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Abstract— As two of the main sensors utilized in robotics,
environment representation and navigation, ToF cameras and
radars are often combined in sensor fusion frameworks. Re-
alistic and complete simulation plays a crucial role in fast
prototyping, performance assessment, and model analysis of
systems relying on these sensing technologies. Typical simula-
tion environments, however, don’t model key characteristics,
such as the radar sensor’s time domain raw data, antenna
arrays’ structure, or parasitic effects of depth estimation of
ToF cameras. This article presents a simultaneous ToF camera
and radar simulation based on the Unity 3D engine. The two
sensors are modeled from a single custom RGB camera object
and are inherently time synchronized. The simulation provides
ToF depth and intensity estimates, together with time domain
radar data and realistic detrimental effects, allowing testing of
standard post-processing algorithms. Several parameters can
be configured, such as field of view, modulation characteristics,
and the number and position of antennas. Moreover, simulation
objects can have different material properties for the two
sensors making them more or less visible for each sensor. The
approach focuses on user-friendly, realistic sensor simulation
while keeping computational complexity within acceptable lim-
its to ensure applicability. The capabilities of the proposed
simulator are validated by comparing real and simulated
sensors in different scenarios.

I. INTRODUCTION

To generate a spatial representation of the environment,
Amplitude Modulated Continuous Wave (AMCW) Time-of-
Flight (ToF) cameras and Frequency Modulated Continuous
Wave (FMCW) radars have been employed in applications
such as human tracking [1], [2], robotics [3], [4], mapping
and navigation [5], [6].

ToF cameras use infrared light to provide dense point
clouds from depth estimates in one shot at a high frame
rate. FMCW radars generally have lower spatial resolu-
tion and frame rate than AMCW ToFs. Still, they provide
direct velocity estimates and work under harsh environ-
mental conditions, such as bad illumination, rain, dust, or
smoke. Because of their common principle of measuring
the echo from target objects, ToFs and radars suffer from
common error sources such as multipath phenomena. Both
sensors are generally compact and lightweight, but their
response to the environment is generally different due to
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their fundamentally different excitation mode. Consequently,
complementary usage of such technologies in sensor fusion
applications is proposed [7]. The increasing complexity of
tasks in the application domains requires simulation-based
pre-testing and data analysis. In [8], Cheng et al. investigate
the generation and enhancement of radar point clouds by
proposing a data-driven detector trained with Lidar point
clouds in a supervised learning approach. All the data for
both sensors are collected in real life, which is not always
feasible. Steinbaeck et al. [9] further investigated sensor
fusion frameworks for ToF cameras and radars for occu-
pancy grid mapping and navigation, based on merging point
clouds from the two sensors. A joint simulation would allow
speeding up data collection, testing configuration changes,
and generating training data for learning algorithms. [10]
also describes a fusion framework with a AMCW ToF
and a 60 GHz FMCW radar for human tracking in indoor
environments. Performances are closely related to the post-
processing algorithms used for building Range-Angle and
Range-Doppler maps with the radar. In a simulation, it
would not be possible to test the different algorithms without
having access to the time domain raw data. Hence, the need
to provide such measurements, namely the mixed signals
comprising transmitted and received waveforms embedded
in noise.
In the context of radar simulation, some frameworks have
been proposed [11], but they lack the aforementioned fea-
tures. Recently, the authors in [12] implemented an FMCW
radar simulation for robotics applications, where time do-
main data are provided. Limitations of this work include very
low resolution, absence of noise, and an approximation of
the multiple antennas model, which only adds pre-computed
phase shifts to a single signal. This ignores important phe-
nomena such as the geometry-dependent intersection of a
physical antenna array. In the context of ToF, [13], and the
authors in [14] implemented real-time realistic simulations,
which provide intensity and depth estimates, including par-
asitic effects.
The quality of the simulation depends on the quality of
the employed models. A lack of realistic sensor models
decreases simulation quality and the subsequent transfer
of the findings from simulation to reality. We build upon
[14], and [12] and propose a Unity 3D-based simultaneous
AMCW ToF and FMCW radar simulation. With respect to
the aforementioned works and state-of-the-art, the simulation
proposed in this paper has the following characteristics:

1) Synchronization: the measurements of both sensors are
generated in one shot from the same RGB camera

This full text paper was peer-reviewed at the direction of IEEE Instrumentation and Measurement Society prior to the acceptance and publication.
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Fig. 1: An overview of the simulation pipeline to generate realistic sensor data.

image and have the same timestamp.
2) Independence: by exploiting independent color chan-

nels and illumination layers, targets can be made more
or less visible for one sensor independent of the other
to model the different real-world reflectivity properties.

3) Time domain radar data: the simulated radar’s output
is the mixed signal from transmitter and receiver
antennas, with added noise floor model.

4) Radar antenna configuration: the user can physically
add receivers to build an antenna array, choosing the
position of every element without the need to re-
rendering the camera images.

These characteristics allow for efficient modeling of the
ToF and the radar simultaneously, change configuration pa-
rameters and generate synchronous and realistic point clouds.
In the following, we will describe the concept architecture,
revisit the measurement model used to generate simulated
data, and compare the obtained results with real-world data.

II. SIMULATOR CONCEPT

The proposed simulation concept of this paper provides
a user-friendly and accurate platform for the simultaneous
simulation of FMCW radars and AMCW ToF cameras. An
overview of the simulation framework components and their
interconnections is shown in Fig. 1. In the following, the
individual features of the simulator are rigorously explained.

A. Unity 3D Scene

The simulation scenery is modeled in Unity 3D [15],
providing a high degree of usability. The Unity 3D developer
scene offers interactive 3D content/libraries with various
environmental objects and material distributions. ToF and
radar functionality are added using a custom-made sensor
object comprised of a camera and two light sources. The
independent light sources represent the ToF Infra-Red (IR)
illuminator and the radar transmitter (Tx) antenna. The illu-
mination response of the environment to the camera object
depends on the domain topology and used material with
properties such as ”metallic” and ”smoothness”. Layering

techniques are used to create independent responses of a sin-
gle object to the two light sources enabling independence and
physical difference of the radar and ToF signals. Assigned
material (e.g., specularity, diffuse response) properties define
how object surfaces reflect incoming ToF and radar signals.
Note that the camera and the light sources have a common
pose and the light sources use different colors.

B. GPU based Rendering, C# Sensor class, Matlab Client
Script

The Graphics Processing Unit (GPU)-based rendering of
the camera image as a function of the light source and
the scenery is performed by Unity 3D’s High Definition
Render Pipeline (HDRP). HDRP is a customizable and
scriptable render pipeline that supports physically based
lighting techniques. We use a Bidirectional Reflectance Dis-
tribution Function (BRDF), comprised of the isotropic multi-
scattering GGX function for the specular component [16],
and Disney Diffuse for the diffuse component [17]. The
rendered 3-channel (32-bit each) image contains the RGB
intensities; one channel is used by the radar receiver (Rx),
assumed coincident with the Tx, and one is used by the
ToF illuminator. A custom shader script retrieves the GPU
z-buffer data, calculates the distance to each pixel in the
scene, and copies the depth image to the third color channel.
Afterward, the image is transferred to the Central Processing
Unit (CPU) using a C# script and published as TCP/IP
stream. The GPU-CPU architecture of the framework is
asynchronous, yielding an optimized update rate independent
of the individual computational complexity. The C# script
additionally controls the settings and objects’ motion in
the Unity 3D scene, which is useful for testing velocity
estimation with the radar. A Matlab script receives and
interprets the intensity and depth images.

C. Sensor Modelling

The rendered image has a resolution of
W × H = 1000 × 342 pixels and a Field of
View (FOV) of Fh × F v = 100◦ × 45◦. These are
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Fig. 2: 2D visualization of the simultaneous multiple sensors
modeling from a single image. If the FOV of any sen-
sor/antenna exceeds the limits of the high-resolution image
(red dotted line), the relative pixels are discarded.

adjustable numbers which, in this case, exceed the resolution
and FOV of common ToF cameras and radars. Therefore,
the image is cut according to the region effectively covered
by each sensor. This approach is practically used to model
multiple antennas of the radar sensors or multiple ToF
cameras without re-rendering.
Fig. 2 shows a 2D representation of a possible alignment

of a ToF camera and a radar comprised of two Rx antennas.
With homogeneous transformations, we can specify the
rotation and translation of each element of the sensor system
to the RGB camera origin. The outputs of this block are
distance and intensity maps of the cut and transformed
visible regions. The procedure to calculate them is described
in the following.
The pixel-wise, 3D X and Y coordinates are first computed
for the RGB image (the Z is already given by the depth
information) by rearranging the central perspective model
equations [18]:

u = fx
X

Z
, v = fy

Y

Z
(1)

X =
Zu

fx
=

Z(u/Xmax)

(W/2)
(2)

Y =
Z(v/Ymax)

(H/2)
(3)

where fx, fy are the focal lengths, {u, v} the normalized
pixel coordinates and {Xmax, Ymax} = tan({Fh, F v}/2)
the maximum measurable coordinates. If, for one pixel,
Xrgb = [X,Y, Z, 1]T , we can write for the generic sensor
element s:

Xs =

[
Rrgb

s trgbs

03 1

]
Xrgb (4)

where Rrgb
s and trgbs are the rotation matrix and translation

vector representing the transformation between s and the
camera origin. In the simulation, we consider the ToF origin
coincident with the RGB camera one, so that XToF = Xrgb,
and only the cut has to be performed. Then, as represented
in Fig. 2, Tx/Rx1 and Rx2 are added by computing the
respective measured coordinates with (4), substituting the
transformation values according to mounting and antenna
spacing. Such an approach also allows the simulation of
standard radar Rx configurations with multiple antennas, e.g.,
linear, rectangular, or circular arrays.
For both ToF and radar, the visible regions according to

their FOV are then cut out of the high-resolution image. To
achieve this, we compute the pixel coordinates xs with the
camera matrix P :

xs = PXrgb = Ks[R
rgb
s |trgbs ]Xrgb (5)

where Ks is the known intrinsic parameter matrix, whose
entries depend on the FOV of s and on the image reso-
lution. This yields pixel values that are normalized such
that the values below 0 and above {W,H} correspond to
the regions outside the sensor’s FOV, and are therefore
discarded. The cut is applied to the intensity and distance
matrices, where the distance to each pixel is computed as
ds =

√
X2

s + Y 2
s + Z2

s .
Additionally, for the radar, we consider the intersection
region between antennas as the visible region since, in real
radars, each Rx antenna can only receive a waveform that
was transmitted within the Tx FOV. The distance values
from the intersection region are projected back to Tx/Rx1
to efficiently simulate the pixel-wise phase difference due to
the antenna spacing. With this modeling, users can perform
Angle of Arrival (AoA) estimation from the raw time domain
data generated from the aligned distances. The high resolu-
tion allows for spacing between antennas in the millimeter
order, as in the case of mmWave FMCW radars.

D. ToF camera simulation

AMCW ToF cameras transmit periodic light signals,
which are reflected by the environment. The incoming sig-
nal is correlated with the outgoing one to estimate the
phase shift caused by light’s travel time and, ultimately,
the distance traveled. By modeling the transmitted light
as g(t) = cos(ωT t) and the incoming reflection as
f(t) = AT cos(ωT t − ϕT ), where ϕT and AT denote the
phase shift between the signals and the amplitude of the
received signal, the correlation function evaluates to [14]:

C =
AT

2
cos(ϕT + ωT τ). (6)

The values for AT and ϕT origin from the intensity and dis-
tance maps calculated before, where ϕT = 2πdToF /(λ/2),
where λ = c/fT is the wavelength of the modulation
frequency fT = 2πωT , and c is the speed of light. By
selecting four observation phases as ω0τ = iπ2 for i = 0...3
yielding C0...C3, a suitable reconstruction algorithm for ϕT

can be and a corresponding output distance estimator by
using the estimated phase shift are given by

ϕ̂T = atan

(
C3 − C1

C0 − C2

)
, ˆdtof =

cϕ̂T

2ω0
. (7)

The distance estimation procedure is performed pixel-wise
and expanded to multiple parallel pixels yielding a depth
image. Additional effects modeled in the ToF simulation are
the following:

• Maximum unambiguous distance estimation due to the
periodic nature of the received signal. If the distance to
an object exceeds the limit, the estimate is mapped into
the λT

2 range.
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• The Flying Pixel effect occurs when the sensor pixel
projects to an area containing depth discontinuities,
e.g., a sharp edge. Thanks to the high-resolution image,
which is 4× higher than the ToF one, a contribution of
4 pixels corresponds to a single sensor pixel signal.

• Cross-talk effect due to the tunnel effect in comple-
mentary metal-oxide-semiconductor (CMOS) technol-
ogy [19]. The pixels of ToF cameras are grid-type
positioned, so this effect is modeled using a radially
symmetric Gauss Filter as isotropic approximation.

E. Radar simulation

In FMCW radars, a sinusoidal waveform with varying
frequency is transmitted for a time Tc. Linear sweeps of the
frequency bandwidth B are known as chirps. The transmitted
signal can be represented as [20]:

xT (t) = cos(2πfct+ πKt2) (8)

where fc is the lower frequency of the signal and K = B/Tc

is the slope rate of the chirp. The waveform is reflected by the
target and captured by one or more receiving antennas after
a time delay τ = 2(R+ vt)/c, where R and v are the range
and velocity of the target, respectively. For Doppler velocity
estimation, a number Nc of chirps can be transmitted in a
single measurement frame. The received signal is mixed with
the transmitted one and low-pass filtered, to provide so called
Intermediate Frequency signal, whose real part is:

xIF (t) = ARcos(2πfIF t+ ϕIF ) (9)

where AR is the signal amplitude, fIF = Kτ is the constant
beat frequency corresponding to the difference between
transmitted and received waveforms, and ϕIF = 2πfcτ −
πKτ2 is the mixed signal phase. Finally, the mixed signal
is sampled Ns times at the ADC frequency fs to provide
the raw time domain data which we are interested to model.
Radars allowing low level access can be configured by vary-
ing Ns, Nc, fs, B and Tc. These parameters are chosen on
the basis of needed maximum range, velocity and resolution.
Our simulation framework allows the configuration of all
these quantities. More detailed information on FMCW radar
theory and signal processing methods can be found in [21].
The generation of the time domain signal is summarized in
the following. The mixed signal is first evaluated at each
pixel, by discretizing the IF equations for all samples and
chirps. For one pixel of coordinates u, v, we have:

τ [n]u,v = 2(Ru,v + vu,vn)nc/c (10)

f [n]u,v = 2πfcτ [n]u,v + 2πKτ [n]u,vn− πKτ [n]2u,v
(11)

xIF [n]u,v = ARcos(f [n]u,v) (12)

where 1 ≤ nc ≤ Nc is the chirps index, n = ns/fs,
with 1 ≤ ns ≤ Ns is the samples index, and AR is the
pixel intensity. The pixel’s velocity v is computed from
the difference between radial distance values Rk and Rk−1

obtained at two consecutive steps k and k − 1, with ∆t as
simulation rate. Notice that the values of R are simply given

TABLE I: Relevant parameters of the used sensors.

PMD CamBoard ToF Infineon BGT60TR13C
Field of View 62◦ × 45◦ 120◦ × 60◦

Wavelength 850 nm 5mm

Resolution 224 × 171 -
Modulation Frequency 20MHz 60GHz

Chirp Bandwidth - 6 GHz
Sampling frequency - 2 MHz
Number of samples - 512
Number of chirps - 1 (exp.1) - 16 (exp.2)

Number of Rx antennas - 2
Unambiguous Range 7.5m Nsc/(4B) = 6.4 m

by the distance maps from the previous block. The pixels’
contributions are summed up, and everything is repeated for
each simulated antenna, obtaining the raw time domain signal
xIF , reshaped into a Nc x Ns x Na matrix, where Na is the
number of Rx antennas.
Radar tracking performances are greatly dependent on the
target detection algorithm, related to the peaks in the Range-
Fast Fourier Transform (FFT) spectrum. In real sensors, low-
amplitude peaks corresponding to targets with low Radar
Cross Section (RCS) might not exceed the noise floor level
and therefore will not be detected. The proposed simulation
takes this effect into account. Noise is usually modeled at the
receiver level [22] and is a mixture of thermal noise, phase
noise and other effects, the sum of which is approximated as
additive white Gaussian noise. Having modeled the mixed
signal, we add such WGN samples to it and obtain our
final time domain radar signal xR[n] = xIF [n] + w[n]. The
variance of w[n] can be adjusted by the user, as its value
varies with each device and in different conditions.
The obtained samples of xR can be processed with stan-
dard radar signal processing algorithms for target tracking.
We use 2D-FFT paired with an OS-CFAR detector and
monopulse phase difference estimation to compute radial
distance (range), velocity and AoA, from which the radar
point cloud is generated. Refer to Section III for the one-to-
one comparison with a real sensor.

III. EXPERIMENTAL RESULTS

The commercial sensors used to validate the results in the
real world are the PMD CamBoard pico flexx ToF camera
and the Infineon BGT60TR13C 60GHz FMCW radar. The
relevant specifications for the following experiments are
summarized in Tab. I. All the parameters are configurable
in the simulation. Notice that the radar’s FOV is higher than
the RGB image one, but these are theoretical values that are,
in practice, significantly decreased, especially in presence of
low reflectivity targets.
In the following, we describe two experiments conducted to
test the performances of the proposed simulation.

A. Experiment I - Static Scene

In the following experiment, the simulation framework
is qualitatively tested in the environment shown in Fig. 3,
where multiple objects and materials are present, including
metal, paper and concrete. The scene model in Unity 3D
contains the most important items. Since the modelling
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Fig. 3: Real-world and simulated scene with the most dom-
inant targets highlighted.

effort was kept within certain limits, there is a visible gap
between simulation and reality. For instance, the furniture
in the simulation is taken from an available library and
not modelled specifically. However, the key idea of this
concept is not recreating a certain scenery in Unity 3D
but rather provide realistic simulated sensor data. To each
object in the simulated environment we assign materials and
metallic/smoothness properties. By exploiting the light layer
structure in Unity, or the independent color channels of the
rendered image, surfaces can be made highly radar/ToF-
reflective, transparent just for one sensor or other similar
characteristics. To test such properties, we place a very good
near-IR reflector on the right desk (next to the blue book),
and check its visibility from the two sensors. Similarly, a
strong radar corner reflector is placed behind a white paper
box, which is made transparent for the radar but not for
the ToF. In the case of the ToF camera, the intensity of the
reflected light together with the scene depth information is
processed yielding the distance estimate shown in the left
image of Fig. 4. The corresponding real-wold experiment is
shown in the right image of Fig. 4. It can be observed that the
placed IR reflector dominates the intensity image. Note that
the intensity at the neighboring pixel is also affected due to
the cross-talk effect in CMOS technology. Due to the high
intensity, the affected sensor pixels are saturating, leading
to failing depth estimation. This effect can be seen in the
corresponding real-world as well as simulated depth image
shown in Fig. 4, where the estimated depth in the region
of the reflector is zero and the neighboring region shows
wrong distance estimates which are in turn the distance to
the reflector. In this experiment, the response of different
materials to the near-IR illumination can be observed in
the intensity and corresponding depth images. The chair’s
backrest generates minimal reflections and is, therefore, not
visible in either of the images. Contrary, the seating reflects
the incoming illumination well and is accurately represented
in the depth image, as well as the other metallic materials
such as the aluminum plate in the back. Even though the
camera simulation concept includes the most significant
effects of standard ToF cameras, the compensation of minor
discrepancies will require additional functional modeling.
This is supported by the flexibility of the simulation concept,
where additional functionalities can be added at any stage of
the simulation pipeline.
The radar results are reported in Fig. 5 and Fig. 6. From the
Range-FFT spectrum in Fig. 5 we notice the similar behavior
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Fig. 4: A comparison between real world and simulated ToF
camera data shows the importance of the modelled parasitic
phenomena.
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Fig. 5: Spectrum of the Range-FFT for the office scenario.
Both signals contain many peaks, due to the complexity
of the scene. The difference between real and simulated
distances, in the order of cm for some of the peaks, are due to
the fact that the scene in Unity is not an exact replica of the
real environment. We also notice the similarity of the effect
of a low pass filter (for DC leakage component removal) and
the presence of the noise floor model in the simulation data.

-60°
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0°
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Real World
Simulation

Fig. 6: Range-Angle map for the office scenario. With respect
to the Range-FFT, we see that the CFAR detector algorithm
only considers some of the reflections as valid targets,
resulting in a strong similarity of the computed point clouds.
Small spatial differences between real and simulated targets
could be reduced with a better Unity model, the building of
which is outside the scope of the paper.

of the two signals, even though the real radar sees additional
reflections, e.g., in the region between 2.3 and 3 m. The
object on the left desk, behind the chair just below 2 m
of distance is also not visible in the simulation. The radar
corner reflector at 3.2 m correctly shows a strong amplitude,
making it clearly visible in both signals. In Fig. 6 we see the
capabilities of the simulation to produce a point cloud analog
to the real one, opening the possibility of generating such
data for learning algorithms and testing purposes. The results
have been obtained using the same configuration parameters,
in real and simulated world, for all the signal processing
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Fig. 7: Velocity plot computed from the Doppler-FFT on the
simulated data for single target tracking.

algorithms mentioned in Section II-E. The simulation outputs
the synchronized ToF images and radar measurements at 4-6
Hz according to the configuration.

B. Experiment II - Doppler velocity estimation

The second experiment is performed in simulation to
test the effect of the Doppler-FFT on the generated radar
raw data. For simplicity, we report the result of a single
target tracking scenario, where the camera object in Unity
is programmed to perform a simple back and forth motion
while tracking the target. The radar is configured to send 16
chirps and the Doppler-FFT is computed by zero-padding
the raw data along the chirp dimension, after pre-multiplying
them with a Chebyshev window to enhance the main peak in
the spectrum. In Fig. 7 are reported the results with respect to
the ground truth (computed directly in Unity). We can notice
some spikes during the constant velocity phases, reflecting
the presence of noise in the raw time domain data. Proper
configuration parameters for velocity computation are highly
dependant on the scenario needed by the user. Our simulator
allows to change the same parameters as the ones present on
real radars, and therefore investigate which settings are best
suited for more complex scenarios.

IV. CONCLUSIONS
ToF cameras and FMCW radars are already widely used in

robotics for applications such as environment representation,
obstacle avoidance, and navigation. Due to their character-
istics they are often used in conjunction yielding improved
perception of the environment. This paper introduces a real-
time simulation concept that makes digital twins of such
sensors already available in the design process of the target
application. The simulation pipeline covers significant effects
of commercial ToF cameras and FMCW radars. The frame-
work is flexible and several parameters can be configured to
model physical sensors, such as field of view, modulation
characteristics, and the number and position of antennas.
To keep the computational complexity in certain limits,
the framework renders the scene once while using light
layering and color distinguishing techniques to model the
ToF camera and radar independently and allow for coherent
data generation. This is required, because common materi-
als have different reflection responses to the fundamentally
different excitation frequencies of radar and ToF cameras.
The capabilities of the proposed simulator are validated by
comparing real and simulated sensors in a realistic office
room scenario containing multiple physical objects.
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