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Abstract— Modern unmanned aerial vehicles (UAVs) with
sophisticated mechanics ask for extended online system iden-
tification to aid model-based controls in task execution. In
addition, UAVs in adverse environmental conditions require a
more detailed environmental disturbance understanding. The
necessary combination of online system identification, sensor
suite self-calibration, and external disturbance analysis to tackle
these issues holistically is currently an open issue.

Our proposed FUSE-D approach combines these elements
based on a system model at the rotor-speed level and a single
global pose sensor (e.g., a tracking system like Optitrack).
Besides sensor intrinsics and extrinsics, the framework allows
estimating the UAV’s rotor geometry, mass, moments of inertia,
and the rotors’ aerodynamic properties, as well as an external
force and where it acts on the UAV. The general formulation
allows us to extend the approach to an N-rotor (multi-rotor)
UAV and classify the type of external disturbance. We perform a
detailed non-linear observability analysis for the 43+ 7N states
and do a statistically relevant embedded hardware-in-the-loop
performance analysis in the realistic simulation environment
Gazebo with RotorS.

I. INTRODUCTION

Multi-rotor UAVs became a widely used tool in search
and rescue missions, exploration, long-term autonomy, trans-
portation, and entertainment over the last years.

Their deployments and frequent interaction with the en-
vironment expose them to various disturbances and uncer-
tainties, raising the need to adapt to different flight con-
ditions and tasks – robust performance and accurate flight
paths. This adaptation happens through (i) more sophisticated
multi-rotor platforms that allow for high degrees of freedom
(DoF) motion [1]–[4] or (ii) controls that take system param-
eter changes or disturbances into account [5]–[8] or both.

In most cases, approaches assume that the system or
environment will not change (or in a known way, e.g.,
[1]) over time, which can not be guaranteed. Commonly
used offline system identification methods’ built models
could render unusable. The state-of-the-art (SOA) provides a
large body of work identifying either changes in the system
parameter or changes in the environment. To the best of our
knowledge, no work combines both while including system
self-calibration in a holistic approach.

A. Related Work

1) System Parameter Estimators: Robustness can be
achieved through ”self-awareness” of the UAV – estimating
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Fig. 1. Overview of all components of FUSE-D.

system parameters (geometrical, inertial, and aerodynamic
properties – such as, e.g., mass or thrust force coefficient).

A couple of offline methods, apart from classical system
identification, were presented in [9]–[12]. These apply offline
nonlinear least-squares algorithms to do the self-calibration
of geometrical, inertial, and aerodynamic properties of the
UAV. They produce better estimation results for the control
states and system parameters, but can not be used online on
small and computationally limited UAVs due to the problem
complexity and required data stream length.

Other works solve the estimation problem through the
implementation of an extended Kalman filter (EKF) [13],
[14] or unscented Kalman filter (UKF) [15], [16]. The
recursive nature and inherent ”lightweightness” allows for
run-time estimation mid-flight as shown by these works. With
proper system input (Lissajous figures or observability-aware
motions [17]) one can achieve estimation performance close
to the optimization-based approaches, c.f. [14]. [16], [18],
[19] model additional drag effects, e.g., caused by the UAV’s
body or the rotors, which can improve estimation quality.

Recently, [20] proposed a Schmidt-Kalman filter (SKF)
that propagates the UAV’s state through the IMU measure-
ments and updates them based on its dynamics. Their results
confirm our previous findings (c.f. [13] and [14]), but do not
treat each rotor individually and apply assumptions to the
rotor geometry in the estimation process.

Still, all of them do not model external disturbances.
2) Disturbance Estimators: Next are estimators specific

to external disturbances or control schemes (i.e., [21]) to
reject those during trajectory tracking and, thus, provide
indirect information on external disturbances.

Estimators in [21]–[27] allow to estimate wind as distur-
bance acting on the UAV, impacting the trajectory tracking
performance. Many of these chose an abstraction level at
force and torque for control inputs (e.g., [24]) and all of them



assume system parameters, which we estimate with FUSE-
D in Sec. I-A.1, to be known and to not change over time.
The closest example to our approach can be found in [27],
which bases the estimation process on an EKF with force and
torque as control inputs, still assuming system parameters to
be known and static over time.

All these approaches show impressive results in the es-
timation of disturbances acting on the UAV, but lack the
”self-awareness” of the system self-calibration.

B. Contributions

In this work, we present the Framework for UAV System-
Parameter Estimation with Disturbance Detection (FUSE-D);
a novel real-time capable holistic framework that combines
system-parameter estimation with disturbance detection and
sensor-suite self-calibration. More precisely, the contribu-
tions presented in the following sections are:
• A significant extension of [14] by adding the online es-

timation of an external force and its point of application
(i.e., lever arm with respect to the center of mass) in a
holistic error-state Kalman filter (ESKF) framework.

• A real-time classification model with low latency to
distinguish between force (e.g., wind gust) or moment
(e.g., collision with environment) acting on the UAV,
and ground contact (e.g., landed).

• A detailed non-linear observability analysis revealing
that a rotor-speed based UAV model for state dynamics
and a single global pose sensor for corrections together
with precisely identified easily measurable UAV geome-
try and mass information is sufficient to render FUSE-D
a fully observable system.

• A statistically relevant evaluation and validation of
FUSE-D operating on an Odroid XU4 in a hardware-
in-the-loop simulation based on Gazebo and RotorS [7]
for a highly realistic environment and model settings.

FUSE-D is implemented in C++ and usable on ARM as
well as Intel architectures.

II. PRELIMINARIES

Throughout this paper, W is for the fixed world frame,
M denotes the center of mass (CoM), P is the frame of
the exteroceptive sensor (e.g., position or pose), I labels the
inertial measurement unit (IMU)’s reference frame, Ai labels
each rotor’s center of the tip path plane (TPP), and E refers
to the point of application of an external disturbance. Fig. II
shows all these reference frames in context.

We define the position (linear velocity, linear acceler-
ation, angular velocity, bias, force, moment, axis) vector
as [Frame] r [From] [To] ∈ R3 (v, a, ω, b, F, M, α). For
example, W rWM is the position vector of the UAV pointing
from frame W to frame M expressed in the frame W .

The orientation of W with respect to M is represented
through a Hamiltonian quaternion qWM ∈ R4 (unit length),
and its rotation matrix RWM (qWM) ∈ R3×3 applies to a
vector the following way: W rWM = RWMMrWM . q∗WM is
its conjugate corresponding to RT

WM . Therefore, quaternions
define as q [To] [From] throughout this work.
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Fig. 2. Reference frames of the proposed UAV model and spherical
coordinate definition of the rotor orientation axis αMAi

in FUSE-D.

In this work, we omit the indication of time dependency
and write x = x(t) to ease the notation and readability.

III. FUSE-D

The Framework for UAV System-Parameter Estimation
with Disturbance Detection (FUSE-D) is the result of our
steps in [13], [14], [17] and significant advances in this work.

A. External Force & Point of Application Estimation

Instead of estimating the gravitational pull Wg on the
UAV, previous version, we consider an external force
WFE = (fx, fy, fz) ∈ R3 (defined in world frame W ) acting
on the UAV with a point of application, or lever arm,
MrME = (rx, ry, rz) ∈ R3 measured from the CoM M (de-
fined in the CoM M ). As the force WFE can act at any
point on the UAV, an off-center acting force causes a moment
MME around the CoM M through the lever arm MrME . The
possible application range of estimating these states, e.g.,
wind gust, collision detection, or landing detection, will be
illustrated in more detail in later sections of this paper.

Eq. (1) and Eq. (2) are the sum of all forces (WFΣ) and
moments (MMΣ) acting on the UAV’s CoM, respectively.
MFTi

is each rotor’s generated thrust (defined in the CoM
M ) with the magnitude depending on the rotor’s squared an-
gular velocity ωi ∈ R+ and thrust force coefficient kTi

∈ R+,
and the direction defined by αMAi

. This force causes two
moments. The first one is the result of the rotor’s drag
moment coefficient kMi

∈ R+ times the spinning direction
εi ∈ {−1, 1}, and the second one is due to the distance
MrMAi

∈ R3 of the rotor to the CoM.

WFΣ = RWM

N∑
i=1

ω2
i kTi

αMAi︸ ︷︷ ︸
MFTi

+WFE (1)

MMΣ =

N∑
i=1

[(
−εikMi

I3 +
[
MrMAi

]
×

)
MFTi

]
+ [MrME]× RT

WMWFE

(2)

Note that [•]× denotes the vector cross product.



αMAi
is the rotor’s TPP alignment (i.e., rotor thrust

direction vector) with inclination ψMAi
∈ R from the z-axis

and the azimuth θMAi
∈ R from the x-axis of M .

αMAi
=

sinψMAi
cos θMAi

sinψMAi
sin θMAi

cosψMAi

 (3)

B. State-Space Model

The forces’ and moments’ influence on the trajectory states
is modeled through Newton-Euler equations and [28].

The mass of the UAV is denoted with m ∈ R+ and scales
all forces acting on CoM M . Wg is a known parameter with
[0, 0,−9.81]Tm/s2. We chose to define the inertia tensor
in the center of mass (CoM) and aligned with the UAV’s
principle axis. This makes MI a diagonal matrix and only
the moments of inertia need to be stored in the state vector
– MI = diag(Mi) with Mi = (Ixx, Iyy, Izz) ∈ R3

+.

W ṙWM = WvWM (4)

W v̇WM = 1
mWFΣ + Wg (5)

q̇WM = 1
2
qWM ⊗

[
0,Mω

T
WM

]T
(6)

M ω̇WM = MI-1
(
MMΣ − [MωWM ]× MI MωWM

)
(7)

The change of WvWM referenced in the world frame makes
the trajectory states more accessible for controls (common
definition in the UAV control community), and the term
[MωWM ]× MvWM missing (usually found in body referenced
velocities/accelerations [14]) does not cause additional un-
observable dimensions for real-systems (c.f. Sec. III-C). A
body referenced velocity is needed if velocity-dependant
drag parameters would be estimated as well (e.g., [16]).

FUSE-D will use all remaining states and dynamics from
[14] to form a 43 + 7N long state vector, with N being the
number of rotors of the UAV. For a quadrotor case we have
71 states in the estimation process.

x =
[
xT
T ,x

T
S,x

T
I ,x

T
G1
, . . . ,xT

GN

]T ∈ R(43+7N)×1 (8)

xT contains states for control purposes (W rWM , WvWM ,
qWM , and MωWM ). All sensor self-calibration states of a
position or pose sensor and potentially an IMU are in xS
(MrMP , qMP , MrMI , qMI , Iba, and Ibω), with I ḃa =
w

I
ba
∼ N (0, σ2

I
ba
) and I ḃω = w

I
bω
∼ N (0, σ2

I
bω

),
respectively as IMU biases. States that represent physical
properties of the UAV and the external disturbance are
accounted for in xI (m, Mi, WFE , and MrME). Brownian
motion models the dynamic behavior of WFE and MrME
with W ḞE = wFE

∼ N (0,σ2
FE

) and M ṙME = wrME
∼

N (0,σ2
rE
), respectively. Both noise terms should allow

estimating the external force and its point of application
(lever arm) with properly chosen σ2

FE
and σ2

rE
values (cf. the

example in Sec. IV). All rotor parameters, including position,
orientation, and aerodynamics, are stored in individual state
vectors xGi

(MrMAi
, ψMAi

, θMAi
, kTi

, and kMi
) for each

rotor i.
All other quantities are assumed to be static and do not

change over time unless otherwise defined. This assumption

does not contradict their inclusion in the estimation, as such
parameters could change during operation (e.g., collisions or
changing payload). Applying statistical tests to the estimates,
e.g., χ2, and resetting the covariance in case of failure, could
allow for re-estimation of the new values.

The angular velocities of the rotors are the control inputs
of the system model and are defined as εiωi, with ωi being
positive and εi = 1 (respectively −1) for counterclockwise
(CCW) (respectively clockwise (CW)) rotation [29]. The
control input vector is u = [ω1, . . . , ωN ]

T
+wu ∼ N (0,σ2

u),
with wu being the noise on the control inputs themselves.

C. Observability Properties with the new States

Including the external force WFE and its lever arm MrME
into a holistic estimation framework requires a careful anal-
ysis of which states are observable under which conditions
similar to the methods shown in [30]–[33].

Compared to [14], our new system model shows several
jointly observable states which link the external force, its
lever arm and other system parameter of the UAV. In the fol-
lowing, we give an overview of the resulting generalized (N
rotors) observability properties in case of (i) only pose sensor
measurements, (ii) only position sensor measurements, (iii)
pose or position with IMU measurements, (iv) the absents
of control inputs, and (v) changes of the former analysis due
to the ill-conditioned real-world quadrotor setup of the later
used AscTec Hummingbird quadrotor simulation.

Throughout the analysis we assume significant excitation
of all rotors (and thus also of the IMU readings, if present,
in all axes). In the experiments, we ensure this by flying
Lissajous trajectories that provide sufficient motion while
keeping the computation time low (compared to estimation
optimized trajectories as shown in [17], [34]).

For the observability analysis, apart of the state’s dynamic
equations, we use (a subset of) the following IMU and
pose/position sensor measurement equations:

himu =

[
RT
MIMaact + Iba + va

RT
MIMωWM + Ibω + vω

]
,with (9)

Maact =
1
m
RT
WMWFΣ +

(
[M ω̇WM ]× + [MωWM ]×

2
)
MrMI

(10)

hpose =

[
W rWM + RWMMrMP + vp

qWM ⊗ qMP ⊗ vq

]
, vq =

[
1

1
2
vθ

]
(11)

v• ∼ N (0,σ2
•) is the noise of the respective measurement

and defined as zero-mean Gaussian white noise.
We conducted a symbolic and numerical rank calculation

of the observability matrix as well as a numerical study of
its null-space in Matlab.

In order to best condition the numerical parts of the
analysis, we used random numbers of the same order of
magnitude for all states – N (1, 0.01). This gives us a
general idea of the observability properties. Since real system
parameters my have several orders of magnitude difference
and thus lead to ill-conditioned situations for real-world
state estimation, the analysis of the Asctec Hummingbird
quadrotor uses real system parameters (cf. Tab. III or [14]



TABLE I. Observability analysis results of given model with a state vector size of 43+ 7N with N number of rotors. The observability matrix O shows
observable (green) and jointly observable (blue) subspaces depending on the sensor configuration with the other states independently unobservable (red).

Measurement observable
dimensions W rWM MvWM qWM MωWM MrMP qMP MrMI qMI Iba Ibω m M i WFE MrME MrMAi

ψMAi
θMAi

kTi
kMi

Position 24 + 6N ok ok ok ok ok unobs. unobs. unobs. unobs. unobs. J1 J2 J2 ok ok J1 J2

Pose 28 + 6N ok ok ok ok ok ok unobs. unobs. unobs. unobs. J1 J2

see Tab. II

J2 ok ok J1 J2

Position & IMU 37 + 6N ok ok ok ok ok unobs. ok ok ok ok J1 J2 J2 ok ok J1 J2

Pose & IMU 41 + 6N ok ok ok ok ok ok ok ok ok ok J1 J2 J2 ok ok J1 J2

for the specific numbers). Also in this realistic analysis, a
disturbance of ‖F‖2 = 2N with an offset of ‖r‖2 = 10 cm
both in a random direction were used. All listed observability
properties have been tested for 4, 5, 6, and 8 rotor setups.

1) Pose Measurements Only: In case the estimation pro-
cess only has access to a global pose measurement sensor,
e.g., tracking system, we get a rank of 28 + 6N (52 for
a quadrotor case) which reflects the number of observable
dimensions (states or combination of states). These observ-
able dimensions include the full trajectory state vector xT
(3 + 3+ 4+ 3 = 13) and pose sensor self-calibration states,
MrMP and qMP , (3 + 4 = 7) as well as the rotor rotation
axis components ψMAi

and θMAi
(2N , 8 in quadrotor case).

Naturally, the IMU self-calibration states, MrMI , qMI , Iba
and Ibω, are unobservable due to the lack of information
from an IMU (3 + 4 + 3 + 3 = 13). The remaining states
span a 2 + N dimensional unobservable sub-space (6 for
a quadrotor). This unobservable sub-space can be split into
two, J1 and J2. J1 contains m, WFE , and all thrust force
coefficients kTi

and has one dimension regardless of the
number of rotors N . The remaining 1 + N dimensions are
spanned by J2 which includes Mi, MrME , all vectors MrMAi

,
and all drag moment coefficients kMi

(see Tab. I).
The unobservable sets J1 and J2 can be made observable

by supplying a priori knowledge which covers the 2 + N
dimensions. The simplest measurable information for J1
is the mass m. For J2, easily measurable quantities are
the rotor-to-rotor distances ‖MrMAj

− MrMAi
‖2, i 6= j ∈ R.

Measuring any combination of 1+N rotor-to-rotor distances,
and including the system’s mass renders the estimator fully
observable. Note that measuring rotor-to-rotor distances lim-
its the number of rotors for this approach to N > 3 since
only then permutations allow to reach 1+N measurements.

Note that WFE and MrME are part of J1 and J2 respec-
tively (see Tab. II). In case WFE = 0, MrME gets unobserv-
able due to the lack of resulting moment, see Eq. (2), and
the force itself is observable (not in J1 anymore). The last

TABLE II. Observability analysis details of the states WFE and MrME .
Observable states (green) and jointly observable sub-spaces (blue tones)

with the other states being independently unobservable (red).

MrME
WFE = 0 6= 0

= 0 WFE : ok WFE : J1
MrME : unobs. MrME : ok

6= 0 WFE : ok WFE : J1
MrME : unobs. MrME : J2

case is where WFE 6= 0 and MrME = 0, which results in
MrME being observable and WFE remains as part of J1.

2) Position Measurements Only: If the estimation pro-
cess is only supplied with absolute position measurements,
e.g., global navigation satellite system (GNSS), the analysis
shows the same observable and jointly observable states as
the case of the pose measurement. The only difference is that
the sensor self-calibration state qMP (pose sensor orientation)
is now unobservable and the rank is 24 + 6N (48 for a
quadrotor configuration). Position updates only use the top
entry of Eq. (11), hence, the state qMP is not present.

Interestingly, the sole position sensor setup can estimate
the UAV’s world attitude qWM (given enough movement).
This is due to pseudo attitude information resulting from
the positional changes. Probably even more noteworthy, with
only a global position sensor, the UAV model and rotor-speed
system inputs, as well as the mass and 1 +N rotor-to-rotor
measurements, the entire system is fully observable as an
online localization, system identification, sensor suite self-
calibration, and disturbance estimation framework.

3) Pose or Position with IMU Measurements: Combining
an exteroceptive position sensor with an IMU (ego-motion)
is one of the most common setups in localization and
navigation tasks, therefore, available on most UAVs.

The combined system with pose senor measurements has
a rank of 41 + 6N and with only position measurements
37+6N (65 and 61 for a quadrotor configuration). One can
see that the only difference is that the IMU’s self-calibration
states, MrMI , qMI , Iba and Ibω, are now observable due to
Eq. (9). All other observability properties from Sec. III-C.1
and Sec. III-C.2 hold. Although the IMU has no other
influence on the observability of states, having an additional
sensor can improve the overall estimation quality.

4) No Control Inputs: This edge case happens if the
motors are turned off (u = 0). All states in xT

G1
to xT

GN
get

unobservable, while all other states retain their observability
properties. Looking at the external force and its lever arm,
this situation allows to detect if the vehicle is on the ground
(We show this in Sec. IV-C.2). J1 now spans m and WFE;
and J2 reduces to 1 dimension spanning over Mi and MrME .

5) Hummingbird Quadrotor Case: As mentioned before,
a real system can result in an ill-conditioned estimation
problem having different observability properties, thus, one
needs to look into the specific configuration in combination
with the system’s parameters. The Gazebo/RotorS model of
the Asctec Humminbird quadrotor including its parameters
was used for this analysis.



The given system with pose and IMU measurements
available during the estimation gives us a rank of 60 of a
maximum of 71. The additional 4 unobservable dimensions,
compared to Sec. III-C.3, are a result of the z-aligned rotor
axis, see Eq. (2). J1 remains even in this configuration.
4 additional unobservable dimensions come from θMAi

for
each rotor. J2 only contains 1 (only one rotor-to-rotor
distance measurement needed) dimension as the 4 MrMAi,z

states are by themselves unobservable. These unobservable
dimensions scale with the number of rotors N . WFE and
MrME behave the same as in the general case.

D. Disturbance Detection & Classification

The disturbance detection uses the estimates of WFE and
MrME to distinguish between the presence of a disturbance
or none. A disturbance is further grouped into force (e.g.,
wind gust acting on the UAV), moment (e.g., contact with
an obstacle), or ground contact (e.g., landed UAV) based
on the norm values ‖WFE‖2 and ‖MrME‖2. Such cases are
depicted in the example of the evaluation in Fig. 5.

Note, that the detection only checks the threshold of
‖MrME‖2 if ‖WFE‖2 is over a user-defined threshold, this
avoids false-positives in case MrME is unobservable.

The type none is defined as case where both norm val-
ues are below their respective thresholds. The cases force
and moment need ‖WFE‖2 to be over the threshold with
‖MrME‖2 distinguishing them. The UAV is considered to
have ground contact if the motor speeds are all zero and the
mass-normalize estimate WFE is close to −Wg .

E. C++ Implementation with ROS support

We implemented the estimation as an error-state Kalman
filter (ESKF) based on the previously described system
model in C++ to allow platform and software suite-
independent usage. A Robot Operating System (ROS) node
gives the framework the ability to be easily integrated into
existing software environments.

Following [28], we calculated a proper discrete covariance
propagation matrix F and system noise covariance Q through
second-order truncation compared to other frameworks. The
Measurement Jacobian H and measurement noise covariance
R are based on the error-state representation.

Compared to our previous Matlab implementation of [14],
the accuracy is improved by employing linear interpolation
of the control inputs from the time step of the last update to
the time step of the current control input.

IV. EXPERIMENTAL RESULTS

We chose to use simulations as they allow for good
repeatability of experiments and, therefore, ease of evaluation
of the estimator. The simulation environment of choice is
Gazebo/RotorS [7] with ROS. It provides us with realis-
tic simulations of multi-rotor UAV physics (in our case,
a Asctec Hummingbird quadrotor), control input signals
(motor speeds), and sensor measurements with noise.

In the following evaluation, Gazebo/RotorS (and necessary
components to automate the latter test series) is running

on a notebook (i7-7820HQ CPU), while FUSE-D does its
estimations on an Odroid XU4 (one commonly used in the
community) connected together via Ethernet/ROS.

A considerable advantage of this method is that the ground
truth values of the system are known or can be calculated
from other properties, done for the moments of inertia Mi.
We set the individual rotor drag force and rolling moment
coefficients (velocity induced hub forces and roll moments)
in the RotorS model to zero to reduce errors in the evaluation
due to such unmodeled effects. These effects are only present
during very fast flights for these types of platforms.

A. Simulation Parameters

In our evaluation, we only update the estimate through
pose sensor measurements (published through ROS at 50Hz)
as the IMU makes no additional relevant state, no other than
its self-calibration states, observable. One could argue that
it improves the overall estimation quality. The pose sensor
is assumed to be a tracking system like Optitrack with a
zero-mean Gaussian white noise and standard deviations of
σp = 0.001m (position) and σθ = 0.1° (attitude). Motor
speeds get published at 200Hz through ROS, and we assume
a motor speed noise of σui

= 0.15 s-1 (equals the Astec
Hummingbird’s FCU rpm quantization) in the estimation.

The noise values of the force WFE and its point of
application MrME are chosen to allow the estimates to react
to changes in the acting disturbance but not too high to cause
a loss in quality. Hence, we calculate its value based on
the expected disturbance slope (rate of change, the physical
system has first-order characteristic) and the propagation rate
(motor speeds): σFE

= 1.5 N√
200 Hz

= 0.15N and σrME
=

0.7 m√
200 Hz

= 0.05m, respectively.
The initial guess of the state values were 20% offset to

verify that the state is indeed observable. Further ground truth
system-parameters of the UAV can be found in Tab. III.

B. Test Case

We tested the observability of Sec. III-C and the per-
formance of the C++ implementation of FUSE-D from
Sec. III-E empirically through a combination of five dif-
ferent 120 s long Lissajous trajectories and six different
disturbance-sets which results in 30 test runs in total. These
five Lissajous figure-based trajectories are similar to the ones
used in [14] (combining a low-frequency high-velocity and
a high-frequency low-velocity motion) and give us sufficient
excitation in all 6 DoF allowing good convergence of even
poorly observable states. The six disturbance-sets contain one
force (point of application in CoM) and one moment (force
and offset point of application) disturbance each, starting at
90 s and 105 s after the trajectory start with a duration of
approximately 7 s. The magnitudes for force and point of
application are chosen randomly in the range of U(1, 4)N
and U(0.1, 0.25)m, respectively, with arbitrary orientation.

Every test run starts with the UAV on the ground, followed
by a takeoff and flight towards the trajectory’s starting point.
Reaching this point starts the Lissajous trajectory following



TABLE III. Gazebo/RotorS AscTec Hummingbird model parameters (ground truth) with estimation error and standard deviation of the fully observable
state vector based on 30 test runs after 90 s flight time. qMP,z , m, MrMAi,z

, and θMAi
are not listed as those are assumed known a priori.

ground truth error standard deviation
x/roll y/pitch/value z/yaw Unit x/roll/1 y/pitch/2 z/yaw/3 4 x/roll/1 y/pitch/2 z/yaw/3 4

MrMP 2.6 · 101 3.8 · 101 5.9 · 101 mm 1.6 3.1 −2.7 1.4 1.8 7.3 · 10−1

qMP 0.0 0.0 0.0 ° 6.0 · 10−2 5.4 · 10−1 known 6.6 · 10−2 6.0 · 10−1 known

M i 7.5 · 10−3 7.5 · 10−3 1.3 · 10−2 kgm2 1.4 · 10−4 8.1 · 10−5 3.0 · 10−4 1.8 · 10−4 1.3 · 10−4 2.5 · 10−4

WFE 0.0 0.0 0.0 m/s2 −2.8 · 10−3 2.1 · 10−2 6.3 · 10−2 8.7 · 10−2 8.2 · 10−2 6.9 · 10−2

MrME 0.0 0.0 0.0 m/s2 3.5 · 10−3 −1.1 · 10−3 −1.0 · 10−2 1.2 · 10−2 1.4 · 10−2 1.4 · 10−2

MrMA1
1.7 · 102 0.0 1.1 · 101 mm 2.6 −1.5 · 10−1 known 7.8 8.9 · 10−1 known

MrMA2
0.0 1.7 · 102 1.1 · 101 mm 9.9 · 10−1 2.5 · 101 known 1.0 1.0 · 101 known

MrMA3
−1.7 · 102 0.0 1.1 · 101 mm 4.4 9.7 · 10−2 known 7.6 9.2 · 10−1 known

MrMA4
0.0 −1.7 · 102 1.1 · 101 mm −7.6 · 10−1 5.7 known 8.6 · 10−1 1.0 · 101 known

ψMA1...4
0.0 ° 1.5 · 10−1 1.4 8.6 · 10−1 −1.7 · 10−2 1.4 1.3 1.3 9.5 · 10−1

kT1...4
3.4 · 10−4 N/s−2 −2.7 · 10−6 −3.4 · 10−5 1.1 · 10−5 2.1 · 10−5 1.7 · 10−5 1.5 · 10−5 1.5 · 10−5 1.7 · 10−5

kM1...4
1.6 · 10−2 m 4.3 · 10−4 4.5 · 10−4 −7.4 · 10−5 −3.1 · 10−3 7.4 · 10−4 3.5 · 10−3 7.7 · 10−4 2.5 · 10−3

and resets FUSE-D, just before starting the Lissajous trajec-
tory, to its initial estimate x̂0, guaranteeing the same starting
conditions for each run. The first 90 s (transient phase) serve
the purpose of convergence evaluation and observability
validation. After 90 s, the disturbance force acting on the
CoM is applied to the UAV (emulating, e.g., a wind gust)
followed by the same force offset with respect to the CoM
(moment, emulating a potential contact or collision) at 105 s.
The trajectory ends at 120 s and the control lands the UAV
5 s later. Thus, the ground contact is at around 125 s.

C. Evaluation & Discussion
The following evaluation and discussion of the test run

results is based on the mean and standard deviation values
over all 30 test runs, except Fig. 5 highlighting the distur-
bance estimation and classification on an example.

1) Transient Phase: The transient phase of the estimation
can be thought of as the time it takes the estimator to
converge towards a steady-state, in which the estimates will
not change drastically anymore. The data in Fig. 4 indicates
that all states converge towards appropriate values close to
ground truth after 60 s, even with wrong initial estimate
x̂0, confirming the theoretical observability analysis result
of Sec. III-C. All error and standard deviation values of
all estimates in x̂ at 90 s are reported in Tab. III, except
qMP,z, m, MrMAi,z

, and θMAi
, which are known at the

start of the estimation process (‖MrMA1
− MrMA3

‖2 for J2
is a combination of two states) – see Sec. III-C.5 for the
corresponding observability discussion.

The pose sensor self-calibration states, MrMP and qMP ,
converge fast and accurate towards ground truth with max-
imal 8% positional relative error (and an absolute error in
orientation of below 1°). A higher standard deviation of the
pose sensor’s y-axis orientation calibration state may be due
to less exciting motions around this axis.

The lower angular velocity value changes of MωWM
around the z-axis (low quadcopter yawing) cause a lower
quality of the estimate Miz. This can be seen in the bigger z-
component error and higher standard deviation. We achieve
a high grade of accuracy with not more than 3% relative
error compared to ground truth.

In the undisturbed section of the test flight, it is visible
that the force WFE gets estimated correctly with an norm
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Fig. 3. Estimation errors (�̃) of external force W F̃E and point of
application M r̃ME based on 30 Lissajous trajectory flights. The solid lines
are the error, and the shaded areas are the 3σ standard deviation over all
test runs. Axis x (blue), y (red), and z (green). Gray regions mark the time
in which disturbances act. The first one is a force acting on the CoM, and
the second is the same force with an offset point of application.

average root mean square error (ARMSE) over the whole 90 s
section of 0.11N. Contrary to the insight of the observability
analysis, in an undisturbed case, the point of application
MrME should be unobservable. We always see a small
deviation of the force from this zero line due to uncertainties
in the simulation as well as the estimation. Hence MrME gets
observable with a norm ARMSE of 12.9mm but exhibits a
higher standard deviation.

The inclination angles ψMAi
can deviate a bit more as they

are in the sine components of the axis definition.
Note that the rotor position vectors MrMAi

exhibit different
accuracies depending on if they are part of the a priori rotor-
to-rotor distance measurement to make J2 observable. In this
case, MrMA2

and MrMA4
show higher relative errors of up

to 15%, while MrMA2
and MrMA4

maximum 3%, which is
due to the additional information these ”constraints” supply.

All rotor thrust force coefficients kTi
show good con-

vergence with a worst-case 10% error. The drag moment
coefficients kMi

exhibit a higher standard deviation because
of the limited yaw motions resulting in an error below 20%.

2) Disturbance Detection & Classification: The distur-
bance detection module of our proposed framework applied
a smoothing to the estimates and its tests according to
Sec. III-D have a success rate of approximately 80%. The
outliers of the detection were of two types: (i) ground contact
was mistaken for a moment (happened two times), and (ii)
bouncing between the force and moment classes (happened
four times). The first error mode happens if the UAV has brief
ground contact at a tilted angle – correctly classified as a
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Fig. 4. Convergence of estimated sensor, inertial, and aerodynamic
parameters based on the first 90 s of the 30 Lissajous trajectory flights.
Known values of m and θMAi

are omitted. The solid lines are the error (�̃)
and the shaded areas the 3σ standard deviation over 30 test runs. Axis x
(blue), y (red), z (green) or rotor 1 (blue), 2 (red), 3 (green), 4 (orange).
Although the initial estimate is 20% wrong, all states converge within 60 s
to appropriate values close to ground truth.

moment – but then turns off the motors due to test automation
settings. The second error is caused by the norm ‖MrME‖2
and the predefined thresholds not including a hysteresis.

Fig. 5 shows a test run in detail with the estimates WFE
and MrME , their respective norms, and the classification
based on them. It can be seen that the landing gets classified
as moment for a brief moment due to a slight tilt during
landing, then it switches to the correct ground class.

Nonetheless, the classification achieves good performance
and provides valuable data to potential higher level planning.

3) Computation time Odroid XU4: The execution time
of each ESKF step (rps-based propagation and pose sensor
based update) of the in Sec. III-E discussed implementation
has been logged during each experiment. We gathered 10000
samples of each step. In numbers, in the worst case, the
worst propagation rate we achieve is approximately 1.4 kHz
(mean 0.160ms, max. 0.693ms, and min. 0.088ms) and
pose update rate of 685Hz (mean 0.390ms, max. 1.459ms,
and 0.256ms). These timings allow for the estimation to be
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Fig. 5. Example of the disturbance detection and classification based on
FUSE-D estimated force and point of application. The solid lines are the
estimate (�̂), and the dashed lines are the ground truth of the respective state.
Axis x (blue), y (red), z (green), and scalar values (black). A threshold of
0.7N and 0.1m for the norm of ‖W F̂E‖2 and ‖M r̂ME‖2 was used. The
colored background depicts the ground truth of the disturbance acting on
the UAV. (red) background shows ignored sections of the time-series, (blue)
areas mark disturbance-free sections, with (green), (orange), and (grey) areas
highlighting a disturbance force (e.g., wind gust), moment (e.g., collision),
and ground contact, respectively. As can be seen in the bottom row of this
example, the disturbance detection classifies all cases correctly.

done online in real-time, potentially supplying controls and
higher level decision making during task execution. htop
reports around 43% CPU utilization of the fuse node on
the Odroid XU4. Timings and CPU utilization might differ
depending on the number of rotors N and hardware used.

V. CONCLUSION

Our proposed Framework for UAV System-Parameter Es-
timation with Disturbance Detection (FUSE-D) combines
system-parameter identification, sensor suite self-calibration,
and navigation state estimation with disturbance detection
and classification in a holistic online approach.

We have devised a system model, including a disturbance
force acting with a possible offset point of application, of
an N -rotor multi-rotor UAV that uses rotor-speed input and
position or pose (3D position and potentially 3D attitude)
sensor readings to estimate system-parameters and estimate
disturbances for further high-level planning or control use.
A thorough observability analysis of the system model
generalized to N rotors adds to our understanding of which
system-parameters or types of disturbances can be estimated.
Additional analysis of the observability matrix’s null space
reveals what a priori information needs to be supplied to the
estimation process to make the system fully observable.

A realistic simulated case study of the well-known Asctec
Hummingbird in Gazebo/RotorS has shown that the insights
of the observability analysis are valid. The UAV feeds its



motor speeds and pose sensor measurements to FUSE-D
running online on an Odroid XU4 (connected via ROS to
the Gazebo simulation). We have managed to obtain accurate
estimation and classification results that emphasize the usage
of FUSE-D in future applications. The disturbance detection
module successfully classifies disturbances based on the
estimates whether the disturbance is none, force (e.g., wind),
moment (e.g., collision), or ground contact (e.g., landed).

Further investigation seeks to deploy the proposed ap-
proach to closed-loop flown multi-rotor platforms to show
the versatility and robustness of FUSE-D.

REFERENCES

[1] M. Kamel, S. Verling, O. Elkhatib, C. Sprecher, P. Wulkop, Z. Taylor,
R. Siegwart, and I. Gilitschenski, “The Voliro Omniorientational Hex-
acopter: An Agile and Maneuverable Tiltable-Rotor Aerial Vehicle,”
IEEE Robotics & Automation Magazine, vol. 25, no. 4, pp. 34–44,
October 2018.

[2] D. Falanga, K. Kleber, S. Mintchev, D. Floreano, and D. Scaramuzza,
“The Foldable Drone: A Morphing Quadrotor That Can Squeeze and
Fly,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 209–
216, December 2018.

[3] P. Zheng, X. Tan, B. B. Kocer, E. Yang, and M. Kovac, “TiltDrone:
A Fully-Actuated Tilting Quadrotor Platform,” IEEE Robotics and
Automation Letters, vol. 5, no. 4, pp. 6845–6852, July 2020.

[4] M. Ryll, D. Bicego, and A. Franchi, “Modeling and Control of FAST-
Hex: a Fully–Actuated by Synchronized–Tilting Hexarotor,” in 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, October 2016, pp. 1689–1694.

[5] D. Mellinger, Q. Lindsey, M. Shomin, and V. Kumar, “Design, Mod-
eling, Estimation and Control for Aerial Grasping and Manipulation,”
in 2011 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), September 2011, pp. 2668–2673.

[6] M. Kamel, T. Stastny, K. Alexis, and R. Siegwart, “Model Predictive
Control for Trajectory Tracking of Unmanned Aerial Vehicles Using
Robot Operating System,” in Robot Operating System (ROS): The
Complete Reference (Volume 2). Springer International Publishing,
May 2017, pp. 3–39.

[7] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart, “RotorS - A Mod-
ular Gazebo MAV Simulator Framework,” in Robot Operating System
(ROS): The Complete Reference (Volume 1). Springer International
Publishing, February 2016, pp. 595–625.

[8] D. Tzoumanikas, F. Graule, Q. Yan, D. Shah, M. Popović, and
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