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Abstract— In this paper, we present a Radar-Inertial Odom-
etry (RIO) framework capable of running on a portable
resource-constrained embedded computer in real-time as a state
estimator for closing the feedback control loop on an Unmanned
Aerial Vehicle (UAV) platform. The presented framework ef-
ficiently implements a RIO approach relying on the multi-
state tightly-coupled Extended Kalman Filter (EKF) fusing
instantaneous velocities of and distances to 3D points delivered
by a lightweight, low-cost, off-the-shelf Frequency Modulated
Continuous Wave (FMCW) radar with Inertial Measurement
Unit (IMU) readings. The usage, accuracy and consistency of
the implemented framework are improved compared to state-
of-the-art by the online calibration of the sensors’ extrinsic
parameters. Our method is particularly relevant for (but not
limited to) UAVs, enabling them to navigate autonomously
in Global Navigation Satellite System (GNSS)-denied envi-
ronments using very affordable and accessible hardware. In
addition, thanks to the properties of the radar sensor, we
enable autonomous navigation in challenging conditions for
robot perception due to external factors such as fog, darkness
or strong illumination which might be encountered in disaster
zones. We show in real-world closed-loop flight experiments
the effectiveness and efficiency of our estimator. The beneficial
impact of the online calibration on estimation accuracy and
consistency is also shown. Moreover, we compare the presented
approach to a state-of-the-art vision-based algorithm (Visual-
Inertial Odometry (VIO)) in visually degraded conditions.

I. INTRODUCTION AND RELATED WORK

One of the expected advantages of UAVs is their ability

to be deployed in complex and hostile environments such as

disaster zones, areas with adverse weather conditions, or haz-

ardous industrial zones to perform autonomous missions such

as reconnaissance, inspection, search and rescue, and others.

In order to operate autonomously in such environments, the

localization system of the platform must make use of sensors

robust towards phenomena such as fog, smoke or extreme

illumination. Since recently, thanks to their physical prop-

erties, their miniaturization, and general advances in their

technology, radar sensors are being increasingly investigated

for their use in navigation of various types of autonomous

robots requiring resilience towards unfavourable environment

factors. Another key requirement of an onboard localization

system on an autonomous mobile robot is the need to execute

within the tight limits imposed by the real-time control loop

and often on a resource-constrained computing platform.

A number of radar-based localization methods have been

presented in the scientific community in the past few years.
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Fig. 1. Experimental platform used in this work with the FMCW radar
and camera sensors placed in the take-off position in dense artificial fog
used to simulate a disaster site conditions. Note that the camera has been
used only for comparison with VIO in the experiments with the artificial
fog (see the Subsection V-D).

Significant contributions made in the automotive domain

cited in [1], [2], [3], [4], [5], [6] make use of bulky and ex-

pensive scanning radars inadequate for use on UAVs mostly

due to their size and power consumption. In [7] the authors

present an optimization-based continuous-time RIO method

which is particularly well suited for multi-radar setups as

the continuous representation of the vehicle trajectory allows

sampling it at any given time, thus permitting efficient asyn-

chronous fusion of multiple radars measurements with the

IMU. The method in [7] is demonstrated on an automotive

platform with high-performance cascaded radars, an order of

magnitude costlier, and still of greater size than the single-

chip radar used in our work. Indeed, we focus more on the

application of low-cost and small single-chip FMCW radars

on UAVs, where the payload is of crucial relevance. In this

domain, in [8], [9], [10], [11] the authors present a real-time

RIO method in which the platform velocity estimated from

a single radar scan is fused in a loosely-coupled manner

with IMU readings in an EKF framework. In [9] the authors

extend the method presented in [8] with online calibration

of radar extrinsic parameters which boosts the accuracy

and simplifies the usage of the approach. Nonetheless, the

barometer sensor is additionally used, which contrasts with

our work where we aim at using radar and IMU only. In

[10] the same EKF framework is further augmented with the

yaw aiding using Manhattan assumptions on the environment

thanks to which the method attains high accuracy with



minimal run-time footprint. In [11] still the same method is

equipped with GNSS sensor providing a versatile and precise

outdoor localization solution, nonetheless at the expense of

introducing a dependency on GNSS reception. As opposed

to [10], [11] our approach makes no assumptions on the

environment and employs only radar and IMU. In [12]

and [13] an optimization-based approach is shown where

a sliding window of past radar and IMU measurements

is used to estimate the UAV velocity. The approach in

[12] attains comparable performance with the vision-based

system and even outperforms it in visually degraded settings.

Additionally, in [13] the authors add a comparison of their

method with a lidar-based approach and propose a method

to reduce the noise in the radar pointclouds based on Deep

Learning. The authors in both [12] and [13] concentrate on

estimating the ego-velocity instead of the full 6D pose. Also,

both approaches have not yet been demonstrated in closed-

loop flights.

In the present paper, we demonstrate the capabilities of

the RIO method presented in [14] and [15] in closed-loop

flights and show that it enables a UAV to reliably navigate

autonomously in an unknown environment. The real-time

state feedback control of a resource-constrained UAV is

enabled by the efficient implementation of the aforemen-

tioned RIO approach. The accuracy of the implementation,

as shown still boosted with respect to [15] thanks to the

online extrinsic sensor parameters calibration, permits pre-

cise tracking of trajectories even when vision-based methods

fail. Online calibration also obviates the manual efforts

related to measuring spatial configuration of sensors and

improves the estimator’s consistency. Thanks to the above

features, the presented framework allows for a reliable and

seamless use within an autonomous UAV navigation stack as

a localization component. We leverage this for integrating our

framework into the CNS Flight Stack [16]. Integration and

subsequent deployment into an autonomous mission require

only minimal effort. To the best of our knowledge this is the

first time that a RIO framework using only radar and IMU

and making use of no assumptions on the environment has

been used for closed-loop control of a UAV including sensor

extrinsic calibration capabilities. Our main contributions are:

• Implementation of a RIO framework capable of exe-

cuting in real-time on a portable resource-constrained

credit-card sized onboard computer.

• Evaluation of the implemented framework in closed-

loop control flights.

• Introduction of the online estimation of the extrinsic

calibration parameters and thus simplifying the use of

the framework as well as improving its accuracy and

consistency.

• Comparison with a state-of-the-art vision-based method

in challenging environmental conditions (artificial fog).

This paper is organized as follows. Section II introduces

the notation used in this paper. In Section III, we broadly

describe our RIO algorithm. In Section V, we outline the

experiments and evaluation conducted in order to validate

the proposed method. In Subsection V-A, we report the

experimental setup used during the experiments, the Sub-

section V-B presents the results of the closed-loop flight

evaluation, whereas the Subsection V-C shows the impact of

the online calibration on the accuracy and the consistency of

our estimator. In Subsection V-D, we assess the performance

of our method when used in visually degraded conditions.

Finally, we present conclusions in Section VI.

II. PRELIMINARIES

Below, we introduce the notation for the easier following

of the paper. A normally distributed multivariate variable is

defined as Xi ∼ N (xi,Σii), with a mean xi and covariance

(uncertainty) Σii, which is called the belief of i. Names

of reference frames are capitalized and calligraphic, e.g.,

{I} for IMU. A pose between the reference frames A and

B is defined as ATB =

[

ARB
A
ApB

0T 1

]

∈ SE(3) , with

R ∈ SO(3) and p ∈ R
3. The transformation of a coordinate

vector C
CpP1

pointing from the origin of the reference frame

C to a point P1, expressed in C, can be transformed into

the frame A by

[

A
ApP1

1

]

= ATC

[

C
CpP1

1

]

(read as
from

in x to).

Rotations are stored as unit quaternions q̄ ∈ S(3) with ∥q̄∥ =
1 allowing a direct mapping between rotation matrices and

unit Hamiltonian quaternions by ARB = R
{

Aq̄B

}

∈ SO3

and Aq̄B = q̄
{

ARB

}

[17]. The a priori and a posteriori of

a belief are indicated by a {•}(−) and {•}(+), respectively.

{•}# specifies measured (perturbed) quantities.

III. MULTI-STATE RADAR-INERTIAL STATE ESTIMATION

WITH PERSISTENT LANDMARKS AND ONLINE

CALIBRATION

We use the state estimator formulated in [15] and extend

it with the online calibration capabilities of sensor extrinsic

parameters which now constitute additional state variables

in the estimator formulation. We use the stochastic cloning

formalism from [18] in order to process measurements rela-

tive to the robot poses at past time instances. Cloned poses

corresponding to the instants at which radar measurements

were taken are appended to the state in a FIFO fashion and

later used for pointclouds alignment necessary for matching

and updates. Continuously detected and matched 3D points

are recorded in the measurement trails. As long as a trail

remains active, that is, new detections are matched and ap-

pended to it, all its 3D points are used for update with Eq. 3.

Trails detected continuously for N number of instants are

promoted to persistent landmarks, moved to the state vector

and used during update according to Eq. 4. To make use

of the radial velocity measurements of 3D points provided

by FMCW radars thanks to Doppler shift, we construct

an update equation (Eq. 7) relating the projection of the

estimated ego-velocity onto the normalized direction vectors

to the detected 3D points. The full state vector x of our filter



is defined as follows:

x = [xI ;xR;xC ;xL] =
[ [

GpI ;
Gq̄I ;

GvI ;ba;bω

]

;
[

IpR; I q̄R

]

;
[

GpI1
; Gq̄I1

; . . . ; GpIN
; Gq̄IN

]

;
[

GpL1
; . . . ; GpLM

] ]

(1)

with the IMU state xI , the extrinsic calibration parame-

ters xR, the stochastically cloned states xC of the IMU

poses corresponding to the previous radar measurements

and the set of persistent landmarks xL. The previous radar

measurements (point cloud of reflecting objects and their

Doppler velocities) are not part of the state vector. GpI ; GvI ,

and Gq̄I are the position, velocity, and orientation of the

IMU/body frame {I} with respect to the navigation frame

{G}, respectively. bω and ba are the measurement biases of

the gyroscope and accelerometer, respectively.
[

IpR; I q̄R

]

describe the 3D pose of the radar sensor with respect to

the IMU sensor.
[

GpIn
; Gq̄In

]

with n = 1, . . . , N define a

set of past IMU poses with respect to the navigation frame

{G} at the moments of past radar measurements. GpLm
with

m = 1, . . . ,M define the position of persistent landmarks

{L} with respect to the navigation frame {G}. We use
[

GpI1
; Gq̄I1

]

(corresponding to the newest coordinates of the

trails) for ad-hoc point correspondence generation as detailed

in [14] thanks to which the measured 3D points need not be

kept in the state vector in order to be used in distance based

measurements). After the addition of the sensor extrinsic

calibration parameters as variables to the state vector the

stochastic cloning procedure remains analogous to the one

reported in [15], with the only difference being, that the

covariance matrix blocks containing the cross-covariance

terms copied upon the cloning of a new IMU state are bigger

in size. Namely, the increase in size corresponds to the two

3×3 blocks which correspond to the cross-covariance values

between the state-to-be-cloned and the calibration error states

- position and orientation.

The evolution of the state is expressed by the following

differential equations:

GṗI = GvI ,
Gv̇I = GRI

(

Ia
# − ba − na

)

+ Gg,

GṘI = GRI

[

Iω
# − bω − nω

]

×

,

ḃa = nba
, ḃω = nbω

,

GṗIn
= 0, GṘIn

= 0,

I ṗR = 0, IṘR = 0,
GṗLm

= 0

(2)

where n = 1, . . . , N refers to the most recent past IMU

poses which are not changing in time, m = 1, . . . ,M refer

to M most recent estimated positions of landmarks, Ia
#

and Iω
# are the accelerometer and gyroscope measurements

of the IMU with a white measurement noise na and nω .

nba
and nbω

are assumed to be white Gaussian noise to

model the bias change over time as a random process. The

gravity vector is assumed to be aligned with the z-axis of

the navigation frame Gg = [0, 0, 9.81]
T

.

We use the error-state EKF formulation [19] and the below

update equations to correct the nominal state from Eq.1. For

each update component, we apply an outlier rejection using

the chi-squared test. The first two components are distance

measurements to points in the trail dPj
and to the persistent

landmarks dlm :

dPj
=

∥

∥

∥

Rp′tp
Pj

∥

∥

∥
(3)

and

dlm =
∥

∥

∥
l′m

∥

∥

∥
(4)

with

Rp′tp
Pj

=IRT

R

(

−I
IpR + (GRtc

I )T
(

−Gptc
I +

Gp
tp
I + GR

tp
I

(

I
IpR + IRR

Rp
tp
Pj

))) (5)

and

l′m = R
RpLm

= IRT

R

(

GRT

I

(

lm − G
GpI

)

− I
IpR

)

. (6)

Where tp is the time index of a trail history element and tc is

the current time index, Pj is a single 3D measurement point

and R
RpLm

is the radar observation of the 3D trail point in

the current radar reference frame. lm = G
GpLm

is the estimate

of the m-th landmark.

The third component consists of the velocities of the points

in the current pointcloud:

RvPi
=

rT

∥r∥

(

IRT

R
GRT

I
GvI+

IRT

R

(

Iω × I
IpR

))

(7)

where r = RpPi
is the 3D point detected in the current scan.

The actual set of velocities used for the update is found using

3-point RANSAC as in [8].

IV. REAL-TIME CONTROL OF THE UAV USING THE CNS

FLIGHT STACK

To perform a closed-loop flight evaluation, we leverage

our previous work for a fully autonomous and customiz-

able flight stack, the CNS Flight Stack [16]. Relying on

SkiffOS [20], this flight stack provides a computationally

lightweight, fully autonomous flight framework specifically

designed for closed-loop estimator evaluation on MAVROS-

controlled UAVs [21].

Within the CNS Flight Stack, the estimation module is

replaced by the above-described RIO and its estimates are

directly forwarded to a PX4-based controller [22] using the

provided estimator bridge. Thus the RIO framework is the

only observer in this control system.

Further, we configure the flight stack to fly a predefined

trajectory (seen from the top-view in green in the Fig. 2)

with varying waypoints in position and yaw. The maximum

distance between two consecutive waypoints is set to 0.45 m

horizontally and 1 m vertically.

The onboard processing times outlined in the Tab. II for

the used resource-modest platform described in Subsection

V-A show that our method is very lightweight with respect

to the computation time and leaves a comfortable margin for

the closed-loop control.



V. EXPERIMENTS AND EVALUATION

Below we describe the setup we used and the experiments

we carried out to validate our framework in closed-loop

flights as well as the results of the evaluation. We also show

the results of the analysis of the impact of the online cali-

bration on the accuracy and consistency using the manually

flown trajectories from the dataset used in [15]. We choose to

measure the accuracy of our algorithm by computing Mean

Absolute Error (MAE) according to:

MAE =

∑N

i=1|xi − yi|

N
. (8)

For consistency evaluation, we use the estimation error with

its uncertainty and the Normalized Estimation Error Squared

(NEES) (Bar-Shalom et al. [23]) according to:

NEES = x̃TP−1x̃ (9)

with x̃ and P being the error between the true and estimated

state variables and the error-state covariance matrix, respec-

tively.

A. Experimental Setup

We employ in our experiments a lightweight, inexpensive,

single-chip FMCW radar from Texas Instruments integrated

on an evaluation board AWR1843BOOST, shown affixed to

the UAV in Fig. 1, equipped with a USB interface and pow-

ered with 2.5V. The frequency spectrum of chirps emitted

by the radar lies between fl = 77GHz and fu = 81GHz.

The Field of View (FoV) is 120 ◦ in azimuth and 30 ◦ in

elevation. We set the frequency of measurements acquisition

to fm = 15Hz. The radar is attached to one extremity of

the experimental platform facing forward by a tilt of about

45 ◦ with respect to the horizontal plane as shown in Fig. 1.

This improves the velocity readings compared to nadir view

while keeping point measurements on the ground and thus

at a reasonable distance. For inertial measurements, we use

the IMU of the Pixhawk 4 flight controller unit (FCU) with

the sampling frequency of fsi = 200Hz. Transformation

between the radar and IMU sensors is estimated online

during the filter operation. For the dataset processing in

Subsection V-C the initial navigation states of the filter are

set to the ground truth values. For the closed-loop flight

in Subsection V-B we set the initial navigation states to

pi = [0, 0, 0]T and q̄i = [1, 0, 0, 0]T . Number of cloned

states N was set to 7. Some arbitrary reflective objects were

placed in the scene since the test environment was otherwise

a clutter-less clean lab space. No position information from

the added objects of any sort was measured or used in our

approach other than what the onboard radar sensor perceived

by itself. We use a motion capture system to record the

ground truth trajectories. During acquisition of the manually

flown dataset used in Subsection V-C, we recorded sensor

readings from the IMU and radar together with the poses of

the UAV streamed by the motion capture system as ground

truth. Our EKF-based RIO was in this case executed offline

on the recorded sensor data on an Intel Core i7-10850H

vPRO laptop with 16GB RAM. In the case of the closed-

loop flight in Subsection V-B, we recorded the pose estimates

calculated (and fed to the controller) onboard in real-time by

our RIO. Our RIO was executed on a raspberry pi 4 with

4GB RAM mounted on the platform. Presented RIO is a

custom C++ framework and in both cases we compiled it

with gcc at -O3 optimization level. Execution timings for

the closed-loop flight are shown in Tab. II.

B. Closed-Loop Flights Evaluation

For evaluation of the presented RIO approach, we design

a 3D trajectory such that the UAV can execute it within the

motion capture covered area. The top view of the trajectory

can be seen in green in the Fig. 2. The UAV then executes

this trajectory twice within a single mission using the state

estimates computed by our RIO implementation onboard in

real-time. We executed three missions and computed the

mean values of the final drift and the norm of MAE for

each of them. Our estimator exhibited stable behaviour in

all performed flights. Computed mean values are 2.84%
for the final drift and 0.58m for ∥MAE∥ (see Tab. I).

The mean traveled distance across trajectories is 28.62m.

As can be seen in the Fig. 4, the accuracy (measured by

∥MAE∥) obtained in closed-loop flights, marked with a

brown star, lies slightly above the mean calculated over the

manually flown and subsequently offline processed dataset

of seven trajectories collected in [15]. We attribute this

slim discrepancy to the online closed-loop execution of the

estimator and controller on a resource-constrained hardware

during which some of the measurements are dropped due

to CPU load spikes. We note that these are precisely the

challenges when demonstrating estimation approaches in

closed-loop autonomous flights and that these are important

factors our RIO approach is able to mitigate well. In the

Fig. 3 we plot the 2D coordinates of the estimated and

true position. In Tab. II we show the average values of the

time it takes to execute the entire IMU and radar processing

functions on the onboard computer mentioned in Subsection

V-A.

TABLE I

METRICS COMPUTED ACROSS CLOSED-LOOP FLIGHTS

Trajectory Distance [m]
Norm of MAE at

full distance [m]
Final drift [%]

1 28.43 0.64 3.41

2 28.88 0.37 2.05

3 28.55 0.73 3.07

Average 28.62 0.58 2.84

TABLE II

ONBOARD EXECUTION TIMINGS

Average time [ms]

IMU processing Radar processing

1.04 16.97



Fig. 2. Top view of one of the executed closed-loop flights. Marked in blue
and orange are the estimated and true trajectories respectively. Plotted in
green is the trajectory input to the controller. Coloured dots are the starting
and end points. The magenta-coloured dot marks the starting point of the
input trajectory, whereas the dots marking the starting points of the ground
truth and estimate coincide.

Fig. 3. Position coordinates of the true and estimated trajectories plotted
against time for one of the closed-loop flights. The take-off point was on the
table seen in the Fig. 1 which causes vertical shift in the z coordinate. The
landing point was on the floor. Note that no special handling in the filter is
needed in the steady initial phase when the robot does not move since no
feature triangulation is required but direct depth information is provided by
the radar – an important advantage over vision based approaches.

C. Evaluation of the Impact of the Online Calibration on

the Accuracy and Consistency

Estimation accuracy is impacted by the precision of the

extrinsic calibration parameters of the sensors. Also, as stated

in [24], the unmodelled uncertainty of these parameters when

treated as static negatively impacts the filter’s consistency.

Therefore, we propose to estimate these parameters online

during the operation of the algorithm. This renders the

platform easier to use as the calibration parameters are not

needed to be measured manually nor any complex calibration

procedure is required. Online calibration estimation also

increases the accuracy which can be seen in Fig. 4 where

we note the reduction of the ∥MAE∥ for the same dataset

used in [15], but with the here proposed online calibration

implemented. Additionally, based on the analysis done in

[25] and [26], we know that these parameters are observable

for general trajectories.

In the Fig. 5 and Fig. 6, we can see comparisons of

the position estimation errors (with ±3σ envelopes) and

the position NEES respectively for the case of manual and

online calibration for one of the trajectories from the above

Fig. 4. Mean of the norm of MAE for the flown dataset of seven trajectories
from [15]. Black dashed lines are from [15] whereas the coloured lines are
the values obtained for the same dataset but with the online calibration
implemented. As can be noticed there is an increase in accuracy (mean of
∥MAE∥ reduced). Marked with the brown star is the mean value obtained
for the closed-loop flights presented in the previous paragraph (Tab. I). For
comparison, red and orange dots represent results presented in [14] and
the magenta dot represent the state-of-the-art result in [8] for the flown
trajectory. From 127 m to 150 m six trajectories are used to compute the
mean since trajectory 1 ended at 127 m (solid black vertical line).

mentioned dataset. In Fig. 5, we can observe that our system

with online calibration exhibits better characterization of the

actual uncertainty as the estimation errors are bounded by the

±3σ envelopes across the vast majority of the trajectory and

the errors oscillate closer to zero. The bounded segments are

less frequent for the case of the manual calibration and the

errors are shifted further away from zero. These aspects are

also reflected in Fig. 6 which depicts the comparison of the

NEES for the same data as for the position errors above.

The above comparisons indicate much better consistency

for the case with the online calibration since the NEES

is greatly reduced (Bar-Shalom et al. [23]). In the case of

manual calibration, we paid close attention to measuring as

accurately as possible the extrinsic parameters of the sensors.

Manually measured calibration parameters were used as the

initial values for the case of online calibration.

Fig. 5. Comparison of the position estimation errors and the ±3σ

uncertainty envelopes for one of the trajectories from the dataset in [15]
with the manual and the online calibration (green and red respectively).
As can be seen in the case of the online calibration, the errors are more
thoroughly bounded by the uncertainty across the trajectory than in the case
of the manual calibration. Since the estimator is inherently inconsistent [24],
one cannot expect the errors to be bounded 99.7% of the time.



Fig. 6. Comparison of the position NEES for one of the trajectories with
the manual and the online calibration (green and red respectively). The
filter consistency is greatly improved with the online calibration which can
be seen in the significant reduction of the NEES, which in the case of
the online calibration does not continue to grow and more often remains
bounded within the two-sided 95 % probability concentration region (shaded
blue) than in the case of manual calibration.

In the Fig. 7 and Fig. 8 we plot the convergence of

the extrinsic calibration parameters to their measured values

for one of the trajectories in the case where the initial

extrinsic calibration parameters were initialized with vastly

erroneous values, that is, cinittrans = [x = −40 cm, y =
−40 cm, z = −40 cm] in position and cinitrot = [roll =
20 ◦, pitch = 20 ◦, yaw = 20 ◦] in orientation. Extrinsic

calibration parameters which we measured manually with

simple tools such as a ruler and a protractor were equal

to cmeas
trans = [7.5 cm,−1.0 cm,−4.0 cm] and cmeas

rot =
[0 ◦, 47 ◦, 0 ◦]. Given the lack of ground truth for these pa-

rameters, we consider the manually measured values the true

ones. As observed, our filter successfully recovers from such

high initial calibration errors and the parameters converge

very close to their manually measured values. The differ-

ence between measured and estimated values are c
diff
trans =

[6.4 cm, 2.6 cm, 5.0 cm] and c
diff
rot = [0.087 ◦, 2.50 ◦, 3.27 ◦]

in position and rotation respectively for this particular run

which is representative for the majority of the runs. These

numbers are comparable to [27] where the authors used

synthetic data with a dedicated calibration procedure while

we use real data during a regular UAV flight with no

dedicated calibration procedure.

Even though the estimated and measured values are sim-

ilar in the estimator’s asymptotic behavior, the previously

discussed consistency improvement is noticeable. This stems

from the filter’s ability to include the calibration states for its

energy dissipation rather than being hindered to adapt these

states online.

For completeness of the discussion about our estimator

consistency, we note that we have not implemented yet

the approach suggested in [28]. Thus we expect further

consistency improvement by doing so in future work.

D. Evaluation of the State Estimation in the Artificial Fog

As depicted in the Fig. 1, we evaluate our estimation

framework in dense artificial fog in order to showcase the

benefits of the radar-based navigation in visually degraded

Fig. 7. Convergence of the rotational extrinsic calibration parameters for the
system with extremely high initial calibration errors. Including the extrinsic
calibration parameters in the state vector enables the system to recover from
extremely inaccurate initial calibration values and eventually converge to the
real values reflecting the tilt of the radar of about 45 ◦ around the y axis (we
manually measured 47 ◦) around the y-axis. Green dashed lines are used to
mark the manually measured extrinsic calibration parameters values which
we consider the true values since we do not have a precise ground truth on
these quantities.

Fig. 8. Convergence of the translation extrinsic calibration parameters for
the system with extremely high initial calibration errors. Green dashed lines
are used to mark the manually measured extrinsic calibration parameters
values which we consider the ground truth.

conditions. To perform the comparison, we moved the UAV

seen in the Fig. 1 arbitrarily in a hand-held fashion through

a dense artificial fog. We moved the platform manually

instead of flying, since as our experiments showed, with

the propellers turned on, the amount of the artificial fog

we were able to create with the fog machine was quickly

dispersed and the evaluation of the impact of the fog became

impossible. We further compare the performance of our

RIO to a state-of-the-art EKF-based VIO implementation,

OpenVINS [29]. For VIO, a Matrixvision mvBlueFOX-MLC

USB2.0 camera is mounted rigidly next to the radar sensor

(seen in the Fig. 1) providing images at 20 Hz. For closed-

loop computation performance reasons, the VIO is post-

processed offline on the desktop hardware described in the

Subsection V-A. Sequence of the results produced by the

feature tracker of OpenVINS is shown in Fig. 9. As expected,

the tracker struggles to find sufficient features and to track

the few found ones correctly.

The performance of the two approaches is shown in

Fig. 10. VIO diverges almost immediately when the vehicle



Fig. 9. Sequence of the images used by the VIO framework OpenVINS for tracking features and state estimation. Due to the fog, features can barely be
tracked in the first 30 seconds. Thus, OpenVINS struggles to keep track of persistent features (marked in green) and to perform proper state estimation.

starts moving as it cannot track features correctly in the

dense fog. In comparison, our RIO framework successfully

continues to estimate the robot pose despite the fog since

the radar waves can penetrate it. Thus, in environments such

as dense fog, darkness or strong light our RIO approach can

be successfully used to estimate the vehicle states correctly

and thus be employed to close the feedback control loop in

autonomous flights in settings such as disaster zones.

Fig. 10. Comparison of position estimates of a VIO implementation [29]
and our RIO approach. Note the almost immediate divergence of the VIO
when faced with the dense artificial fog. As can also be seen, our RIO
method proves to be robust against it.

VI. CONCLUSIONS

In this paper we demonstrated in real-world flights the

real-time closed-loop control capabilities of the RIO frame-

work presented in [15] and extended it with the online

extrinsic parameters calibration capability. Closed-loop ex-

periments showed that our method scales well towards com-

monplace issues related to real-time onboard operation of

state estimation frameworks on resource-modest platforms

such as sporadic measurement losses due to CPU load spikes.

We also showed how the online calibration impacts the

accuracy and the consistency of our state estimator. To our

knowledge, it is the first time that a RIO system relying

solely on a low-cost and lightweight IMU and radar sensors

is shown to successfully enable an autonomous closed-loop

flight of a UAV equipped with a resource-constrained com-

puting hardware. Moreover, the presented framework needs

no knowledge of the environment to operate, can be used

in GNSS-denied settings, and, as also shown in the present

paper, can be deployed in visually degraded environments.
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time approach for 3d radar-to-camera extrinsic calibration,” in 2021

IEEE International Conference on Robotics and Automation (ICRA),
2021, pp. 13 164–13 170.

[28] G. Huang, M. Kaess, and J. J. Leonard, “Towards consistent visual-
inertial navigation,” in 2014 IEEE International Conference on

Robotics and Automation (ICRA), 2014, pp. 4926–4933.
[29] P. Geneva, K. Eckenhoff, W. Lee, Y. Yang, and G. Huang, “Openvins:

A research platform for visual-inertial estimation,” in 2020 IEEE

International Conference on Robotics and Automation (ICRA). IEEE,
2020, pp. 4666–4672.


