objectives
are available. There is a model for training maintenance
activities (MA-model) and one focusing on quality assurance
(QA-model). The QA model is scalable in complexity between
50 and 3000 APFs (Adjusted Function Points), and to a great
extent, we use the so-called QA-200 model in our lectures,
requiring the trainee to manage a 200 AFP project within nine
months and a budget of 225,000 Euro. The model is document-
driven (see Fig. 2) and can not be used to simulate agile
processes. But, within the given process boundaries, students
can move freely and set any activities in the project at any
time. Phases can be skipped, and sequences changed, and even
a code-and-fix approach is possible.

B. Didactic Approach

The educational model has already been described else-
where [21]. Briefly, it consists of the following phases:

1) Preparation (90 min.): Trainees are introduced to the
AMEISE simulation environment several days before the
first simulation run. They are provided with a handout
that includes valuable hints and a list of virtual software
developers indicating their hourly rates of wages and

Fig. 3. Exemplary table, generated automatically for the trainers, summarizing
the goal achievement of some simulation groups. Color codes are used to
highlight successful and less successful simulation runs.

Fig. 4. Table summarizing the cost of non-productive time in Euro (C ...
total project costs, E ... total expenditure in person months, cpm ... costs per
person months).

specific qualifications in various engineering activities.
In addition to relevant model-related knowledge, trainees
are given sufficient information about the environment
to use it properly in this session.

2) Planning for the first simulation (60 min.): After receiv-
ing the introductory information, trainees (up to four
students) are requested to prepare a simplified project
schedule containing the allocation of virtual developers
to phases and activities within their simulated project.

3) The first simulation (180 - 240 min.): The first simula-
tion should occur with an instructor present. Completing
their simulation runs takes about three to four hours,
depending on the student’s preparation level (quality
of project plan, environment). During the simulation,
students can hire (and fire) employees (with a given
salary and a spectrum of qualifications) and assign
tasks such as talking to the customer, designing, coding,
participating in review teams, testing, or integrating.
Assignments may be canceled instantly or after the
completion of the current subtask. The students are
asked to take notes and adjust their plans depending on
necessary changes caused by unforeseen events.

4) Feedback after the first simulation (90 - 120 min.):
Feedback concerns expended time and budget, degree
of completion, and the number of errors in code and
documentation (see Fig. 3 and Fig. 4 for an example).
The reflection is broken down into particular topics.
Diagrams show task assignments over time, and qual-
ity growth indicators are also given. There are also
several assessment options available, including online



assessment in the presence of the instructor (recom-
mended for immediate feedback on the first simulation
run), individual online assessment in the absence of the
instructor for different simulation runs, delivery of a
detailed evaluation report generated for each AMEISE
simulation, and instructor feedback in a plenary session
with discussion and comparison of exciting results.

5) Planning for the second simulation (60 - 90 min.): A
second simulation run is highly advisable for didactic
reasons [20]. Trainees demonstrate their ability to im-
prove simulation results through a second simulation.
Motivated by the challenges faced during the first sim-
ulation, they invest more effort in planning the second
run. Before starting, students submit an improved plan,
which includes a fine-granular schedule using the open-
source version of ProjectLibre (www.projectlibre.com).

6) The second simulation (120-180 min.): Familiarity with
the AMEISE environment is gained already during the
first simulation. Hence, the presence of an instructor is
optional for further simulation runs. The setting allows
trainees to decide when to start their second run. They
may suspend a simulation run and resume it until a given
deadline.

7) Feedback on the second simulation (60 min.): While all
feedback options described above exist, trainees should
be able to interpret the results provided by the on-
line assessment feature already themselves. In addition
to discussing the trainees’ performance in the second
simulation, a plenary session includes an analysis and
discussion of deviations between the first and the second
simulation runs.

Overall, the AMEISE educational model effectively allows
trainees to learn project management skills through experi-
mental learning by simulating real-life scenarios in a safe
environment. With AMEISE, they can learn from their failures
and improve their skills without harm.

IV. LESSONS LEARNT

Since 2002, the AMEISE educational model has been
used by more than 2,500 students in over 2,000 simulation
runs. Only for some runs and universities have data persisted
electronically. Still, we restored hand-written feedback from
six simulation runs between 2003 and 2006 within this paper’s
scope. We collected electronic data from two universities be-
tween 2006 and 2022, including results from 2,035 students in
1,774 simulation runs. Of these, data from 10 simulation runs
had to be excluded as they had particular tasks to implement
(such as deliberately skipping project phases), which would
distort the statistics. Regarding the distribution of students, 830
students (in 24 cohorts) are from the University of Klagenfurt,
and 1,195 students (in 25 cohorts) are from the Technical
University Kos̆ice.

After some qualitative insight into typical AMEISE courses
(IV-A), the chapter follows the typical structure of didactic
handouts. First, challenges/problems are identified: two from

the preparation phase (Sec. IV-B), nine during the implemen-
tation of the course (Sec. IV-C), and four stemming from
external factors (Sec. IV-D). Then each of them is followed
by recommendations for action.

A. Qualitative Feedback

Different feedback systems accompany the courses at our
universities. At the end of a semester, students evaluate the
courses according to various criteria (which have changed
over time since 2003). They include, among others, the work-
ing atmosphere, knowledge transfer, available documentation,
learning method, and equal treatment issues. But, since the be-
ginning, there is also room for personal comments (qualitative
responses).

As early as 2003, the evaluations show that the AMEISE
simulations are a highlight for students during their studies.
The courses are consistently evaluated with the best possible
grade; little information can be taken from the quantitative
part (except that the trainers could convey the contents appro-
priately). But, the qualitative part is interesting and influenced
the further development of the system and the courses. The
following comments were received most often:

• In the first year, we got a lot of feedback concerning
the user interface of the AMEISE client. Students asked
for progress bars, tables, graphs showing the status of
deliverables, and a tool for planning and searching their
command history. We improved the look and feel but
never implemented game-like elements. Instead, in our
lectures, we explained that managers are responsible for
keeping track of everything independently in real life.
AMEISE is not a computer game.

• Another issue that bothered the students was the high
response time of the simulation core (about 4-6 seconds
per simulation step). We continuously optimized the sys-
tem and added more simulation cores to it. Since 2006 the
system has been running fast and stable (with approx. one
second per simulation step, even at high load).

• After resolving technical impediments, students provided
more feedback on the task and simulation. The com-
ments are related to two aspects: the interaction with
the developers and estimation problems. Comments were
often emotional: ”So if one of my employees in my
company had complained like that, I would have fired
him long ago.” Yes, sometimes developers in AMEISE
complain about the work to be done, and we use this to
reflect on leadership and motivation in our courses. Many
students also mentioned: ”Oh, it’s so hard to tell when a
task is finished.” Thus, we started to address estimation
tasks in our lectures and included several examples and
techniques in our handouts.

In addition to that, we also periodically collected qualitative
feedback from the lecturers. Apart from hints of technical
improvements (that are skipped here), the following two
recommendations changed the way we organized our courses:

• Students used the helper components (Advisor, Friendly
Peer) instead of thinking deeply about decisions them-



Fig. 5. Number of points achieved at the end of the second simulation (100
points is the maximum).

selves first. As this was observed often at the University
of Klagenfurt, we decided to deactivate the helper compo-
nents for the first simulation runs as default in 2007/2008.
This helped to increase the performance of the groups
further (see Fig. 5, years 2007/2008).

• The standard set of introductory slides took a lot of work
to teach. The slides were very dense and contained a lot
of technical information. Thus, in 2015/16, we started
replacing the old set of slides with a new, improved set
(which follows the brain-based teaching approach [28]).
With this, again, we managed to increase the performance
of the groups at the University of Klagenfurt. But, most
important, teachers and students had more fun imparting
or developing the topics.

B. Preparation

The study revealed typical problems that trainees encoun-
tered during the planning phases. Specifically, two common
challenges were identified:
P1 Lack of knowledge about processes, reviews, tests, and
P2 Lack of experience in estimating the duration of tasks

(especially review activities).
Students taking part in simulation runs are generally at

the end of their Bachelor’s program in Computing Science
or Information Management. They know how to specify and
design software, know at least one object-orient programming
language, can use collaborative tools, and should have had
at least two major software engineering courses (including
lab classes). Thus they should know about process models,
effort estimation, and quality assurance activities. However,
they usually have not been put into the manager role, so they
know about facts and rules, but the experience on how to apply
the knowledge still needs to be added.

Several recommendations can be made to address the chal-
lenge P1 of trainees needing more experience in processes,
reviews, and tests.

R01 Trainees should be encouraged to engage in group dis-
cussions about typical activities involved in the project.
The reflection will help them to understand the processes
better and identify potential challenges or areas for im-
provement.

R02 Trainees should be motivated to do a dry-run of activ-
ities (in a fictional software company) and think about
an imaginary product to be developed, which can help
them identify any issues and make necessary adjustments
before starting the project.

R03 Checklists or process maps can be provided to trainees,
which can serve as a helpful reference tool throughout
the project and help them to stay on track and ensure
that essential steps are noticed.

Several recommendations can be made to address the chal-
lenge P2 of trainees needing more experience in estimating
the duration of tasks, especially reviews.

R04 A summary of the most important rules of thumb and
calculation models can be provided to trainees to help
them with estimate tasks.

R05 Trainees can be encouraged to use planning poker, a
technique where team members collaboratively estimate
the effort required to complete a task.

R06 The first project plan should be created together in
the classroom to get instant feedback and to provide a
better understanding of the requirements and challenges
involved.

R07 Trainees should hand in their plans a few days before
the simulation starts, allowing other groups to provide
feedback and identify potential issues.

R08 A refined project plan should be created for the second
simulation run to improve the overall quality of simula-
tion runs and allow trainees to demonstrate their ability
to improve their results.

These recommendations help trainees feel better prepared
for the tasks, yield better plans and thus improve their project
planning skills.

C. Execution

The study also identified several common pitfalls substanti-
ated in the collected data that trainers encountered during the
execution phase of the project. The nine most frequent cases
are:
E1 Adding too many personnel at the beginning of a project

(producing high cost and a lot of communication over-
head);

E2 Focusing too much on duration in the first simulation run
and neglecting it in the second run;

E3 Forgetting about essential phases, such as integration and
system test;

E4 Struggling to keep documents and code consistent;
E5 Testing-in quality instead of guaranteeing the quality of

documents from the beginning;
E6 Starting follow-up phases too early;
E7 They let developers waste time which costs a lot of

money;
E8 Sticking too much to the plan and running into hard-to-

solve situations;
E9 Not monitoring the budget and activities of developers

effectively.



Fig. 6. Proportion of developers hired to work on the system specification
(n=769). Due to the simplicity of the task, a single (and highly-skilled)
developer would have been enough.

Fig. 7. Number of student groups who have achieved the respective objectives.
The parameter ”Goal Achievement” means that all objectives have been
fulfilled.

The following two recommendations can be made to address
challenge E1 of adding too many personnel at the beginning
of a project.

R09 Trainees should be encouraged to discuss effort distribu-
tion permanently during the simulation run. For practice
reasons, they should estimate the duration of a simple
task when working alone and then with an increasing
number of developers. They should calculate the number
of necessary communication channels and interfaces
for that. The necessary considerations can help them
to identify the most effective distribution of resources
and ensure that everyone understands their roles and
responsibilities.

R10 Trainers should discuss the influence of skills on pro-
ductivity and costs. The discussion will help trainees
decide when and how to add which personnel resources
to a project. Fig. 6 shows that less than 40 percent of the
groups in the first simulation run have only one person,
the most appropriate person, to write the specification.

By implementing these recommendations, trainees can be
supported to manage resources and optimize productivity
throughout the project life-cycle effectively.

Several recommendations can be made to address the chal-
lenge E2 of trainees focusing too much on duration in the first
simulation run instead on quality. Fig. 7 shows that most of
the students keep the duration constraints in the first run. Only

Fig. 8. Typical example for a table showing the types of errors in the
artifacts. Errors propagate if no quality assurance activities are conducted.
In the simulation run of user ”1swm-03” there is an inconsistency in the
Specification and System Design document as the number of Analysis errors
increases.

in the second run quality in terms of numbers of errors and
functionality is valued.

R11 Point out that achieving high-quality results requires
investing effort in quality assurance already in the early
phases. Show simulation runs that even saved money by
investing effort in the early phases of the development.
This will encourage them to focus on producing high-
quality work from the outset rather than sacrificing qual-
ity for cost savings.

R12 The importance of the quality of predecessor documents
(necessary in the process life-cycle) should be empha-
sized to trainees. Let the students talk about errors of
different types in a fictive document that is the basis for
follow-up activities. Then, let them ponder the effects of
these errors (and when they can be detected) during the
whole project’s lifetime. Actively dealing with the life
span of errors will help them understand how the quality
of early work can impact the project’s overall success.

By implementing these recommendations, trainees can learn
to prioritize cost and quality throughout the project life cycle.

Several recommendations can be made to address the
challenge E3 of trainees forgetting essential phases, such as
integration and system test.

R13 Trainees should be advised to track their process and
progress throughout the project. This will help them to
identify potential gaps or issues and ensure that all critical
phases are completed.

R14 Checklists can be provided to trainees as a reference tool
and ensure that essential steps are noticed.

R15 Trainees should be reminded that, even though they are
using a simulation environment, AMEISE is not a game,
and there are no save points where one could go back
and get rid of wrong decisions. This will help them
stay focused and take all necessary steps to ensure the
project’s success.

By implementing these recommendations, trainees can learn
that managing projects means actively using tools and tech-
niques to remember decisions and work through endless piles
of activities.

Several recommendations can be made to address the chal-
lenge E4 of keeping documents consistent.

R16 Trainees should be shown how errors propagate through-
out the project, using a visual representation such as a



Fig. 9. Diagram showing how many groups of the first simulation introduce
or eliminate a certain number of errors over the respective phases. It can be
seen here that the peak is at 100-125 errors, but many groups accumulate
significantly more errors.

Fig. 10. Diagram showing how many groups of the first simulation introduce
or eliminate a certain number of errors over the respective phases. The peak
is still at 100-125 errors, but the distribution then falls off more sharply.

diagram or table (see Fig. 8). This will help trainees to
understand the importance of document consistency and
the potential impact of errors.

R17 Instructors should (again) explain the different types of
errors that can occur in documents and how they are
related. This will help trainees to identify potential errors
and take steps to ensure document consistency.

By implementing these recommendations, trainees can learn
to effectively manage different types of documents and ensure
that errors are identified and corrected before they harm the
project. Figures 9 and 10 show that the explanation after the
first simulation runs helps reduce error propagation between
the documents.

Several recommendations can be made to address the chal-
lenge E5 of testing-in quality instead of guaranteeing the
quality of all inter-project documents.

R18 Trainees should be encouraged to consider which is
more cost-effective: extensively testing a buggy system or
maintaining high-quality standards from the outset. This
will help them understand the importance of ensuring
document quality and how it can save time and resources
in the long run.

R19 In the simulation environment, cost-saving can be demon-

Fig. 11. Simulation run where module design (MD) started too early after
the system design (SD). The review process (SDRev) and also the correction
of system design errors (SDCor) started (and ended) after the module design
was finished. With that, a lot of SD errors were propagated to MD.

strated by showing how investing effort in quality as-
surance from the beginning can reduce the likelihood of
errors and ultimately save costs in testing and bug-fixing.
Data showing the cost-saving or neutral effects should be
presented in the feedback after the first simulation run.

By implementing these recommendations, trainees can learn
to prioritize document quality and improve their project man-
agement skills.

Two recommendations can be made to address the challenge
E6 of starting follow-up phases too early.

R20 Trainees should be explained how errors can propagate
throughout a project and between phases of a project.
This will help them to understand the importance of
completing each phase whenever possible before moving
on to the next and avoiding potential issues.

R21 Within the simulator, the consistency between documents
and Gantt charts can be shown with optimal and impeding
process steps (see Fig. 11 for a counter-example). This
will help trainees to understand the importance of follow-
ing proper project management practices and completing
each phase before moving on to the next.

By implementing these recommendations, trainees refresh
their knowledge about dependencies between documents and
phases.

Several recommendations can be made to address the chal-
lenge E7 of developers goofing around and non-productive
time costing money.

R22 Trainees should be given an overview of a typical work-
ing day of a software developer, including their various
tasks and how time is managed. This will help trainees to
understand the importance of efficient time management
and how non-productive time can impact project budgets.

R23 The cost-saving potential of reducing idle time can be
demonstrated in the simulator (see Fig. 4 as an example),
showing trainees how significant savings can be achieved
when non-productive time is minimized. When looking at
typical simulation runs of students, these savings might
be more than half the monthly budget per person and



Fig. 12. All the monitoring activities during a simulation run. The speci-
fication, system, and module design documents, as well as the code, have
been checked regularly. Also, the activities of the developers (labeled with
”AI”) have been checked. However, one activity is missing and needs to be
included: checking the budget.

often range from 5,000 to 10,000 Euros per developer
per group.

By implementing these recommendations, trainees actively
deal with personnel costs in a project, and they learn (some-
times painfully) that even minor differences can cost big.

The following two recommendations help to address the
challenge E8 of sticking too much to the plan and running
into hard-to-solve situations.

R24 Trainees should be advised that the most successful
project managers have more than one plan and regularly
update their plans according to changing circumstances.
This will help trainees to understand the importance of
flexibility and adaptation in project management.

R25 Trainees should be encouraged to remember their expe-
riences during the first simulation runs and how likely
they could not follow their plans. Ask them always to
make notes and to apply their experience with planning
accuracy to future projects.

By implementing these recommendations, trainees can learn
to prepare several plans, deal with unexpected situations and
thus optimize project outcomes again.

Several recommendations can be made to address the
challenge E9 of not monitoring the budget and activities of
developers.

R26 Trainees should know that real-time monitoring takes
time but is a crucial aspect of project management (you
can present and discuss counter-examples like in Fig. 12).

R27 Instructors should explain the importance of balancing
loose and active control, where too much control can stifle
creativity and too little can lead to poor outcomes.

R28 Show successful groups and bring examples of those who
effectively monitor their projects.

R29 If available, give examples of your own (or existing)
projects that nearly failed due to loose control.

By implementing these recommendations, trainees can learn
to balance control and creativity and improve their leadership
skills.

These recommendations should open the eyes of the stu-
dents in several aspects: avoid idle time, do not only one plan,
do several plans, discuss unclear process steps with others, and
keep track of what you are doing but be flexible in changing
environments.

D. External Factors

The teaching process is very important [26] and among
others, preparation, the formation of teams, the environment
as well as implementation decisions control the quality of
teaching.

1) Quality of preparation: Dealing with the influence of
external factors on the AMEISE simulation runs is crucial for
ensuring a successful learning experience. Before the simula-
tion runs, ensuring that all necessary materials are available
online or in print and that every student confirms their receipt
is essential. This includes descriptions of the simulation model,
instructions, and relevant theoretical materials. Additionally,
instructors should consider these materials optimized for brain-
based teaching [28], an approach we successfully applied in
our AMEISE lectures from 2015 on. We learned that the
duration of preparatory lectures should be carefully considered
to maximize the learning effect. Too short a duration may hin-
der trainees’ understanding of project management concepts,
while too long may lead to disengagement. In our case, the
introductory lecture now lasts 90-100 minutes.

After the simulation runs, it is crucial to have a set of
best practices and examples of project decisions that had very
positive and negative effects at hand. This allows instructors
to provide detailed feedback and guide trainees on improving
their performance in future simulations. Moreover, instruc-
tors should involve examples from every group to ensure
that all trainees remain engaged and motivated. This can be
achieved by showcasing successful projects, those that faced
challenges, and how they overcame them. Additionally, every
group should receive a handout in either PDF or print format
containing helpful hints, a list of virtual software developers,
and an overview of the AMEISE environment. With that we
can recommend the following:

R30 It is advantageous to provide sufficient materials and split
courses into 15-20 minute parts, and to include activation
phases with tasks between each of these parts (following
brain-based teaching recommendations).

By implementing these additional recommendations, in-
structors can ensure trainees receive a comprehensive learning
experience and better understand project management prin-
ciples. This will help them to effectively manage real-world
projects and enhance their career prospects in the software
engineering industry.

2) Team Size/Composition: The size and composition of
teams during AMEISE simulation runs have been shown to im-
pact the results achieved significantly. It is crucial to consider



Fig. 13. Average points (100 would be the maximum) achieved for the first
simulation runs, depending on the number of students per group.

the number of students on a team carefully, considering factors
such as the amount of space available in front of the computer
and the opportunity for lively discussions. Our experience has
shown that teams of three students are the most effective (see
Fig. 13), as they balance space requirements and the ability
to collaborate effectively. The dynamic of a team of three
students also tends to lead to more creative problem-solving,
resulting in better project outcomes. However, it is essential to
manage team size to ensure equal work distribution carefully
and that everyone has a chance to contribute.

Beyond team size, group dynamics can also significantly
impact simulation results. Different personality types have
different strengths and weaknesses, and it is essential to con-
sider these when forming teams. In one AMEISE experiment,
we investigated the impact of personality types (according to
the five-factor model) on simulation results. We found that
teams with a mix of personalities (with one manager or coach
personality type) tended to perform better than teams with
homogeneous personalities [22]. So, by forming teams with a
balanced mix of personality types, instructors can optimize the
learning experience and help trainees develop critical project
management skills.

Based on these observations, two further recommendations
can be made:

R31 Whenever possible, form groups of three students for
AMEISE simulation runs.

R32 Trainers should take care of different types of personali-
ties and, whenever possible, should form groups with one
manager or coach type.

3) Equipment and Environment: The working environment
significantly influences the learning and performance out-
comes of the AMEISE simulation runs. A recent study [5]
found that the simulation outcomes could be improved by
creating a suitable environment that fosters effective commu-
nication, collaboration, and knowledge sharing among team
members.

The study also recommended using appropriate tools and
equipment, such as laptops, projectors, and software, to sup-
port the simulation runs. In addition, it is essential to ensure
that the working environment is conducive to learning, such
as minimizing distractions and providing adequate lighting
and ventilation. So, instructors must consider the working

Fig. 14. Average improvement (in points) between the first and second
simulation run the University of Klagenfurt and the Technical University
Kos̆ice.

environment and provide the necessary resources and support
to maximize the learning outcomes in their lectures (and
simulation runs). The following recommendation can be made:

R33 Students should be able to set up their workspace in
the best possible way. This freedom includes space for
whiteboards, good screens, and familiar tools for com-
munication.

4) On-Site vs. Online: According to the reports of lecturers,
providing a shared communication space is necessary for both
on-site and online simulation runs. However, it is advisable
to allow students to organize their way of communication
to promote their creativity and adaptability. Additionally,
the instructors must be easily reachable in case of student
questions or concerns. This can be done through various
means, such as messaging platforms or video conferencing
tools. By ensuring the availability of communication channels,
students can receive prompt and effective support throughout
the simulation runs.

Besides many problems, one positive effect of the COVID-
19 pandemic is that it has forced many educational institutions
to shift their teaching and learning practices to online environ-
ments.

Data gathered so far shows that whether the simulation
runs are conducted on-site or online, there is no significant
difference in goal achievement (see Fig. 5 for the final
results and Fig. 14 for the improvement between run one
and run two). Both methods of simulation delivery have
yielded comparable results in improving project management
skills. This suggests that instructors can choose on-site or
online simulation delivery methods based on their preferences,
availability of resources, and students’ learning preferences.
Larger groups can be accommodated in online simulation runs,
leading to better resource utilization and enhanced student
collaboration. Overall, the shift towards online simulation runs
has shown promising results, and we are expected to continue
to do simulation runs in the virtual room again. Based on this
observation, a final recommendation can be made:

R34 One should not overthink about holding (or not holding)
an online/remote simulation. Students must have enough
opportunities for communication and collaboration.



V. CONCLUSION

Being a mixture of experience report and didactic guidance,
this contribution briefly introduced the AMEISE simulation
environment and its usage in courses over the past 20 years.
Three goals were defined. The first goal was to describe the
context in which data could be collected. For this purpose, a
well-tested teaching concept was presented. The second goal
was to identify challenges in teaching, and the third goal was
to provide recommendations. These two remaining goals were
achieved by a very systematic approach (problem identification
- recommendation - rationale): qualitative and quantitative
data were utilized from the historical point of view, and 34
recommendations were derived from them to improve teaching
or as advice to teachers in similar courses. The problems
identified (such as wrongly placed focus during development
phases, underestimating non-productive times, or choosing
employees who are not best suited) are independent of a
simulation environment. Thus, the recommendations should
be helpful in other teaching situations as well.

From today’s perspective, the simulation environment will
continue to be used due to its curricular fit. However, some
changes and extensions are now imminent. First, it is planned
to make the system a web service and thus further facilitate
access to simulations. On the model level, we are also working
on implementing an agile model in addition to the document-
driven model focusing on quality assurance. Here we are still
collecting data so that an agile rule model leads to an accurate
simulation, not a game.

REFERENCES

[1] P. C. Adams, “Teaching and learning with SimCity 2000,” Journal of
Geography, vol. 97, no. 2, pp. 47–55, 1998.

[2] C. Alvarez, R. Alarcon, and M. Nussbaum, “Implementing collaborative
learning activities in the classroom supported by one-to-one mobile
computing: A design-based process,” Journal of Systems and Software,
vol. 84, no. 11, pp. 1961–1976, 2011.

[3] A. Bollin, E. Hochmüller, R. Mittermeir, and L. Samuelis, “Experiences
with Integrating Simulation into a Software Engineering Curriculum,”
in Proceedings of 25th IEEE Conference on Software Engineering
Education and Training CSEE&T 2012, L. H. D. Chen, M. Baker, Ed.
IEEE Computer Society Press, April 2012, pp. 62 – 75.

[4] A. Bollin, E. Hochmüller, and C. Szabó, “Teaching Software Project
Management by Simulation: Training Team Leaders for Real World
Projects,” in Proceedings of the 28th IEEE Conference on Software
Engineering Education and Training. Florenz, Italy. IEEE Computer
Society Press, 2015.

[5] A. Bollin, E. Reci, C. Szabó, V. Szabóv’a, and R. Siebenhofer, “Applying
a Maturity Model during a Software Engineering Course - Experiences
and Recommendations,” in 2017 IEEE 30th Conference on Software
Engineering Education and Training (CSEE&T), Savannah, USA. IEEE
Press, 2017.

[6] E. A. Boyle, T. M. Connolly, T. Hainey, and J. M. Boyle, “Engagement in
digital entertainment games: A systematic review,” Computers in Human
Behavior, vol. 28, no. 3, pp. 771–780, 2012.

[7] A. Bucchiarone, K. M. L. Cooper, D. Lin, E. F. Melcer, and
K. Sung, “Games and Software Engineering: Engineering Fun,
Inspiration, and Motivation,” SIGSOFT Software Engineering Notes,
vol. 48, no. 1, pp. 85–89, January 2023. [Online]. Available:
https://doi.org/10.1145/3573074.3573096

[8] N. E. Cagiltay, “Teaching software engineering by means of computer-
game development: Challenges and opportunities,” British Journal of
Educational Technology, vol. 38, pp. 405–415, 2007.

[9] C. Y. Chen and P. P. Chong, “Software engineering education: A study
on conducting collaborative senior project development,” Journal of
Systems and Software, vol. 84, no. 3, pp. 479–491, 2011.

[10] T. M. Connolly, E. A. Boyle, E. MacArthur, T. T. Hainey, and J. M.
Boyle, “A systematic literature review of empirical evidence on computer
games and serious games,” Computers & Education, vol. 59, pp. 661–
686, 2012.

[11] M. Despeisse, “Games and simulations in industrial engineering edu-
cation: A review of the cognitive and affective learning outcomes,” in
Proceedings of the 2018 Winter Simulation Conference, ser. WSC ’18.
IEEE Press, 2018, pp. 4046 – 4057.

[12] A. Drappa and J. Ludewig, “Quantitative modeling for the interactive
simulation of software projects,” Journal of Systems and Software,
vol. 46, no. 2–3, pp. 113–122, 1999.

[13] ——, “Simulation in Software Engineering Training,” in Proceedings,
23rd International Conference on Software Engineering. IEEE-CS and
ACM, May 2001, pp. 199 – 208.

[14] M. Ebner and A. Holzinger, “Successful implementation of user-centered
game based learning in higher education: An example from civil
engineering,” Computers & Education, vol. 49, no. 3, pp. 873–890, 2007.

[15] J. Gaber, “Simulating planning: SimCity as a pedagogical tool,” Journal
of Planning Education and Research, vol. 27, no. 2, pp. 113–121, 2007.

[16] T. Hainey, T. M. Connolly, M. Stansfield, and E. A. Boyle, “Evaluation
of a game to teach requirements collection and analysis in software
engineering at tertiary education level,” Computers & Education, vol. 56,
no. 1, pp. 21–35, 2011.

[17] W. S. Humphrey, Introduction to the Team Software Process. Addison
Wesley, 2000.

[18] M. I. Kellner, R. J. Madachy, and D. M. Raffo, “Software process
simulation modeling: Why? what? how?” Journal of Systems and
Software, vol. 46, pp. 91–105, 1999.

[19] C. Y. Lin, T. Abdel-Hamid, and J. S. Sherif, “Software-Engineering
Process Simulation model (SEPS),” Journal of Systems and Software,
vol. 28, pp. 263–277, 1997.

[20] P. Mandl-Striegnitz, “How to successfully use software project simula-
tion for educating software project managers,” in Proceedings - Frontiers
in Education Conference, vol. 1, 02 2001, pp. 19 – 24.

[21] R. Mittermeir, A. Bollin, E. Hochmüller, S. Jäger, and D. Wakounig,
“AMEISE - An Interactive Environment to Acquire Project-Management
Experience,” in Proceedings of HUBUSKA Third Open Workshop,
Klagenfurt, Austria, April 2006, pp. 1 – 16.

[22] A. Mujkanovic and A. Bollin, “Personality-Based Group Formation -
A Large-Scale Study on the Role of Skills and Personality in Software
Engineering Education,” in Empowering Learners for Life in the Digital
Age, OCCE 2018, Linz, Austria. IFIP Advances in Information and
Communication Technology. Springer, 2019, pp. 207 – 217.

[23] F. Paraskeva, S. Mysirlaki, and A. Papagianni, “Multiplayer online
games as educational tools: Facing new challenges in learning,” Com-
puters & Education, vol. 54, no. 2, pp. 498–505, 2010.

[24] D. Pfahl, M. Klemm, and G. Ruhe, “A CBT module with integrated
simulation component for software project management education and
training,” Journal of Systems and Software, vol. 59, no. 3, pp. 283–298,
2001.

[25] S. Qin and C. Mooney, “Using game-oriented projects for teaching
and learning software engineering,” in 20th Annual Conference for the
Australasian Association for Engineering Education, 2009, pp. 6–9.

[26] E. Reçi and A. Bollin, “Managing the quality of teaching in computer
science education,” in Proceedings of the 6th Computer Science Edu-
cation Research Conference, ser. CSERC ’17. New York, NY, USA:
Association for Computing Machinery, 2017, pp. 38–47.

[27] M. Shaw, “Software Engineering Education: A Roadmap,” in Future of
Software Engineering 2000, A. Finkelstein, Ed. ACM, 2000, pp. 373
– 380.

[28] M. Sprenger, Brain-based teaching in the digital age. ASCD, 2010.
[29] E. Suescun-Monsalve, P. Vallejo, R. Mazo, and D. Correa, “Trans-

parency as a learning strategy to teach software engineering,” in Pro-
ceedings of the Congreso Colombiano en Computacion, 09 2017.

[30] J. B. Thompson, “Software Engineering Practice and Education: An In-
ternational View,” in SEESE ’08: Proceedings of the 2008 International
Workshop on Software Engineering in East and South Europe. ACM,
2008, pp. 95 – 102.

[31] C. G. Von-Wangenheim, R. Savi, and A. F. Borgatto, “SCRUMIA – An
educational game for teaching SCRUM in computing courses,” Journal
of Systems and Software, vol. 86, no. 10, pp. 2675–2687, 2013.


