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MSCEqF: A Multi State Constraint Equivariant
Filter for Vision-aided Inertial Navigation

Alessandro Fornasier1, Pieter van Goor2, Eren Allak1, Robert Mahony2 and Stephan Weiss1

Abstract—This letter re-visits the problem of visual-inertial
navigation system (VINS) and presents a novel filter design we
dub the multi state constraint equivariant filter (MSCEqF, in
analogy to the well known MSCKF). We define a symmetry
group and corresponding group action that allow specifically
the design of an equivariant filter for the problem of visual-
inertial odometry (VIO) including IMU bias, and camera intrinsic
and extrinsic calibration states. In contrast to state-of-the-art
invariant extended Kalman filter (IEKF) approaches that simply
tack IMU bias and other states onto the SE2(3) group, our filter
builds upon a symmetry that properly includes all the states
in the group structure. Thus, we achieve improved behavior,
particularly when linearization points largely deviate from the
truth (i.e., on transients upon state disturbances). Our approach
is inherently consistent even during convergence phases from
significant errors without the need for error uncertainty adap-
tation, observability constraint, or other consistency enforcing
techniques. This leads to greatly improved estimator behavior for
significant error and unexpected state changes during, e.g., long-
duration missions. We evaluate our approach with a multitude of
different experiments using three different prominent real-world
datasets.

Index Terms—Vision-Based Navigation, Visual-Inertial SLAM

I. INTRODUCTION AND RELATED WORK

IN the past years, VINS have shown remarkable success in
estimating the position and orientation of robots by relying

only on low-cost and lightweight IMUs and cameras.
Popular algorithms for VINS include visual-inertial odom-

etry (VIO) and visual-inertial simultaneous localization and
mapping (VI-SLAM). VIO focuses only on the local surround-
ings and is, therefore, computationally simpler, less accurate,
and it suffers from accumulated drift. VINS algorithms can
also suffer from inconsistencies [1]. The classical extended
Kalman filter (EKF)-SLAM algorithm suffers from overconfi-
dence due to spurious information gain along the unobservable
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directions [2]. Different solutions have been proposed in
literature to overcome the problems caused by inconsistencies.
By manipulating the linearization point and enforcing the
correct number of unobservable directions for the linearized
system, Huang et al. introduced the first estimate jacobian
(FEJ) [3], whereas Hesch et al. the observability constraint
(OC) [1] as techniques aiming at solving the inconsistency
issue at the cost of sub-optimal linearization points. More
recently, in [4], Barrau and Bonnabel introduced the IEKF and
showed that exploiting the natural symmetry of group affine
systems leads to algorithms that are inherently consistent [5].
Although the IEKF theory does not apply to inertial navigation
systems (INS) when IMU bias are explicitly considered, many
authors [6, 7, 8, 9, 10, 11, 12] have exploited the Imperfect-
IEKF framework [13] to design VINS algorithms.

In very recent research, van Goor et al. introduced
the EqF [14, 15] as a general filter design for sys-
tems on homogeneous spaces, and proposed a symmetry
for fixed landmark measurements in the context of VI-
SLAM [16, 17, 18, 19, 20]. Later, Fornasier et al. proposed
a novel symmetry for INS that couples navigation states and
IMU bias and developed an EqF design for INS [21, 22]
that proved superior to state-of-the-art in terms of robustness
to wrong initialization, transient behavior, and consistency
properties. In a very recent research study [23], the same
authors analyzed the theoretical properties of different sym-
metry groups when employed in designing filters for inertial
navigation systems, and provided a discussion of the relative
strengths and weaknesses of different filter algorithms.

For vision aided INS systems, however, the lack of robust-
ness against unexpected disturbances and the requirement for
sophisticated tuning for a given environment and setup remain
important limitations. Real-world deployments are typically
constrained to precise tuning and highly engineered codebases,
where the core VIO algorithm is encompassed by numerous
modules responsible for tasks such as initialization, failure
detection, algorithm reset, and more. A people’s visual-inertial
odometry, that is, an algorithm whose operation requires
minimal knowledge, little to no tuning, and yet still functions
in many different real-world scenarios, would enable a whole
new tranch of real-world applications without the requirement
of having highly trained engineers available. The present letter
builds upon the recent results in [21, 22, 23] and is a step
towards enabling this goal.

This perspective shifts the evaluation of algorithm perfor-
mance from measures such as root mean square error (RMSE),
accuracy, and precision, to measures such as the likelihood
of failure for poor initial conditions or poor calibration. We
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acknowledge that state-of-the-art VINS approaches reached
a plateau in the former metrics, but there is still a large
room for improvement in the latter metrics. Furthermore, this
letter does not claim completeness in comparative evaluations,
rather, we present here our novel findings enabling a multi
state constraint equivariant filter (MSCEqF) as a step towards
the people’s VIO; compare it against OpenVINS [24], the
best open-source available MSCKF [25], and see an extensive
comparison covering all suitable approaches as a work that
goes beyond the scope of this letter.

Apart from the different metric evaluation, this work dif-
ferentiates itself from state-of-the-art by extending insights on
symmetries and EqF design for fixed landmark VINS [19, 20]
and INS including IMU bias into the symmetry [21, 22, 23]
to the idea of a multi state constraint but equivariant VINS.
To the best of our knowledge, the resulting algorithm is the
first ever, equivariant multi state constraint filter for VIO. Our
approach, dubbed MSCEqF, leverages a semi-direct product
symmetry group, yielding improved linearized error dynamics
when compared to other filter types [23]. Hence, the MSCEqF
demonstrates consistency naturally without artificial changes
of linearization points and very high robustness to poor
extrinsic calibration. It not only handles significant absolute
(calibration) errors but also addresses the concept of dealing
with “you don’t know what you don’t know”, such as errors
exceeding the prior covariance (e.g., sudden changes of cal-
ibrations states due to a disturbance during the operational
phase of the robotic platform, where the state has converged
already and the covariance has shrunk).

To summarize, with this work, we make the following
contributions:

(i): We introduce the MSCEqF; a novel multi state con-
straint visual-inertial navigation system based on the equiv-
ariant filter framework, with camera and IMU self-calibration
capabilities.

(ii): We demonstrate that the proposed MSCEqF achieves
state-of-the-art accuracy, with superior robustness to signif-
icant absolute errors, as well as errors exceeding the prior
covariance.

Our experiments show that the MSCEqF can be directly
deployed in real-world scenarios with little tuning and no
additional health-check modules. Furthermore, we show that
the proposed MSCEqF is a naturally consistent filter without
the need for FEJ, OC, or other heuristic techniques. We
implemented our framework as a stand-alone C++ library, and
we made it source-available to the community1. Wrappers
for the standard middle-ware (e.g., ROS1, ROS2, etc.) will
be provided such that code is available for direct use and
comparison against other approaches. We derived the filter
matrices in analytical form without resorting to numerical
differentiation, leading to code with higher portability and
lower computational complexity, appropriate for compute-
limited hardware, such as nano-drones, augmented reality
devices, etc.

1https://github.com/aau-cns/MSCEqF

II. MATHEMATICAL PRELIMINARIES AND NOTATION

A. Vector and matrix notation
Vectors describing physical quantities expressed in frame

of reference {A} are denoted by Av . Rotation matrices
encoding the orientation of a frame of reference {B} with
respect to a reference {A} are denoted by ARB ; in particular,
Av = ARB

Bv . In ∈ Rn×n denotes the n-dim identity matrix,
and 0n×m ∈ Rn×m denotes the zero matrix with n rows and
m columns.

B. Lie theory
A Lie group G is a smooth manifold endowed with a

smooth group structure. For any X,Y ∈G, the group multipli-
cation is denoted XY , the group inverse X−1 and the identity
element I .

Given a Lie group G, G denotes the G-Torsor [26].
For a given Lie group G, the Lie algebra g is a vector space

corresponding to the tangent space at the identity of the group,
together with a bilinear non-associative map [⋅, ⋅] ∶ g × g → g
called the Lie bracket. The Lie algebra g is isomorphic to a
vector space Rn of dimension n = dim (g).

Define the wedge map and its inverse, the vee map as linear
isomorphisms between the vector space and the Lie algebra

(⋅)∧ ∶ Rn → g, (⋅)∨ ∶ g → Rn,

such that (u∧)∨ = u, for all u ∈ Rn.
For any X,Y ∈G, define the left and right translations

LX ∶ G → G, LX (Y ) =XY,

RX ∶ G → G, RX (Y ) = Y X.

The Lie group (‘big’) Adjoint matrix is defined by

Ad∨X ∶ Rn → Rn, Ad∨X u = (dLXdRX−1 [u∧])
∨

,

for every X ∈ G and u∧ ∈ g, where dLX , and dRX denote
the differentials of the left, and right translation, respectively.

The Lie algebra (‘little’) adjoint matrix is defined by

ad∨u ∶ Rn → Rn, ad∨uv = [u∧,v∧]
∨

,

for every u, v ∈ Rn.

C. Important matrix Lie groups
The special orthogonal group SO(3), special Euclidean

group SE(3), extended special Euclidean group SE2(3), and
their respective Lie algebras are defined, in matrix form, by

SO(3) = {A ∈ R3×3 ∣AA⊺ = I3, det(A) = 1} ,
so(3) = {ω∧ ∈ R3×3 ∣ ω∧ = −ω∧⊺} ,

SE(3) = {[ A a
01×3 1

] ∈ R4×4 ∣A ∈ SO(3), a ∈ R3} ,

se(3) = {[ ω
∧ v

01×3 0
] ∈ R4×4 ∣ ω∧ ∈ so(3), v ∈ R3} ,

SE2(3) = {[
A a b

02×3 I2
] ∈ R5×5 ∣A ∈ SO(3), a, b ∈ R3} ,

se2(3) = {[
ω∧ v w
02×3 02×2

] ∈ R5×5 ∣ ω∧ ∈ so(3), v ,w ∈ R3} .

https://github.com/aau-cns/MSCEqF
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D. Semi-direct Bias group GSD ∶= SE2(3) ⋉ se(3)
The Semi-direct Bias group GSD ∶= SE2(3) ⋉ se(3) intro-

duced in [23], is a group structure on the tangent bundle
G⋉g ∶=G ⋉ g given by the semi-direct product of a group G
with a Lie subalgebra g.

For a detailed introduction to equivariant filters for inertial
navigation systems, semi-direct product groups and theoretical
properties this work is built upon, we refer the reader to
our previous works [21, 22, 23]. Moreover, [23] discuss the
advantages of semi-direct product symmetries for filter design
and compares it to classical solutions such as the MEKF and
the IEKF.

E. Intrinsics group IN

In this work, we recognized that elements of the camera
intrinsics matrix [27] form a Lie group. Thus, we introduce
the intrisincs group IN, as the matrix Lie group defined by

IN =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
K =
⎡⎢⎢⎢⎢⎢⎣

a 0 x
0 b y
0 0 1

⎤⎥⎥⎥⎥⎥⎦
∈ R3×3

RRRRRRRRRRRRRR
a, b > 0, x, y ∈ R

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

This matrix representation is associated with the standard
camera intrinsics matrix, well-known in computer vision. A
typical element of IN may be written as K = (a, b, x, y). Let
K1,K2 ∈ IN, then

K1K2 = (a1a2, b1b2, x1 + a1x2, y1 + b1y2),
K−11 = (a−11 , b−11 ,−a−11 x1,−b−11 y1).

To the authors’ understanding, exploiting the group structure
of the IN group in equivariant or invariant VINS design
represents a novel approach to this work.

F. Useful maps

For all v = (x, y, z) ∈ R3, define the maps

πZ1 (⋅) ∶ R3 → R3, πZ1 (v) ∶=
v

z
,

Ξ (⋅) ∶ R3 → R3×4, Ξ (v) =
⎡⎢⎢⎢⎢⎢⎣

x 0 z 0
0 y 0 z
0 0 0 0

⎤⎥⎥⎥⎥⎥⎦
∈ R3×4.

For all a, b, c ∈ R3 ∣ (a, b, c) ∈ R9, define the maps

Π (⋅) ∶ se2(3) → se(3), Π ((a, b, c)∧) = (a, b)∧ ∈ se(3),
Υ (⋅) ∶ se2(3) → se(3), Υ ((a, b, c)∧) = (a, c)∧ ∈ se(3),

For all X = (A,a) ∈ SE(3) ∣ A ∈ SO(3), a ∈ R3, define

Γ (⋅) ∶ SE(3) → SO(3), Γ (X) = A ∈ SO(3).

For all X = (A,a, b) ∈ SE2(3) ∣ A ∈ SO(3), a, b ∈ R3, define

χ (⋅) ∶ SE2(3) → SE(3), χ (X) = (A,a) ∈ SE(3),
Θ (⋅) ∶ SE2(3) → SE(3), Θ (X) = (A, b) ∈ SE(3).

III. VISUAL INERTIAL NAVIGATION SYSTEM

A. System definition

Consider a mobile platform equipped with a camera observ-
ing global visual features Gpf , and an IMU providing biased
acceleration and angular velocity measurements, denoted by
Iw = (Iω , Ia). Define GTI = (GRI ,

GvI ,
GpI) to be the

extended pose of the system, where GRI corresponds to the
rigid body orientation, whereas GpI and GvI denote the IMU
position and velocity with respect to the global frame, respec-
tively. Define GPI = (GRI ,

GpI). Define Ib = (Ibω, Iba) to
be the gyroscope and accelerometer biases, respectively. Let
g denote the magnitude of the acceleration due to gravity, and
let Ge3 denote the direction of gravity in the global frame.
Finally, define ISC to be the camera extrinsic calibration, and
K be the camera intrinsic calibration.

For the sake of readability, from now on, we suppress all
the subscripts and superscripts that are not strictly required.

Define the matrices W,B,D,G to be

W =
⎡⎢⎢⎢⎢⎢⎣

ω∧ a 03×1

01×3 0 0
01×3 0 0

⎤⎥⎥⎥⎥⎥⎦
, B =

⎡⎢⎢⎢⎢⎢⎣

b∧ω ba 03×1

01×3 0 0
01×3 0 0

⎤⎥⎥⎥⎥⎥⎦
,

D =
⎡⎢⎢⎢⎢⎢⎣

03×3 03×1 03×1

01×3 0 1
01×3 0 0

⎤⎥⎥⎥⎥⎥⎦
, G =

⎡⎢⎢⎢⎢⎢⎣

03×3 g e3 03×1

01×3 0 0
01×3 0 0

⎤⎥⎥⎥⎥⎥⎦
.

Finally, the visual-inertial navigation system is written

Ṫ = T (W −B +D) + (G −D)T, (1a)

ḃ = τ , (1b)

Ṡ = Sµ∧, (1c)

K̇ =K ζ∧, (1d)

where τ ,µ,ζ are used to model the deterministic dynamics of
the bias and calibration states and are zero when these states
are modeled as constants, as they are in our formulation.

Define ξI = (T, b) ∈ SE2(3) × R6 to be the inertial
navigation state. Define ξS = (S,K) ∈ SE(3) × IN (3) to
be the camera calibration state. Then the full system state is
defined as ξ = (ξI , ξS) ∈M ∶= SE2(3)×R6×SE(3)×IN (3).
Define u = (w, τ ,µ, ζ) ∈ L ⊂ R18 to be the system’s input.
Note that in this work, visual features are not considered as
part of the state since the dependency of measurement on
features is removed through nullspace projection.

Without loss of generality, let us consider the case of a
single feature pf . The camera measurement is modeled as the
measurement of the bearing of the feature pf seen from the
camera.

h (ξ, pf) =KπZ1 ((PS)−1 ∗ pf) , (2)

where the operation ∗ ∶ SE(3) × R3 → R3 is defined by
P ∗ v = R v + p for all P = (R, p) ∈ SE(3), v ∈ R3.

B. Symmetry of the visual-inertial navigation system

The symmetry for the inertial navigation state ξI is given by
the Semi-Direct symmetry group GSD ∶= (SE2(3) ⋉ se(3)),
the symmetry for the extrinsic calibration state is given by the
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special Euclidean group SE(3), and the symmetry for the in-
trinsic calibration state is given by the intrinsics group IN. The
complete symmetry for the visual-inertial navigation system is
thus defined to be the product group G ∶=GSD×SE(3)×IN.

Let X = ((D,δ) ,E,L) ∈G, with D = (A,a, b) ∈ SE2(3)
such that A ∈ SO(3), a, b ∈ R3. Define the subgroups
B = χ (D) ∈ SE(3), and C = Θ (D) ∈ SE(3). Finally, define
E ∈ SE(3), and L ∈ IN.

Lemma 3.1. Define ϕ ∶ G ×M → M as

ϕ (X,ξ) ∶= (TD,Ad∨B−1 (b − δ∨) ,C−1SE,KL) ∈M. (3)

Then, ϕ is a transitive right group action of G on M.

C. Lifted system

The implementation of the equivariant filter (EqF) requires
a lift Λ ∶ M ×L → g to define a lifted system on the
symmetry group G that projects down to the original system
dynamics via the proposed group action ϕ. The transitivity
of ϕ guarantees the existence of such a lift [28], and the
following theorem provides an explicit form for a lift of the
system studied in this paper.

Theorem 3.2. Define the map Λ ∶ M ×L → g by

Λ (ξ, u) ∶= ((Λ1 (ξ, u) ,Λ2 (ξ, u)) ,Λ3 (ξ, u) ,Λ4 (ξ, u)) ,

where Λ1 ∶ M ×L → se2(3), Λ2 ∶ M ×L → se(3),
Λ3 ∶ M ×L → se(3), and Λ4 ∶ M ×L → in are given by

Λ1 (ξ, u) ∶= (W −B +D) + T−1 (G −D)T, (4a)

Λ2 (ξ, u) ∶= (ad∨b∧ (Π (Λ1 (ξ, u))∨) − τ )
∧

, (4b)

Λ3 (ξ, u) ∶= (Ad∨S−1 (Υ (Λ1 (ξ, u))∨) + µ)
∧

, (4c)

Λ4 (ξ, u) ∶= ζ∧, (4d)

Then Λ is a lift for the system in Equ. (1) with respect to the
symmetry group G.

The existence of the lift allows the construction of a lifted
system on the symmetry group [28]. Let X ∈ G be the state
of the lifted system, and let ξ̊ = (T̊, b̊, S̊, K̊) ∈ M be an
arbitrarily chosen element of the original state in Equ. (1),
called the origin. Then the lifted system is defined

Ẋ = dLXΛ (ϕξ̊ (X) , u) . (5)

IV. MULTI STATE CONSTRAINT EQUIVARIANT FILTER

A. Filter state definition

Define X̂ = (((D̂, δ̂) , Ê, L̂) , Ê1,⋯, Êk) ∈G × SE(3)k to
be the filter’s state evolving on the symmetry group. Similarly
to the original formulation [25] we maintain a sliding window
of k past Ê elements in the state of the filter, corresponding
to the different times a camera measurement was collected.

B. Error dynamics and state transition matrix

Let e = ϕX̂−1 (ξ) denote the equivariant error. Normal co-
ordinates [15] of the state space M in a neighborhood
of the origin ξ̊ are ε = ϑ (e) ∶= log (ϕ−1

ξ̊
(e))

∨

∈ R25, where
log ∶ G → g is the logarithm of the symmetry group.

Recall the derivation of the linearized error dynamics in [15]

ε̇ ≈A0
t ε,

A0
t = De∣ξ̊ ϑ (e) Dξ ∣ξ̂ ϕX̂−1 (ξ) DE ∣I ϕξ̂ (E) ⋅
⋅ Dξ ∣ϕX̂(ξ̊)

Λ (ξ, u) De∣ξ̊ ϕX̂ (e) Dε∣0 ϑ
−1 (ε) .

The state matrix A0
t is given by

A0
t =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1A 2A 09×6 09×4

3A 4A 06×6 06×4

5A 6A 7A 06×4

04×9 04×6 04×6 04×4

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∈ R25×25, (6)

where

1A =
⎡⎢⎢⎢⎢⎣

Ψ − ad∨
b̊

(R̊T v̊)∧ − b̂∧ b̊ω∧ I3 03×3

06×3
⎤⎥⎥⎥⎥⎦
∈ R9×9,

2A =
⎡⎢⎢⎢⎢⎢⎣

I3 03×3

03×3 I3
b̂∧ 03×3

⎤⎥⎥⎥⎥⎥⎦
∈ R9×6,

3A = [ad
∨

b̊
Ψ − ad∨

(Ad∨
B̂

w+δ̂∨+θ)
ad∨

b̊
06×3] ∈ R6×9,

4A = ad∨
(Ad∨

B̂
w+δ̂∨+θ)

∈ R6×6,

5A =Ad∨
S̊−1
[ −ψ∧1 03×3 03×3

−ψ∧3 − b̊ω∧b̂∧ I3 −ψ∧2
] ∈ R6×9,

6A =Ad∨
S̊−1
[I3 03×3

b̂∧ 03×3
] ∈ R6×6,

7A = ad∨
(Ad∨

S̊−1
ϱ)
∈ R6×6,

with

ψ1 = Âω + δ∨ω ∈ R3, θ = (03×1, g (R̊T e3)) ∈ R6,

ψ2 = ψ1 − b̊ω ∈ R3, Ψ = [
03×3 03×3

g (R̊T e3)
∧

03×3
] ∈ R6×6,

ψ3 = â − ψ∧1 b̂ ∈ R3, ϱ = (ψ2,ψ4) ∈ R3.

ψ4 = â + R̊T v̊ − ψ∧2 b̂ ∈ R3.

The discrete-time state transition matrix is defined by
Φ = exp (A0

t∆T ) for time steps ∆T .

C. Multi state constraint

Consider the measurement model in Equ. (2), applying the
action of the symmetry group to the state space in Equ. (3)
yields

h (ϕX (ξ)) =KLπZ1 (E−1 (PS)−1 ∗ pf) (7)

Recall the equivariant error e = ϕX̂−1 (ξ) = ϑ−1 (ε). Define
ỹ = ς (pf) − ς (p̂f), where ς (⋅) represents the chosen fea-
ture parametrization. The true feature can then be written
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as pf = ς−1 (ς (p̂f) + ỹ). Therefore, the measurement model
in Equ. (2) can be linearized at ε = 0, and ỹ = 0 as follows:

h (ξ, pf) = h (ϕX̂ (ϑ
−1 (ε)) , ς−1 (ς (p̂f) + ỹ))

= h (ξ̂, p̂f) +Ctε +Cf
t ỹ +⋯.

(8)

Let us derive the Ct, and Cf
t for the anchored inverse depth

parametrization [29, 25] of the feature. Note that the matrix
Cf

t can be computed for any desired parametrization.
Let APAS be the pose of the anchor, defined as the pose

of the camera where the feature pf has been first seen. Define
the feature in the anchor frame as af = (APAS)−1 ∗ pf ,
with af = (afx , afy , afz) ∈ R3. The anchored inverse depth
parametrization is written

z = ς (pf) = (z1, z2) = ((
afx
afz

,
afy
afz
) , 1

afz
) , (9)

pf = ς−1 (z) = (APAS) ∗ [
z1

z2
1
z2

] . (10)

Then the matrix Cf
t is written

Cf
t ỹ = K̊L̂dπZ1

Γ ((P̂Ŝ)−1 AP̂AŜ) 1

ẑ2
[ I2 − ẑ1

ẑ2
01×2 − 1

ẑ2

] ỹ

= K̊L̂dπZ1
Γ (Ê−1AÊ) 1

ẑ2
[ I2 − ẑ1

ẑ2
01×2 − 1

ẑ2

] ỹ,
(11)

where we have used ξ̂ ∶= ϕX̂ (ξ̊) to map between the estimated
state in the homogeneous space ξ̂, and the estimated state in
the symmetry group X̂ . Therefore

(P̂Ŝ)−1 AP̂AŜ = Ê−1 S̊−1ĈĈ−1P̊−1P̊AĈAĈ−1 S̊AÊ = Ê−1AÊ.

According to [15], the Ct matrix is defined by

Ctε = Dξ ∣ξ̂ h (ξ) De∣ξ̊ ϕX̂ Dε∣0 ϑ
−1 (ε) [ε]

= K̊L̂dπZ1
Γ (Ê−1) [(AE âf)

∧ −I3] εE −
− K̊L̂dπZ1

Γ (Ê−1) [(AE âf)
∧ −I3] εAE +

+ K̊Ξ (L̂πZ1
(Ê−1AE âf)) εL,

(12)

where εE , and εAE represent respectively the error in normal
coordinates for the element E of the symmetry group cor-
responding to the most recent pose and to the anchor pose,
whereas εL represent the error in normal coordinates that is
related to the camera intrinsics.

To compute the matrix Ct in Equ. (12), an estimate of the
feature position in the anchor frame is required. To this end,
when a feature has been seen from multiple views a linear-
nonlinear least square problem can be solved [25, 24].

Finally, to remove the dependency of the features, and hence
perform a filter update, we employ nullspace marginalization
of the matrix Cf

t in Equ. (8), according to the original
formulation [25].

V. EXPERIMENTS

In this letter, we perform a series of experiments to evaluate
the accuracy, consistency, and, more importantly, robustness
of the proposed MSCEqF. We perform many experiments on

real-world data to evaluate robustness to expected and unex-
pected errors in the camera extrinsic calibration. In all these
experiments, we limit our comparison to filter-based MSCKF
algorithms for VIO, and in particular, to the best available
one we believe represents the state-of-the-art, that is Open-
VINS [24]. For a fair comparison, we turned off OpenVINS’s
persistent features (SLAM features), and only compare against
its pure MSCKF part. Furthermore, in all the experiments,
OpenVINS’s MSCKF parameters were specifically tuned, for
each dataset, according to the authors’ suggested parameters.
In contrast, the proposed MSCEqF shares the same tuning
parameters across all the experiments and datasets.

A. Robustness

Robustness is an important property of a modern filter-based
visual-inertial odometry algorithm. It is the ability to function
with significant yet known errors, as well as the ability to
deal with unknown unknowns. In simpler terms, it refers to
how well an algorithm performs under non-ideal conditions,
such as imperfect tuning parameters, poor calibration, or
unexpected changes in the sensor’s extrinsic parameters during
field operations.

To assess the robustness of the proposed MSCEqF and
the MSCKF, we ran a series of experiments using widely-
known dataset for evaluating VIO algorithms. Specifically,
the Euroc dataset [30], the TUM-VI dataset [31], and the
UZH-FPV dataset [32]. For each dataset, we selected two
sequences and ran each estimator 6 × 6 × 6 = 216 times
(for a total number of runs of 2592). In these experiments,
we intentionally initialized the filters with incorrect camera
extrinsic parameters, introducing errors in six steps ranging
from (15○, 0.05m), to (90○, 0.3m). For each error step, we
ran the estimators with six different priors (initial covariance)
accounting for initial calibration errors in the range of the six
error steps. For each pair (prior, error) we run each estimator
six times. Finally, for each individual run, we classified an
estimator as converged or diverged based on a position error
threshold.

Based on the results of the experiment in Fig. 1, we derive
the following noteworthy observations. In absolute terms, there
seems to be an upper limit of absolute error that, no matter the
prior, makes the estimators diverge. Although this limit highly
depends on the dataset, for each of the tested sequences, the
proposed MSCEqF possesses a higher error limit, and hence
improved robustness to known absolute error. In relative terms,
the proposed MSCEqF seems to deal better with unknown
errors since the line at which the estimator fails is straight
and does not bend towards the left side as it appears to
happen for the MSCKF. Encouraged by these results, we ran
an additional experiment on the V1_01_easy sequence of the
Euroc dataset, introducing new, smaller priors and errors to
effectively evaluate whether the estimators are able to manage
errors that are smaller in absolute terms but outside the prior
covariance. Fig. 2 clearly shows that the MSCEqF is indeed
a more robust filter, able to deal with unexpected errors.
Finally, Fig. 3 shows the convergence of the camera extrinsic
parameters for both filters evaluated on the Euroc V1_01_easy
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Figure 1. Results of the experiment evaluating the robustness of the proposed MSCEqF and OpenVINS’s MSCKF. In these grid plots, the x-axis is the prior
standard deviation the estimators are set with. The y-axis is how many σ-levels that error corresponds to. Labeled diagonal dashed lines represent iso-error
lines (lines along with the error is constant). The bottom part of each grid represents expected errors, thus errors falling within 1/6σ-1/2σ, whereas the top part
of each grid represents unexpected errors, thus errors falling within 2σ-6σ. According to the colorbar, the color of each cell shows the number of failures.

sequence, with an initial error of (30○, 0.1m) and an initial
covariance to match the error. The error plots clearly show
that the proposed MSCEqF not only is a more robust filter,
but it also converges faster.

Quantifying robustness in robotics, however, remains an
ongoing challenge. In the presented evaluation, we have cho-
sen the camera extrinsic calibration as a state subjected to
error. Even though static and dynamic initialization approach
exists [33, 34] for such a problem, in our formulation, extrinsic
parameters are treated as regular state variables, and our pro-
posed algorithm showcases inherent robustness by successfully
attaining reliable estimation, for both expected and unexpected
errors, eliminating the need of any auxiliary module. This
characteristic sets our algorithm apart from conventional VIO
algorithms, emphasizing its superior robustness.

B. Accuracy

Our next experiment focuses on the classical and widely-
used metric for evaluating the performance of visual-inertial
odometry algorithms [35], namely the RMSE of the abso-
lute trajectory error (ATE). For this experiment, we ran the
proposed MSCEqF and OpenVINS’s MSCKF on all Euroc
sequences [30]. The results presented in Tab. I demonstrate
that the proposed MSCEqF achieves state-of-the-art accuracy
comparable to the MSCKF. It should be noted that in our
evaluation, we aligned each estimate with the groundtruth
using the initial state rather than finding the optimal alignment
that minimizes the error throughout the entire trajectory.

C. Consistency

An estimator is said to be consistent if the estimated covari-
ance of the error reflects its real distribution; in other words,
an estimator is consistent if the error is unbiased and within

Figure 2. Grid plot showing the robustness of the proposed MSCEqF
compared to OpenVINS’s MSCKF for unexpected errors, thus the ability to
deal with you don’t know what you don’t know. The x-axis is the prior standard
deviation the estimators are set with. The y-axis is how many σ-levels that
error corresponds to. Diagonal dashed lines represent iso-error lines. The blue
bold dashed line is the limit at which each estimator fails. According to the
colorbar, the color of each cell represents the number of failures.

the sigma bounds of the estimated covariance. Consistency
of the proposed MSCEqF is proven by compatibility of the
group action ϕ in Equ. (3), and invariance of the lift Λ in
Equ. (4), to reference frame transormations [20, 10]. This
ensures that the filter does not gain spurious information along
the unobservable directions.

Theorem 5.1. Define H ∶= (RH ,0, pH) ∈ SE2(3), where
RH ∈ SEe3(3) represent a anti-clockwise rotation about the
vertical axis e3, and pH represent the a translation. Define
the right group action α ∶ SE2(3) ×M → M such that
α(H,ξ) ∶= (H−1 T, b,S,K) represents a change of reference,
from {G} to {H} that leaves the direction of gravity un-
changed.

Then the action of the symmetry group on the state space ϕ
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Table I
ATTITUDE (A), AND POSITION (P) ABSOLUTE TRAJECTORY ERROR (ATE) RMSE ON EUROC DATASET

SEQUENCE MSCEQF OV MSCKF SEQUENCE MSCEQF OV MSCKF SEQUENCE MSCEQF OV MSCKF
A [rad] P [m] A [rad] P [m] A [rad] P [m] A [rad] P [m] A [rad] P [m] A [rad] P [m]

V1_01_easy 0.07 0.24 0.05 0.36 V2_02_medium 0.08 0.55 0.03 0.17 MH_03_medium 0.02 0.34 0.01 0.41

V1_02_medium 0.03 0.20 0.02 0.22 V2_03_difficult2 0.03 0.39 0.03 0.28 MH_04_difficult 0.03 0.53 0.04 0.61

V1_03_difficult 0.05 0.30 0.02 0.18 MH_01_easy 0.05 0.29 0.05 0.42 MH_05_difficult 0.03 0.70 0.02 0.78

V2_01_easy 0.02 0.13 0.05 0.18 MH_02_easy 0.01 0.38 0.03 0.54

and the lift Λ are respectively compatible and invariant with
respect to change of reference, that is

α(H,ϕ(X,ξ)) = ϕ(X,α(H,ξ)),
Λ(α(H,ξ), u) = Λ(ξ, u).

Proof.

ϕ(X,α(H,ξ)) = ((H−1 T)D,Ad∨B−1 (b − δ∨) ,C−1SE,KL)
= (H−1 TD,Ad∨B−1 (b − δ∨) ,C−1SE,KL)
= α(H,ϕ(X,ξ)),

as required.
To prove the invariance of Λ to the action α, it is sufficient

to show that Λ1(α(H,ξ), u) = Λ1(ξ, u).

Λ1(α(H,ξ), u) = (W −B +D) + (T−1H)(G −D)(H−1 T)
= (W −B +D) + T−1(H(G −D)H−1)T
= (W −B +D) + T−1(H(G −D)H−1)T
= (W −B +D) + T−1(G −D)T
= Λ1(ξ, u),

where we have used the fact that H(G −D)H−1 =G −D.
Specifically

H(G −D)H−1 =
⎡⎢⎢⎢⎢⎢⎣

03×3 RHg e3 03×1

01×3 0 −1
01×3 0 0

⎤⎥⎥⎥⎥⎥⎦

=
⎡⎢⎢⎢⎢⎢⎣

03×3 g e3 03×1

01×3 0 −1
01×3 0 0

⎤⎥⎥⎥⎥⎥⎦
=G −D.

It is straightforward to see that RHg e3 = g e3 since RH is a
rotation about the e3 axis. This completes the proof.

In this final experiment, we employed the pose (orientation
and position) average normalized estimation error squared
(ANEES) as a metric to analyze the consistency of the
proposed MSCEqF. In particular, we used the VINSEval
framework [36] to generate a photorealistic synthetic dataset
of 25 runs of the same trajectory, with the same noise statistics
but different noise realizations.

The ANEES for the MSCEqF was computed according to
the following formula

ANEES = 1

Mn

M

∑
i=1

εTi Σ
−1
i εi,

where M is the number of runs, n = dim (ε) is the dimension
of the error ε, and Σ is the covariance of the error. The error

Figure 3. Absolute errors of camera extrinsic parameters for the proposed
MSCEqF, and OpenVINS’s MSCKF. The plots show the convergence perfor-
mance of the filters evaluated on the Euroc V1_01_easy sequence, for 6 runs,
with an initial error of (30○, 0.1m).

Figure 4. Pose (orientation and position) ANEES of the proposed MSCEqF
for 25 runs on a custom dataset generated with the VINSEval framework.

ε = logSE(3) (P̊−1 P P̂−1P̊)∨ is the pose components of the
equivariant error defined in Sec. IV-B.

The resulting ANEES shown in Fig. 4 fluctuates around a
computed average of 1.0 and is not increasing or decreasing
over time. This is a very similar average than FEJ esti-
amtors [24, 37], but without requiring artificial modification
of the linearization points to achieve consistency.

VI. CONCLUSION

This letter presented the multi state constraint equivariant
filter (MSCEqF). A novel equivariant filter formulation for
the VIO problem, capable of camera intrinsic and extrinsic
self-calibration. With our approach, we address the need for
an VIO algorithm that achieves state-of-the-art accuracy and
consistency while minimizing the need for sophisticated tuning
and remaining robust against expected and unexpected errors.
Through the presented experiments, we have demonstrated
that the proposed MSCEqF successfully tackles these re-
quirements. It exhibits robustness against both high absolute

2Due to non-deterministic results with varying in accuracy, we reported the
best result out of 5 runs



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED NOVEMBER, 2023

errors and unexpected errors that exceed the prior covari-
ance. Furthermore, the MSCEqF has been proven to be a
naturally consistent estimator, achieving accuracy comparable
to a state-of-the-art MSCKF algorithm but without the need
for additional health-check nor consistency enforcing modules
and heuristics. Future work includes the extension of the
proposed MSCEqF with a polar symmetry for explicit SLAM
features [20]
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