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Abstract—In this work, we explore the recent advances in
equivariant filtering for inertial navigation systems to improve
state estimation for uncrewed aerial vehicles (UAVs). Tradi-
tional state-of-the-art estimation methods, e.g., the multiplicative
Kalman filter (MEKF), have some limitations concerning their
consistency, errors in the initial state estimate, and convergence
performance. Symmetry-based methods, such as the equivariant
filter (EqF), offer significant advantages for these points by
exploiting the mathematical properties of the system - its
symmetry. These filters yield faster convergence rates and
robustness to wrong initial state estimates through their error
definition. To demonstrate the usability of EqFs, we focus on
the sensor-fusion problem with the most common sensors in
outdoor robotics: global navigation satellite system (GNSS)
sensors and an inertial measurement unit (IMU). We provide
an implementation of such an EqF leveraging the semi-direct
product of the symmetry group to derive the filter equations. To
validate the practical usability of EqFs in real-world scenarios,
we evaluate our method using data from all outdoor runs of the
INSANE Dataset. Our results demonstrate the performance im-
provements of the EqF in real-world environments, highlighting
its potential for enhancing state estimation for UAVs.

I. INTRODUCTION

Since the dawn of autonomous micro-uncrewed aerial

vehicles (UAVs), filter-based state estimation has played a

major role for observer design. The extended Kalman filter

(EKF) and its variants provide the possibilities to safely

navigate UAVs in most environments by fusing measurements

of (multiple) sensors. However, these approaches can suffer

from large state errors in certain scenarios due to their simpli-

fied uncertainty handling and state-dependent linerarization

of the non-linear system dynamics [1].

In recent years, the aerial vehicles community has seen the

advent of filter-based solutions that exploit the symmetries of

the underlying dynamical system to design more robust filter.

In this regard, the equivariant filter (EqF) has emerged as

general filter design technique for systems on homogeneous

space with symmetries [2]–[6]. EqFs possess several advan-

tages compared to other filter methods. By exploiting the
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system’s underlying symmetry and lifting the system onto the

symmetry group, the equivariant filter framework provides a

natural choice of global state error with improved linearized

error dynamics. Because of this, EqFs has a wider basin of at-

traction yielding high robustness to wrong initial conditions,

and filter convergence regardless of their initial estimate [7].

Moreover, EqFs are shown to be naturally consistent even in

the presence of unobservable states, which is in stark contrast

to EKF-like approaches [8]–[10] and even in contrast to the

“imperfect invariant EKF (IEKF)” [11] where some states, in

particular the sensor biases, are “tacked-on” to the symmetry

due to the approach’s limitations [12].

Nowadays, UAV manufacturers rely on multi-sensor fusion

for their state estimation. When available, commercial prod-

ucts tend to fuse multiple global navigation satellite system

(GNSS) measurements for more precise state estimation and

redundancy. Yet, to the best of our knowledge, EqF formu-

lations are not yet widely explored despite their mentioned

advantages.

With this work, we present an implementation of a multi-

position EqF formulation and compare its performance to

state-of-the-art. We will show the advantages of EqF-based

approaches for their consistency and state convergence in

real-world scenarios. It will become particularly apparent that

the EqF yields good results for poorly observable states with

low signal-to-noise measurements caused by the scenario and

trajectory [13], [14].

II. RELATED WORK

Many current plug-and-play frameworks rely on the EKF-

based estimation and its derivatives [15]–[19].

Sasiadek et al. [20] introduced the formulation of combin-

ing GNSS measurements within an inertial navigation system

(INS) for UAVs in a Kalman filter (KF). While this approach

presents the KF based on the GNSS signal, they do not

consider the rigid body sensor (self-)calibration or multi-

GNSS sensor setups. Modern EKF-based approaches, which

went form fusing single sensor types with calibrations [21]

to extended states multi-sensor fusion [22], [23], take these

into account.

Despite its success, the EKF is known to yield poor

performance and inconsistencies for high linearization error

in all situations where the motion leads to unobservability

of the state vector [1]. To overcome issues related to high

attitude linearization error and wrong initial attitude, in the

eighties, Lefferts et al. [24], [25] explored the quaternion
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group as parametrization of the attitude, introducing the so-

called multiplicative EKF (MEKF), an algorithm that exploits

the geometry of the rotational kinematics and is proven to

outperform its EKF counterpart.

Following this trend, different authors exploited the un-

derlying symmetry of the system to design robust observers

and filters. Barrau and Bonnabel [8], [11] introduced the

IEKF, an algorithm that exploits the natural symmetry of

group affine systems, and directly models the state space onto

a Lie group. In the context of inertial navigation systems,

the IEKFs on SE2(3) proved superior to any EKF-like filter

in terms of performance and consistency, in particular, for

GNSS-based navigation the IEKF [26]–[28] outperform state-

of-the-art solutions and to solve the inconsistencies typical to

EKFs. That is, the spurious information gain, e.g., when the

platform is not moving [1].

In recent years the EqF was proposed as a general filter

design for systems with symmetry [3], [4] with specialization

to the IEKF for group affine systems [4, Appendix B]. That

is, the EqF approach is more general and applicable to a

wider range of systems than the IEKF approach, as the latter

one cannot properly include bias terms into the symmetry.

Thus, leveraging the extended capabilities of EqFs, Fornasier

et al. [7], [12], [29] introduced a symmetry for inertial

navigation systems, that properly models inertial measure-

ment unit (IMU) biases, and an associated EqF design. This

work shows performance improvements compared to state-

of-the-art IEKFs in terms of transient behavior - meaning

the convergence phase of the filter - and robustness to wrong

initial conditions.

This paper builds upon the latest results in equivariant

filter design for inertial navigation system and introduces

an equivariant filter formulation for multiple GNSS sensors,

including their individual extrinsic calibration states. There-

fore, leveraging the robustness and consistency properties of

equivariant filters, we design and present an EqF that can

be initialized arbitrarily, requiring no knowledge about the

sensor’s calibration states. We will show the performance

advantages of using an EqF in real-world environments

by evaluating our filter of the recently published INSANE

Dataset [30], which includes a large quantity of outdoor

flights with multiple GNSS sensors and high-rate position

and orientation ground-truth. Due to the lack of open-source

implementations of the IEKF, we will provide a comparison

to a robust, openly available implementation of a MEKF [23].

In the following sections, we first present the mathematical

operators for Lie groups and its Lie algebra (Sec. III), then

introduce the biased-INS and its symmetry (Sec. IV-V),

formulate the EqF (Sec. VI), and evaluate it on the INSANE

Dataset [30] (Sec. VII-B). For the interested reader, in the

appendix (App. A), we also recall the difference between the

proposed EqF and the IEKF.

III. MATHEMATICAL PRELIMINARIES

The following section introduces the notation and math-

ematical preliminaries used in this paper. In general, bold

lowercase letters are used to indicate vectors, and bold capital

letters are used to indicate matrices. Non-bold letters indicate

elements of a symmetry group.
ApB denotes the translation between reference frame {A}

and reference frame {B}, AvB denotes the corresponding

velocity. All vectors referenced in {A} are generally denoted

by Ap. Further, the rotation matrix rotating a vector from

{B} to {A} is denoted by ARB , i.e. Ap = ARB
Bp.

In what follows we quickly introduce some mathematical

concepts about Lie groups that we used in this work. For

an introduction of Lie groups theory for state estimation and

robotics the reader is referred to Solà et al. [31].

Let G be a Lie group, and g its Lie Algebra which is

isomorphic with a vector space R
n. We further define the

following operators:

a) Wedge and Vee Map: The wedge map is defined as

a map from the vector space to the Lie algebra,

(·)∧ : R
n → g,

and its inverse, the vee map, is defined as

(·)∨ : g → R
n.

b) Adjoint Representations: Given X ∈ G and u,v ∈
g, we define the Adjoint map Ad : G× g → g as

AdX [u∧] = dLXdRX-1 [u∧].

Further, in context of Lie matrix groups we define the Adjoint

matrix map as

Ad∨

X (u) =
(

AdX [u∧]
)

∨

.

Similarly the adjoint map ad : g → g and the adjoint

matrix map for Lie matrix groups can be defined

adu∧ [v∧] = u∧v∧ − v∧u∧,

ad∨

u(v) = (u∧v∧ − v∧u∧)
∨

.

IV. BIASED INERTIAL NAVIGATION SYSTEM

For this work, we consider an UAV equipped with an

IMU measuring the robot’s angular velocity and linear ac-

celeration. Further, we consider the UAV to have N un-

calibrated GNSS sensors onboard, each providing global

position measurements. We define {G} as the global inertial

frame of reference, and {I} as the body-fixed IMU frame of

reference. The well-known, deterministic, dynamics of the

biased inertial navigation system can then be written as

GṘI=
GRI(

I
ω − Ibω)

∧, (1a)
Gv̇I =

GRI(
Ia − Iba) +

Gg, (1b)
GṗI =

Gv̇I , (1c)
I ḃω = 0, (1d)
I ḃa = 0. (1e)

GRI refers to the rotation of the IMU, and GpI and GvI

correspond to the IMU position and velocity in the global

frame {G}. Iω and Ia are the body-fixed, biased inputs

from the IMU and refer to the angular velocity and linear



acceleration, respectively, with its biases defined as Ibω and
Iba. Gg =

[

0, 0, 9.81
]

T

m/s2 refers to the gravity vector

expressed in the global frame.

Let the core state space be defined as C = SO(3) × R
12

and the core state be defined as

ζ =
(

GRI ,
GvI ,

GpI ,
Ibω,

Iba

)

∈ C.

Let a zero-dynamic individual calibration state be defined as

ςi =
(

IpPi

)

∈ R
3,

with

I ṗPi
= 0. (2)

Then the full state in the state space M = C × (R3)N can

be defined as

ξ = (ζ , ς1, . . . , ςN) ∈ M.

We define the system’s state space as

ξ = (T, b, t1, . . . , tN) ∈ M, where T =
(GRI ,

GvI ,
GpI) ∈ SE2(3) denotes the UAV’s extended

pose, b = (Ibω,
Iba) ∈ R

6 the IMU’s biases, and

ti = IpPi
∈ R

3 the i-th sensor’s calibration state. Further,

u = (Iω , Ia) ∈ L ⊆ R
6 describes the system’s input. To

simplify the notation in the subsequent sections the frame

indices {G}, {I}, and {Pi} are omitted.

Then the system described in (1a-1e) and (2) can be

rewritten as

Ṫ= T (W − B + D) + (G − D)T (3a)

ḃ= 0 (3b)

ṫi= 0, (3c)

where

W =

[

ω∧ a 03×1

02×5

]

∈ se2(3) ⊂ R
5×5,

B =

[

bω
∧ ba 03×1

02×5

]

∈ se2(3) ⊂ R
5×5,

G =

[

03×3 g 03×1

02×5

]

∈ se2(3) ⊂ R
5×5, and

D =





03×4 0
01×4 1
01×4 0



 ∈ R
5×5.

To simplify notation, in the following sections, the ele-

ments related to the position sensors (calibrations) are de-

noted only once with index i. Please note that for N sensors,

1 ≤ i ≤ N , these elements would be repeated N times.

V. SEMI-DIRECT PRODUCT SYMMETRY

In this section, we present the symmetry of the previously

defined system. The symmetry is based on the semi-direct

product group SE2(3)⋉ se(3) [32], [33] and builds upon the

author’s previous work [7], [29].

Given the revised system dynamics in (3a-3c), we define

the symmetry group to be G := (SE2(3)⋉ se(3))⋉ (R3)N .

Let X = (C, γ, di) ∈ G be an element of the sym-

metry group, with C = (B, b) ∈ SE2(3) and B =
(A, a) ∈ SE(3). Then the inverse element is given by X -1 =
(

C -1, 9AdB-1 [γ ], 9ATdi

)

with C -1 = (AT, 9ATa, 9ATb),
and the identity element of G is id = (I3,0,0,0,0) ∈ G.

A. Equivariance

This section presents the group action and equivariant

configuration output required for the later EqF design.

Definition 5.1. The transitive right group action of G on M,

φ : G×M → M for our filter is defined as

φ (X, ξ) :=
(

TC,Ad∨

B-1(b − γ∨), AT(ti − di)
)

∈ M.

(4)

Definition 5.2. Given the defined measurement equation

yi = hi(ξ) ∈ N of a known vector quantity δi with [29]

hi(ξ) = RT(δi − (p + Rti)), (5)

for 1 ≤ i ≤ N . Then the equivariant configuration output of

our filter, ρ : G×N → N can be defined as

ρi (X, yi) := AT(yi − b + di). (6)

In the EqF design below, the vector δi is set to zero.

B. Equivariant Lift

In the context of equivariant filtering the lift [2] provides

the structure that connects the input of the system posed on

the homogeneous space to the input of the system lifted onto

the symmetry group. For the given system in (3a-3c) the lift

is defined as follows.

Definition 5.3. We define the map

Λ (ξ, u) = (ΛI (ξ, u) , ΛII (ξ, u) , Λi (ξ, u)) as a lift

for the system defined in (3a-3c) with

ΛI (ξ, u) := (W − B + D) + T-1(G − D)T (7a)

ΛII (ξ, u):= adb∧ [Π(ΛI (ξ, u))] (7b)

Λi (ξ, u) := −(ω − bω)
∧ ti i = 1, ..., N (7c)

where Λ1 : M× L → se2(3), Λ2 : M× L → se(3),
and Λi : M × L → R

3. Π : se2(3) → se(3)
is a map defined such that, ∀x,y, z ∈ R

3|(x,y, z) ∈ R
9,

Π((x,y, z)∧) = (x,y)∧ ∈ se(3).

VI. EQUIVARIANT FILTER DESIGN

We extend the filter design of our previous work [7], [12],

[29] with the presented symmetries given measurements from

an IMU propagation sensor and N GNSS position update

sensors. Similar to our previous work, we initialize the filter

to the origin of the state space ξ̊ = id.

We further define local coordinates ε for the equivari-

ant error e := φ
(

X̂ -1, ξ
)

, to be normal coordinates, thus

ε = ϑ (e) := log(φ-1

ξ̊
(e))∨ ∈ R

n, where log : G → g is

the logarithm of the symmetry group. Note that given the EqF

estimate in the symmetry group at time t, that is X̂ (t), the

system’s estimate at time t is written ξ̂(t) = φ
(

X̂ (t), ξ̊
)

[4].



We can derive the linearized error state, and output matri-

ces

ε̇ ≃ A0
t ε, (8)

δ (h(e)) = δ
(

ρ
(

X̂ -1, h(ξ)
))

≈ C⋆
t ε, (9)

where A0
t and C⋆

t are defined according to [29].

When formulating filters for real-world data, one cannot

assume all sensors’ measurements to be available simulta-

neously. The following presents a general filter formulation

applying updates for the i-th position sensor. This formulation

allows an arbitrary number of sensor updates at different

rates, as in real-world environments.

Let ε = ϑ (e) =
(

εR , εv , εp , εb , εt
i

)

∈ R
18 and using

the previous equations, we can then derive the linearized filter

matrices for the i-th sensor update as

A0
t =





Υ1 Υ2 09×3N

06×9 Υ3 06×3N

03N×9 03N×6 Υ4



 ∈ R
(15+3N)×(15+3N) (10)

C⋆
t,i =

[

Υ5 03×3 9I3 03×6 Υ6

]

∈ R
3×(15+3N) (11)

where,

Υ1 =





03×3 03×3 03×3

g∧ 03×3 03×3

03×3 I3 03×3



 ∈ R
9×9,

Υ2 =

[

I6

b̂∧ 03×3

]

∈ R
9×6,

Υ3 = ad∨

Υ7
∈ R

6×6,

Υ4 = diag(Γ1, . . . ,ΓN) ∈ R
3N×3N ,

Υ5 =
1

2
(yi + b̂ − d̂i)

∧ ∈ R
3×3,

Υ6 =
[

δ1,iI3, . . . , δN,iI3
]

∈ R
3×3N ,

Υ7 = Ad∨

B̂
(ω) + γ̂∨ + Ḡ ∈ se2(3) ⊂ R

4×4, and

Γ1 = · · · = Γn = (Â ω + γ̂∨

ω )
∧ ∈ R

3×3.

δj,i refers to the Kronecker delta, which is 1 if i = j and

0 otherwise. Thus, Υ6 is a 3-by-3N zero matrix, except the

i-th 3-by-3 block being the identity matrix, corresponding

to the i-th sensor update. Ḡ ∈ se(3) ⊂ R
4×4 refers to the

upper-left 4-by-4 matrix of G.

Finally, our discrete-time EqF’s propagation and update

equations are quite similar to the one of an EKF [12].

S = C⋆
t,iΣ

−

k+1C
⋆
t,i

T +N, (12a)

K = Σ−

k+1C
⋆
t,i

TS-1, (12b)

δ = ρi

(

X̂ -1, 0
)

− yi (12c)

∆ = DE

∣

∣

id
φ
(

ξ̊ , E
)

dϑ-1 · Kδ (12d)

X̂+
k+1 = exp(∆)X̂−

k+1, (12e)

Σ+
k+1 = (I − KC⋆

t,i)Σ
−

k+1, (12f)

where N ∈ S+(3) ⊂ R
3×3 is an output gain matrix, and

Σ ∈ S+(15+3N) ⊂ R
15+3N×15+3N the Riccati or covariance

matrix (of the error in local coordinates). X̂ ∈ G is the

EqF state with the initial state X̂ (0) = id. The main

difference to an EKF formulation is the definition of the

innovation residual ∆, where DE

∣

∣

id
φ
(

ξ̊ , E
)

dϑ-1 maps the

scaled residual Kδ into the Lie algebra of the symmetry

group.

VII. EXPERIMENTAL EVALUATION

To evaluate our filter design and show the usability of real

data, we use the INSANE Dataset [30]. This dataset provides

recordings with over 14 sensors, including two GNSS sensors

offset by approx. 1m from the IMU. To show the usability

of the proposed filter, we use the 19 “Mars” (outdoor) and

the “Outdoor” recordings of the INSANE Dataset. We select

this dataset as it includes a wide range of UAV flights,

from long-distance to short pickup-and-place, high-speed to

low-speed flights. It also contains an outdoor orientation

ground-truth, which is derived geometrically from raw sensor

measurements using the vehicle’s geometry and sensors’

calibration.

Note that, due to external influences in this dataset not all

flights have a highly accurate RTK-GNSS fix available. Since

these measurements are also used to generate the ground-

truth orientation, slight position measurement errors can yield

larger orientation errors, rendering the “ground-truth” less

accurate. The affected datasets are marked with a star (∗) in

Table I.

A. Comparison to MEKF approaches

Due to the lack of open-source implementation of a IEKF

- with neither single nor multiple-GNSS sensors - we choose

to compare our presented filter to an implementation of a

state-of-the-art modular MEKF [23] to have at least well-

known comparison data. This MEKF implementation directly

provides (multiple) GNSS sensor modules with very little

modification. For a detailed performance analysis of the con-

sistency and core error state performance we refer the reader

to our previous work [29]. We further want to highlight that

the MEKF formulation is able to handle asynchronous and

out-of-order measurements, while the EqF implementation is

designed in a simpler way to show the proof of concept.

We initialize both filters with the same initial state, i.e.,

ξ̊ = id = (I3,0,0,0,0,0,0) ∈ M. We want to highlight

the purposely wrong chosen initial state for both GNSS

sensor calibrations, whose ground-truth values are

t1 =
[

0.35, 0.41, 0
]

T

m

t2 =
[

−0.47,−0.41, 0
]

T

m.

Given that this initial estimate is most likely outside the

beacon of convergence for the MEKF, we acknowledge that

EKF-based approaches tend to require an initial state within

the proximity off the ground-truth. However, with the wrong

initial state estimate, we want to highlight the performance

of symmetry-based approaches concerning the convergence

and rate.



TABLE I
RMSE EVALUATION IN THE ASYMPTOTIC PHASE OF OUR EQF

FRAMEWORK COMPARED TO A MEKF-BASED IMPLEMENTATION ON THE

INSANE Dataset [30].

Dataset EqF RMSE MEKF RMSE Pos.

No. t0[s] Pos. [m] Att. [◦] Pos. [m] Att. [◦]

M01 20 0.1089 12.7486 0.5264 2.5468

M02 23 0.0890 3.8077 4.2120 128.5142
M03 29 0.1529 2.5925 5.6688 97.5796
M04∗ 34 0.3063 5.7552 2.4872 45.7479
M05 50 0.1449 1.9385 1.1497 8.0534
M06 25 0.0966 3.3420 0.1237 7.4513
M07 36 0.1766 2.7015 0.6316 11.5197
M08∗ 43 0.2205 9.0050 0.3291 11.9717
M09∗ 34 0.4682 10.8112 3.6165 38.2228
M10 42 0.2332 6.4940 1.2518 12.9468
M11 31 0.3415 5.7310 2.4224 36.0030
M12 27 0.3705 2.8902 1.7011 10.4460
M13 10 0.1957 3.1973 2.7391 76.1869
M14∗ 45 0.8265 28.5057 2.7604 60.5424
M15 14 0.2452 4.1148 2.3284 30.6290
M16∗ 42 0.1955 6.9932 0.2311 6.8966
M17∗ 35 0.1660 6.9044 3.1691 50.2471
M18∗ 54 0.1289 9.0023 0.5740 19.1046
M19∗ 23 0.1217 4.3011 1.3056 6.3813
O01∗ 50 0.2251 11.3116 0.8893 17.4661

Further, both filters are initialized with the same state

covariance Σ0 and use the same measurement noise.

B. Evaluation Results

We evaluate the 20 above-mentioned recordings of the

INSANE Dataset on both filter frameworks. Due to the

long static duration at the beginning of each recording and

the known observability/consistency issues for EKF-based

frameworks, an empirically derived starting time t0 was

chosen for each evaluation (c.f. Table I) in favor of the MEKF

approach. As it is known in EKF-based approaches, noisy

position measurements from off-center sensors can lead to

incorrect yaw estimation when there is no motion present.

Thus, for a fair comparison, we want to limit this effect only

to the motion-full part of the dataset.

The RMSE of each individual evaluation is given in

Table I. As expected, the EqF performs well in most datasets

compared to MEKF approaches. We can further show that,

without any knowledge of the sensor calibration, i.e., initial-

izing these states at identity, the EqF performs well for all

flights of the INSANE Dataset. For interested readers, we also

provide the trajectory comparison of all runs in App. B.

Furthermore, for the selected dataset Mars 5 (M05), we

compare the pose errors for the EqF and MEKF imple-

mentation in Fig. 1 with the calibration state and bias

estimates displayed in Fig. 2 and Fig. 3, respectively. We

choose this dataset as it represents a low signal-to-noise ratio

scenario with generally little excitation and thus decreased

yaw observability throughout the entire run.

In this comparison, we can clearly see the advantages of

the EqF framework. Both frameworks are able to converge

to a good orientation estimate, though the MEKF has a

Fig. 1. Pose error for the EqF and MEKF frameworks on dataset M05.

Fig. 2. Calibration states comparison between the EqF and MEKF
frameworks and ground-truth (“GT”) on flight M05. Both frameworks are
intentionally initialized with a wrong calibration, t̂1(t0) = t̂2(t0) = 0.
Yet, the EqF framework can converge to the correct states (faster) in contrast
to the MEKF-based approach.

Fig. 3. Bias estimates of the EqF and MEKF frameworks on dataset M05.



noticeable longer convergence time. However, as can be

expected, while improving on the orientation estimate the

MEKF trades the position accuracy as its calibration states

are not converging correctly. The EqF converges fast and

correctly to the actual sensor calibrations. As a result, the EqF

is able to provide accurate state estimates even if the rigid

body sensor calibrations are initially completely unknown.

For the sake of completeness, we acknowledge and tested

the MEKF with initial states only 5% off ground-truth values

and we were able to achieve similar estimation results as the

EqF. Naturally, the low initial error reduces the linearization

error in the MEKF approach improving its performance. The

benefit of the EqF formulation is, indeed, in the much faster

transient, larger beacon of attraction, and consistency rather

than in the asymptotic behavior.

For consistency evaluation, we further present the filter

energy (or NEES [10]) for M05 in Fig. 4. For this, we

consider the states with available ground-truth, i.e., position,

orientation, and both calibration states. For more details

on this evaluation and comparisons to many other filter

setups we refer the reader to [29]. In this evaluation, we

clearly see the EqF’s filter energy converging to a magnitude

of 1. However, the MEKF is several order of magnitudes

higher, resulting in an over-confident system. We observe this

behavior throughout all evaluations of the INSANE Dataset.

VIII. SUMMARY

With this contribution we provide an EqF framework for

multi-GNSS setups for UAVs, which takes advantages of a

Lie symmetry group for lifting the system dynamics. We fur-

ther show that this type of filter formulation yields improved

performance compared to the currently most commonly used

MEKFs. This is a result of the better system formulation

and its inherited properties for convergence, linearization

errors, and consistency. When evaluated on multiple runs of

the INSANE Dataset, the proposed filter is able to correctly

estimate the vehicle’s pose and all GNSS extrinsic calibration

states throughout all flights.

Overall, this work aims to serve as a basis for future multi-

sensor EqF frameworks and provide the initial formulation on

how a multi-GNSS setup within a biased-inertial navigation

system can be formulated equivariently.

APPENDIX A

DIFFERENCES WITH IEKF

In this section we highlight the major differences between

the proposed EqF and the IEKF. For an in-depth discus-

sion on the topic, we refer the reader to our very recent

research [29].

The IEKF is a filter design for systems with group affine

dynamics on a Lie group [11]. The EqF, instead, can be seen

as a general filter design for systems with symmetries, where

the original system is lifted onto a Lie group, the symmetry

group, and a filter is designed based on the equivariant error.

The EqF specializes to the IEKF for systems with group

affine dynamics on a Lie group, when the Lie group is chosen

Fig. 4. Filter energy comparison between the EqF and MEKF frameworks
on flight M05. In this run, the MEKF is over-confident given its position and
calibration state errors. The EqF converges to magnitude of 1 as is expected
of consistent filters.

as symmetry group, the origin is chosen to be the identity,

and the local coordinates are chosen to be the logarithmic

coordinates [4, Appendix B].

Previous work has introduced a variant of the IEKF,

coined the “imperfect-IEKF” [1], to handle this type of

problem. This paper addresses the problem of filter design

for a biased inertial navigation system, as depicted in (1a-

1e), which does not possess group affine dynamics. In the

imperfect-IEKF, the IMU biases are treated as elements of a

Euclidean space attached to the navigation group, resulting

in a Lie group structure of SE2(3) × R
6. In contrast, our

proposed EqF exploits the semi-direct product symmetry

SE2(3)⋉se(3) proposed in [7], [29], resulting in a filter with

identical error dynamics for attitude, position, and velocity

(Υ1 in (10)), while introducing distinct error dynamics

for IMU biases (Υ2,Υ3 in (10)), thereby improving the

linearization error [29]. Additionally, by employing normal

coordinates instead of logarithmic coordinates, the proposed

EqF achieves a third-order linearization error reduction in the

output linearization [4].

APPENDIX B

INSANE EVALUATION

For completeness we provide the evaluation of the pro-

posed EqF framework on all 19 “Mars” and the “Outdoor”

flights of the INSANE Dataset [30]. The evaluation of each

individual flight is shown in Fig. 5. With this evaluation,

we can successfully demonstrate that an EqF framework per-

forms successful state estimation in real-world environments.

REFERENCES

[1] A. Barrau, “Non-linear state error based extended Kalman filters with
applications to navigation,” Dissertation, Automatic. Mines Paristech,
2015. https://hal.science/tel-01247723

[2] R. Mahony, T. Hamel, and J. Trumpf, “Equivariant Systems Theory
and Observer Design,” Aug. 2020, arXiv:2006.08276 [eess.SY].
http://arxiv.org/abs/2006.08276

https://hal.science/tel-01247723
http://arxiv.org/abs/2006.08276


[3] P. van Goor, T. Hamel, and R. Mahony, “Equivariant filter (EqF): A
General Filter Design for Systems on Homogeneous Spaces,” in 2020

59th IEEE Conference on Decision and Control (CDC). Jeju, Korea
(South): IEEE, 2020, pp. 5401–5408, arXiv:2107.05193 [eess.SY].
https://ieeexplore.ieee.org/document/9303813

[4] ——, “Equivariant Filter (EqF),” IEEE Transactions on Automatic

Control, vol. 68, no. 6, pp. 3501–3512, June 2023, arXiv:2010.14666
[eess.SY]. https://ieeexplore.ieee.org/document/9840886/

[5] R. Mahony, P. van Goor, and T. Hamel, “Observer Design for
Nonlinear Systems with Equivariance,” Annual Review of Control,

Robotics, and Autonomous Systems, vol. 5, no. 1, pp. 221–252,
May 2022, arXiv:2108.09387 [eess.SY]. https://www.annualreviews.
org/doi/10.1146/annurev-control-061520-010324

[6] Y. Ng, P. van Goor, T. Hamel, and R. Mahony, “Equivariant
Systems Theory and Observer Design for Second Order Kinematic
Systems on Matrix Lie Groups,” in 2020 59th IEEE Conference

on Decision and Control (CDC). Jeju, Korea (South): IEEE,
Dec. 2020, pp. 4194–4199, arXiv:2105.04797 [eess.SY]. https:
//ieeexplore.ieee.org/document/9303761/

[7] A. Fornasier, Y. Ng, R. Mahony, and S. Weiss, “Equivariant
Filter Design for Inertial Navigation Systems with Input
Measurement Biases,” in 2022 International Conference on

Robotics and Automation (ICRA). Philadelphia, PA, USA:
IEEE, 2022, pp. 4333–4339, arXiv:2202.02058 [cs.RO].
https://ieeexplore.ieee.org/document/9811778

[8] A. Barrau and S. Bonnabel, “Invariant Kalman Filtering,” Annual

Review of Control, Robotics, and Autonomous Systems, vol. 1, no. 1,
pp. 237–257, May 2018. https://www.annualreviews.org/doi/10.1146/
annurev-control-060117-105010

[9] K. Wu, T. Zhang, D. Su, S. Huang, and G. Dissanayake,
“An invariant-EKF VINS algorithm for improving consistency,” in
2017 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS). Vancouver, BC: IEEE, Sept. 2017, pp. 1578–1585.
http://ieeexplore.ieee.org/document/8205965/

[10] A. Fornasier, M. Scheiber, A. Hardt-Stremayr, R. Jung, and
S. Weiss, “VINSEval: Evaluation Framework for Unified Testing
of Consistency and Robustness of Visual-Inertial Navigation System
Algorithms,” in 2021 IEEE International Conference on Robotics and

Automation (ICRA). Xi’an, China: IEEE, 2021, pp. 13 754–13 760.
https://ieeexplore.ieee.org/document/9561382/

[11] A. Barrau and S. Bonnabel, “The Invariant Extended Kalman Filter
as a Stable Observer,” IEEE Transactions on Automatic Control,
vol. 62, no. 4, pp. 1797–1812, 2017. http://ieeexplore.ieee.org/
document/7523335/

[12] A. Fornasier, Y. Ng, C. Brommer, C. Böhm, R. Mahony, and S. Weiss,
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(e) Mars 05 (f) Mars 06 (g) Mars 07 (h) Mars 08

(i) Mars 09 (j) Mars 10 (k) Mars 11 (l) Mars 12

(m) Mars 13 (n) Mars 14 (o) Mars 15 (p) Mars 16

(q) Mars 17 (r) Mars 18 (s) Mars 19 (t) Outdoor 01

Fig. 5. Evaluation results of the EqF (purple) and a MEKF (yellow) framework on the INSANE Dataset [30]. As displayed in Table I the overall position
error is relatively small given the trajectory lengths. Nonetheless, in most runs the EqF outperforms a MEKF implementation.
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