
Visual-Inertial On-Board Throw-and-Go Initialization
for Micro Air Vehicles

Martin Scheiber1, Jeff Delaune2, Roland Brockers2, and Stephan Weiss1

Abstract— We propose an approach to the throw-and-go
(TnG) problem for micro air vehicles (MAVs) using visual
and inertial sensors. The key challenge is the fast on-board
initialization of the visual odometry (VO) system, which usually
requires user input to recover the visual scale. Our approach
is based on the identification of the gravity vector from the
acceleration data computed with images of the ground during
in free fall. This enables scaling of the poses reconstructed with
visual information. The proposed framework use inertial data
to control the MAV attitude so the ground is visible after the
throw. Using image to image homography a metric scale is
estimated with which the MAV’s height is propagated. Unlike
existing literature, this approach requires no additional sensor
nor user input or pre-throw assumptions and can recover from
any initial attitude. We show results on both simulation and
real data.

I. INTRODUCTION

Micro air vehicles (MAVs) have significantly impacted
robotics research in recent years. Their agility makes
them useful in many situations, especially when they are
autonomous. Modern use cases include field monitoring
for agriculture, first responder’s aid, aerial photography or
planetary exploration. We reckon that autonomous MAVs
will keep playing a bigger role in modern society and that
they need to be deployed easily.

MAV’s autonomy requires robust and accurate closed-loop
control. Estimating the metric pose and velocity is a critical
part of it. Research has been focusing on computer vision
to enable navigation indoor or in tight spaces where MAVs
are often required to operate [1]. Since parallel tracking
and mapping (PTAM) [2], real-time visual odometry or
simultaneous localization and mapping (SLAM) has become
a fundamental part of robotics. Modern VO algorithms can
run at frame rates greater than 60 fps on embedded hardware

The research leading to these results has received funding from
the ARL within the BAA W911NF-12-R-0011 under grant agreement
W911NF-16-2-0112, the Austrian Ministry for Transport, Innovation and
Technology (BMVIT) under grant agreement n. 855468 (Forest-IMATE),
and the Universität Klagenfurt within the Karl Popper Kolleg on Networked
Autonomous Aerial Vehicles.

The research described in this paper was carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under a contract with the
National Aeronautics and Space Administration.
c©2019 California Institute of Technology, Government sponsorship

acknowledged.
1 These authors are with the Control of Networked Systems Group,

Univeristät Klagenfurt, Austria.
mascheiber@edu.aau.at, stephan.weiss@ieee.org

2 These authors are with the Jet Propulsion Laboratory, California
Institute of Technology, Pasadena.
{jeff.h.delaune,roland.brockers}@jpl.nasa.gov

Pre-print version, accepted Jun./2019 at IROS19, Macau,
DOI: 10.1109/IROS40897.2019.8967575 c©IEEE.

or re-localize themselves with some success [3], [4]. Yet,
monocular VO approaches cannot provide the metric pose
information required for MAV control because of the visual
scale ambiguity.

Inertial Measurement Units (IMUs) are the most popular
sensor in the MAV literature to recover metric information.
[5] pioneered visual-inertial odometry (VIO) for MAVs by
adapting the well-known PTAM VO algorithm [2], and
using it to update an inertial prior through an Extended
Kalman Filter (EKF). This approach can use any VO pose
output in a loosely-coupled way, at the cost of a scalar
visual scale state and visual frame orientation state in the
filter. This approach is lightweight and modular, but cannot
naively handle VO tracking loss when imaging conditions
are difficult. Tightly-coupled VIO uses image feature tracks
as measurements [6], [7]. It can work in degraded conditions
with only a few features, is more accurate but requires
numerous additional feature or pose states which increase the
computational cost. Recently, ”ultra-tightly-coupled” VIO
has appeared and uses image pixel intensity directly as
updates [8], [9].

Whether they are based on non-linear filtering or
optimization, any of these VIO approaches require the
state vector to be initialized in some way. As opposed to
VO-only, the gravity vector and visual scale factor need
to be approximated as well. The latter may appear as a
scalar scale state in loosely-coupled approaches, or as the
metric velocity vector in some tightly-coupled approaches.
This initialization usually requires user input guesses [5], or
solving a linear system over a short visual-inertial sequence
where static objects are in the field of view [10].

Throw-and-go (TnG) defines the ability for a user to
throw the copter in mid-air to start an autonomous flight.
Ideally, this should succeed from any throw configuration
(e.g. orientation, camera obstruction) and without requiring
additional sensors. In this paper, we present a TnG
initialization procedure that can be adapted to any of the
aforementioned VIO approaches. It requires no sensors other
than a camera and an IMU, and the MAV can be thrown from
any orientation, even if the camera is initially obstructed.

The following paper is split into several parts. Section II
reviews previous approaches to the TnG problem. Section III
gives an overview of our solution goes into further details
about the implementation. Sections IV and V go over
simulation and real-world open loop tests, respectively.



1

2
3

4

5

Fig. 1. Stages of the throw within our framework. The attitude is estimated (1) before the throw is detected (2), then at first the attitude is stabilized (3)
and then the vision based pose calculation started (4). At last, the copter computes the metric scale and initializes the VIO framework and controller (5).

II. RELATED WORK

To the best of our knowledge, two approaches have been
proposed for MAV’s throw-and-go.

[11] tested TnG with an EKF-based framework using
inertial propagation and optical flow measurements,
previously proposed in [12]. This only required two
consecutive image frames to provide a measurement. It
overcame the manual initialization process required by
[2], in addition to being more robust to tracking failure.
However, the orientation, velocity and a visual scale factor
still need to be initialized manually before the throw, and
an assumed ground plane has to be in the field of view the
whole time.

The approach proposed in [13] can start from any attitude
and with an obstructed view since they use inertial-only
attitude observer to estimate the gravity vector during the
throw. As soon as the MAV is released, attitude control levels
out the MAV and points a downward-facing camera at the
assumed ground plane. A laser altimeter is used to eliminate
the descent rate and provide the scale factor. The residual
lateral velocity provides the translation to initialize the
semi-direct monocular visual odometry (SVO) algorithm [3].
This approach does not need user inputs and can recover
from any throw attitude or camera obstruction, but at the
cost of an extra sensor.

Our work also solves TnG without the need for any user
inputs, with any initial attitude or camera obstruction during
the throw, but without any additional sensors other than a
camera and an IMU.

III. SYSTEM OVERVIEW AND APPROACH

Within the scope of this paper we split a conventional
MAV throw into several stages, as shown in Fig. (1).
Similarly our framework can be split up into several
components, representing each throw stage.

We introduce in Fig. 2 the coordinate frames used in our
computation. The world frame W is affixed to the ground,
with the z axis pointing upwards. The camera frame C and
the IMU frame I are rigidly attached to the MAV. We define
a homography frame H static in the world frame, resulting
from a rotation of the first camera frame C0 about its x and y
axis so as to point z upwards. V is the reference VO frame
used in loosely-coupled approaches. qAB is the Hamilton

quaternion modeling the rotation from A to B. ApAB is the
translation from A to B, expressed in A coordinates.

x

y

z

x

y

z
x

y

zx

y

z

x

y

z

qWH

WpWH

qHC

HpHC qCI

qCV

CpCV

W

H I=B

C

V

Fig. 2. Within this paper we use several different coordinate frames. Within
the MAV the two frames for IMU I and Camera C are used, although the
Body frame aligns per our definition with the IMU frame (hence I = B).
The homography frame H is used for simplification while the MAV is
in the air and is defined as the upward rotated first camera frame, hence
H = R(qxy)C0. The vision frame V is used for the VIO framework once
initialized.

Shortly before the throw is detected the attitude observer,
providing us an attitude estimate q̂WB from the IMU
measurements B ă and Bω̆, is started. This is necessary,
as a good attitude estimate is required for mid-air attitude
stabilization. As soon as the throw is detected the attitude
stabilization and recovery starts. Once stabilized, the feature
tracker is started and with it an unscaled MAV pose
calculated. At last, the scaling algorithm derives the metric
scale needed for the VO initialization using the throw
trajectory attributes. A state diagram of our proposed system
is represented in Fig. 3.

The next subsections cover the mathematical approach
used in identifying the gravity vector in visual and inertial
data to first estimate the attitude during the throw, and later
the visual scale during free fall.

A. Attitude observer

The attitude must be controlled as early as possible after
the throw to ensure the camera is pointing at the ground. We
implemented an attitude observer similar to the one proposed



Sensor Framework Throw Recovery Framework Visual Navigation Framework

or
W v̂, q̂WV

λ̂v , q̂WV

IMU
@200Hz

Attitude
Observer

@200Hz

Camera
@30Hz

Tracker
@30Hz

Visual Based
Pose Calculation

@30Hz

≥ 10 Frames

Scale Calculation
1-3 Frames

VO Initialization
3-5 Frames

EKF Initialization
1-3 Frames

VIO Initialization
1-5 Frames

images

B ăk ,Bω̆k

B q̂k

matches

W p̂, W q̂

Tightly-Coupled VIO

Loosley-Coupled VIO

Fig. 3. The state diagram of our proposed framework. It consists of the two sensors camera and IMU with image, angular velocity and linear acceleration
measurements. Once the throw is detected, our framework takes these measurements and calculates the current pose using a homography-based approach.
After detecting a z-velocity change, these pose measurements are scaled metrically and the visual-inertial state-estimation is initialized.

in [13]. In their approach, they split the estimation in a
prediction Bqpred and update Bqcorr part.

Bqpred,k =

(
I4 · cos

(
‖Bω̆k‖∆t

2

)

+
2

‖Bω̆k‖
· Λ(Bω̆k) · sin

(
‖Bω̆k‖∆t

2

))
· q̂k−1

(1)

The prediction is calculated with the zero-th order quaternion
integration shown in Eq. (1). It assumes the body rates are
constant over ∆t. I4 ∈ R4×4 denotes the identity matrix and
Bω̆k is the current gyroscope measurement. ω̆ of vector ω
denotes its raw sensor measurement, ω̂ its estimate. Λ(Bω̆k)
is the skew-symmetric rotation matrix w.r.t. the angular
velocity Bω̆k.

In order to align the predicted attitude estimate with
the corresponding body z direction a correction step is
performed. In general the estimated body z direction
B êz,pred is rotated towards the measured acceleration B ă.
The predicted estimate of body z direction is calculated
by Bêz,pred = R

(
Bqpred

) [
0 0 1

]T
R
(
Bqpred

)−1
. The

quaternion multiplication operator is denoted by⊗.

α = arccos

(
B êz,pred · B ă

‖B ă‖

)
(2)

Bh =
B ă× B êz,pred

‖B ă× B êz,pred‖
(3)

qcorr,k =

[
cos(ccorr · α2 )

Bh sin(ccorr · α2 )

]
(4)

Bq̂k = Bqpred,k ⊗ Bqcorr,k (5)

Note that Eq. (1) can only be calculated if ‖Bω̆k‖ 6= 0.
Otherwise the attitude prediction is kept constant. Further
the update step is only performed if the currently measured
body rates are small, i.e. ‖Bω̆k‖ < 0.5 rad s−1 and
abs

(
‖B ăk‖ − g

)
< 1.5 m s−2.

This attitude observer depends on the update step to
be performed in order to converge. Thus it relies on the
assumption that the accelerometer measures the gravity
direction on average. This is true when being held stationary,
false however when maneuvering or in free fall. Hence
starting the attitude observer mid-air does not yield the
update step being performed. The attitude observer therefore
has to be running throughout the throw. However tests
showed, that starting it just before throwing is enough for
its estimates to be within reasonable margins, i.e. less than
5◦ off the ground truth.

B. Pose Calculation

Once having an attitude estimate we detect the throw with
the current raw acceleration measurement B ă. As soon as the
measurement falls below a certain threshold athresh a throw
is detected. Additionally the idle rotor thrust cidle has to be
taken into account.

‖B ăk‖ < cidle + athresh (6)

When having a successful throw detection and a stabilized
attitude we start our tracker framework. For simplicity, we
describe here how we calculate the camera pose using
homographies computed from frame-to-frame image feature
matches. The homography ground plane assumption is not
intrinsic to our framework and could be lifted by leveraging
more advanced pose estimation techniques using visual and
pre-integrated inertial constraints like in [10]. However, that
causes a complexity cost which was not deemed necessary
by the authors to confirm that identifying the gravity vector
acceleration was a viable solution for TnG.

The homography matrix consists of the rotation, scaled
translation and normal of the plane in sight, Eq. (7) as
presented in [14]. RCk−1Ck

and Ck−1
tCk−1Ck

describe the
camera rotation and translation from the previous image
frame at time step k−1 to the current one at k, respectively.
Cdk−1 is the scene depth from the previous image and Cnk
is the scene plane normal. For simplicity Rk−1,k, tk−1,k,



dk and nk will be used for the above mentioned variables,
respectively. Important to note here is that the translation is
normalized with respect to the current image depth.

Hk = Rk−1,k +
tk−1,k
dk

nT
k (7)

When decomposing the homography matrix however,
we can only derive the normalized, estimated translation
uk−1,k =

tk−1,k

dk
. So the derived translation has an arbitrary

scale, which needs to be determined later on. Moreover,
using the method proposed in [14] at most two pairs of
mathematical possible solutions can be derived for each
homography matrix decomposition Eq (8).

Hk ⇒



{
Ra

k−1,k, u
a
k−1,k, n

a
k

}{
Ra

k−1,k, −ua
k−1,k, −na

k

}{
Rb

k−1,k, u
b
k−1,k, n

b
k

}{
Rb

k−1,k, −ub
k−1,k, −nb

k

} (8)

To eliminate further solutions the physical constraint that
each feature has to lie on the visible plane can be applied.
Without loss of generality, the solutions with negative
z-normals of Eq (8) have hence been removed. This leads
to two different, yet possible solutions.

At this point, we assume to be having an attitude estimate
from our observer. Further, the MAV’s attitude should be
stabilized at this point resulting in a ”stable” fall. Thus
the relative rotation between the last two camera frames
qk−1,k, derived from the homography decomposition, should
be the same as the estimated rotation difference in the
world frame, q̂−1WCk−1

⊗ q̂WCk
. Since both quaternions are

normalized we can use their scalar product to determine
which decomposition is closer to 1, meaning equality, as
seen in Eq (9).

min
i

{
abs

(〈
q̂−1WCk−1

⊗ q̂WCk
,qik−1,k

〉)
− 1

}
(9)

C. Scaling

We already explained the scaling issue when decomposing
the homography matrix. However, for the filter framework
initialization, we need the metric scale of our system. As
already discussed each decomposed translation uk−1,k has
an arbitrary scale or current scene depth dk. Also, each
homography decomposition might have its own scale. Since
we do not track the same features over several frames, even
these scale values might not depend directly on each other.
We, therefore, propose a normalization of the scale to our
initial depth guess with which we will be able to propagate
the position. By defining our system this way not only do
the depths become dependent on each other but further,
the camera’s position can be propagated. Furthermore, both
become correct up to a single metric scale, which can be
stated as the offset of our initial guess.

Assuming the previous scene depth is known, the current
depth can be computed by projecting the translation onto the
normal of the plane, Eq. (10).

dk−2

nk−2

dk−1

nk−1

tk−2,k−1

Rk−2,k−1

dk

nk

tk−1,k

Rk−1,k

−
(
R

−1
k−1,k

tk−1,k
)Tnk

Fig. 4. The homography decomposition and pose propagation for a sample
throw trajectory shown in gray. Rk−1,k and tk−1,k , short for RCk−1Ck

and Ck−1
tCk−1Ck

, refer to the rotation and translation from the previous
camera frame Ck−1 to the current camera frame Ck , respectively, nk

describes the plane normal as seen in the current camera frame Ck
nk and

dk is the current scene depth. Values directly derived from the homography
decomposition are in red, indirectly derived ones in blue and computed ones
in green.

dk = dk−1 + tTk,k−1 nk (10)

tk−1,k = −Rk−1,k · tk,k−1 (11)

Combining Eq. (10) and (11) the current scene depth can
then be derived, Eq. (12).

dk =
dk−1

1 +
(
R−1k−1,k · uk−1,k

)T
nk

(12)

We can then use the current scene depth to derive the
unscaled translation and propagate the MAV position within
the homography frame. By designing our system this way,
all homography decomposition become dependent of each
other as Eq. (13) depicts.

Hpk = Hpk−1 + RHCk−1
uk−1,k dk (13)

In order to reduce the image noise of the homography
decomposition, we apply a linear-least-square (LLS)
optimization. A parabola model as shown in Eq. (14) is used
since any throw or drop without external influences can be
described by it.

Hp(t) = Hp(t0) + t · Hv(t0) + t2 · Ha(t0)

2
(14)

For each instance of the homography decomposition
Eq. (14) can be applied. Thereby we derive the system by
Eq. (15), which can be written in the form of Y = β̂X.



Property Name Value

Image noise npx 1 px

IMU acceleration noise na 0.0083 m/s2

IMU gyroscope noise nω 0.0013 rad/s

IMU acceleration bias ba 0.00013 rad/s2

IMU gyroscope bias bω 0.00083 m/s3

Image Resolution resIMG 640× 480 px

RNASAC px threshold thpx 1 px

Max. Features ftmax 400
Min. Matches mmin 200
Max. Iterations itmax 2000

TABLE I
Values used for simulating our proposed framework. Please note that the

noise and bias random walk refer to the standard deviation of a zero-mean
based Gaussian distribution.

Hp(t1)
T

...
Hp(tn)

T

 =In×1 Hp(t0)
T

+

t1...
tn

 hv(t0)
T +

t
2
1

...
t2n

 Ha(t0)
T

2

(15)

Hence the estimated factors β̂ of our system can be
computed with the LLS optimization method of Eq. (16).
The aim of this operation is to estimate the initial throw
parameters β̂.

β̂ =

 H p̂(t0)T

H v̂(t0)T
1
2 H â(t0)T

 =
(
XTX

)−1
·
(
XTY

)
(16)

In our current system definition, all camera positions are
dependent on the first choice of the scene depth. Thus all
position propagations are off metric by the same scale λ. By
using simple differentiation rules, it can further be shown
that even the camera’s velocity and acceleration are off their
metric value by this scale.

Wp(t) = λ
(
ez d0 +RWH Hp(t)

)
(17)

Wv(t) = λRWH H ṗ(t) = λRWH Hv(t) (18)

Wa(t) = λRWH H p̈(t) = λRWH Ha(t) (19)

Moreover, while in free fall the acceleration of the MAV
does not change. It is known to be gravity subtracted by the
idle motor thrust cidle. Hence the scale of our system λ can
be derived by comparing the estimated acceleration Ha to
gravity Wg.

Wa = RWH

(
λH â(t0)

)
= Wg (20)

IV. EXPERIMENTAL SIMULATION

To verify our proposed initialization algorithm we
initially simulated the framework in MATLAB. Within our
simulation, we dynamically generated features to compute
scaled position and velocity. We further added realistic

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time after Throw Detection [s]

0

0.5

1

1.5

2

2.5

3

H
e
ig

h
t 
[m

]

Scale Calculation Comparison

Earliest

Vertex

Vertex + TOFF

Latest

Ground Truth

Fig. 5. The scale and scene depth was calculated at different times in
simulation to derive the optimal time. This figure compares a sample throw
trajectory (green) to different possible calculation points: after 3 frames
(orange), at the parabola apex (violet), 0.1 s (or tOFF) after the parabola
apex (pink), and shortly before hitting the ground (green). Please note that
we did not simulate any MAV control. As a result the height propagations
diverge when getting close to the ground as good visible features get rarer.

Fig. 6. Comparison of simulated scaled height propagation to our
set margins of 20 % of the ground truth height (orange dotted). At
approximately 0.68 s the propagations start to diverge as the MAV is
getting close to the ground. This gives us an upper time limit for the VIO
initialization and MAV control takeover, with the lower boundary being the
time of scale calculation (green area).

noise and bias values to our measurements to complete the
simulation. The maximum standard deviation used for each
value is shown in Table I. The goal of this experimental
simulation was to confirm that scaling the scene depth and
thus the homography decompositions with a gravity-based
approach is possible.

The only force acting on the copter once thrown is gravity.
Hence we used a parabola model for the throw trajectory as
described in Eq. (14). As initial conditions a starting height
of 0.8 m and an initial velocity of v0 =

[
1, 1, 5

]
m s−1 were

used. In addition minor attitude changes, with up to 20◦

before being stabilized and up to 5◦ after being stabilized
were added to reflect real-world behavior.

To determine the robustness of our approach regarding the
time of scale calculation we tested our proposed algorithm on
several different simulations. An example of such a run can



be seen in Fig. 5. We generally compared the following scale
computation times: after the minimum three required frames
for acceleration calculation, at the apex of the trajectory, and
shortly before reaching the ground. Due to the fact that in
real-world scenarios it is very unlikely to detect the apex
of a parabola perfectly, as a result of the discrete frame rate
and computation times, we additionally opted to evaluate the
scale computation at 0.1 s after reaching the apex.

As expected, simulation showed us that both calculations
done around the apex of the trajectory yield feasible results.
As shown in Fig. 6 both of them lay within our set 20 %
off ground truth margins. They further remain within said
margins and remain within them for most of the remainder
of the throw. Please note that the simulated MAV is not
controlled at this point and the vision based approach fails
at approximately 0.68 s when getting close to the ground, as
unique features get rarer. We further confirmed, that using
the calculated scale a propagation of the MAV height was
possible using the visual pose calculations. These results
show that for a near ideal throw we would have at least
0.5 s for the VIO initialization and control takeover.

V. REAL-WORLD RESULTS

This section covers our experimental, real-world setup and
results of our proposed framework.

A. Implementation

We already explained that our system could be used to
initialize loosely as well as tightly coupled VIO frameworks.
For simplicity we chose to use a slightly modified version of
the open-source VO SVO [3] in combination with the sensor
fusion framework presented in [15]. Most of our changes to
the publicly available source code involved minor speedup
optimization.

To speedup the initialization, we removed the feature
triangulation within the SVO initialization process. Instead
we directly provided the transform from our homography
computation to SVO. Moreover, as soon as the visual
front-end was initialized, the EKF was started. The
corresponding state-vector of this framework is described in
Eq. (21). It includes the MAV position, velocity and attitude
expressed in the world frame, the biases for the accelerometer
and gyroscope, the visual scale and the extrinsic camera to
IMU calibration.

X =
[
pWB , vWB , qWB , bω, ba, λv, pBC , qBC

]
(21)

Here the initial position and attitude for pWB and qWB

are chosen according to our current MAV world position,
estimated with our framework. Similarly the current velocity
vWB is derived. The biases bω and ba are initialized
with similar values to Tab I, whereas the camera to IMU
translation and rotation, pBC and qBC , are known from
calibration. Important to note is that the visual scale λv
within the EKF framework is not equal to our derived scale
λ. Instead the visual scale λv depends on the distance to the
feature plane of the visual framework V df . Using Eq. (17) the

0 1 2 3 4 5 6 7

Time after Throw Detection [s]

0

0.5

1

1.5

2

2.5

H
e
ig

h
t 
[m

]

Height Estimation

Scale Estimation

Height Propagation

Prescale Height Estimation

Ground Truth

Fig. 7. The estimated height computed and propagated with our
algorithm, compared to the ground-truth provided by Optitrack. After the
throw is detected the unscaled height is derived from the homography
decompositions (blue dashed). The metric scale is then estimated shortly
after the throw apex and height propagation continues with the newly derived
metric scale. At approximately 1.15 s the external, manual MAV is started.
Although this leads to altitude changes, the propagated height is still able
to follow the ground truth for several more seconds, before the MAV lands
at approximately 7.5 s, at which point the propagation fails.

conversion from one scale to the other can be derived. Hpz
is the MAV height described in the homography H frame.

λv =
V df

Wh
=

V df

λ ·RWH Hpz
(22)

B. Setup

We implemented our system on a octacore @2 GHz
ODROID-XU4 mounted on an Asctec Hummingbird. As
visual sensor we used a mvBlueFox-MLCw with a resolution
of 752× 480 px. This setup allows us to have a lightweight,
very agile MAV, fast enough to respond and stabilize when
thrown. Moreover we designed our framework to work with
an IMU update rate of 200 Hz and a camera image frame
rate of 30 FPS.

Currently we select the throw threshold athresh, Eq. (6),
with 1 m/s2. Tests further showed, that the idle thrust
is on average below 0.5 m/s2, hence cidle is set to that.
The implemented feature tracker and matcher uses a FAST
Lucas-Kanade approach with the same values as in our
simulation (see Tab. I). Similarly we used a RANSAC
based approach for the homography decomposition with
the simulation values for maximum iterations and pixel
re-projection threshold. The planar assumption made earlier
using the homography for simplicity often holds indoors.
Tests showed that small, static objects with an elevation
of less than 10 % of the scene depth still allow the planar
assumption in our framework. For outdoor usage, this signals
that our approach may be valid at higher altitude with respect
to the objects on the ground, e.g. MAV drops from balloon
or tall buildings.

C. Results

Using the above provided implementation and setup we
threw the copter. A sample of such a throw is depicted in
Fig. 7.

Although using a simple homography based framework,
which ran without complications at 30 Hz on our Laptops,



Fig. 8. The mean height error and its standard deviation for 10 throws. The
scale is calculated just after 0.7 s and the external, manual control starts at
approximately 1.15 s. As can be seen the propagated height error on average
remains quite stable within our set limits of ±20 % until the manual control
starts.

the Odroid was on its computational limit. Trying to run
both SVO and our framework simultaneously yielded in
longer computation times. This in turn meant fewer evaluated
images per second which in turn decreased the amount of
data points for our LLS based scale estimation leading to
an increased computed scale and homography decomposition
error. As a result we opted to use an external, manual control
instead to show that our approach could still be used to
estimate the scaled height and continue propagating it with
the decomposed homography.

Fig. 7 shows free-fall and manual control takeover of the
thrown MAV, with the latter one starting at approximately
1.15 s after throw detection. As can be seen our framework
was able to scale correctly a little after the apex of the
trajectory. Moreover, it was able to continue propagating
the height estimates quite accurately although still having
altitude changes present. This shows us to that a VIO
initialization dependent on the current metric height is
possible with our proposed approach. We further noted, that
the on-going correct height propagation provides sufficient
time to initialize the VIO framework once the control has
started.

What is more, the mean scale and propagation error for
our throws remained within our set limits for the duration
of the free-fall, as seen in Fig 8. However, as soon as the
MAV control starts at approximately 1.15 s the average error
increases. We derived that this is due to the initial thrust
experienced by the MAV, which can cause quite some image
blur. This leads to the motivation to initialize the scale of the
VIO framework within the period of free fall.

VI. CONCLUSIONS

With this paper, we provided a new way for initializing a
VIO MAV framework with TnG. We showed that, while in
free fall, it is possible to get a sufficiently good estimation
for modern VIO system-initialization using our homography
based IMU supported approach.

Compared to state-of-the-art, our approach does not need
specific assumptions, additional sensors, or an initial guess.
All information, including the gravity direction used for
subsequent attitude alignment, can be derived from and
during the process of the throw. A single camera and IMU are
thus sufficient to enable unprepared throw-and-go capability
on an MAV.

REFERENCES

[1] S. M. Ettinger, M. C. Nechyba, P. G. Ifju, and M. Waszak,
“Vision-guided flight stability and control for micro air vehicles,”
Advanced Robotics, vol. 17, no. 7, pp. 617–640, 2003.

[2] G. Klein and D. Murray, “Parallel tracking and mapping for small ar
workspaces,” in Mixed and Augmented Reality, 2007. ISMAR 2007.
6th IEEE and ACM International Symposium on, pp. 225–234, IEEE,
2007.

[3] C. Forster, M. Pizzoli, and D. Scaramuzza, “SVO : Fast Semi-Direct
Monocular Visual Odometry,” in IEEE International Conference on
Robotics and Automation, 2014.

[4] C. Forster, Z. Zhang, M. Gassner, M. Werlberger, and D. Scaramuzza,
“SVO: Semidirect Visual Odometry for Monocular and Multicamera
Systems,” IEEE Transactions on Robotics, vol. PP, no. 99, 2016.

[5] S. Weiss and R. Siegwart, “Real-time metric state estimation for
modular vision-inertial systems,” in Proceedings - IEEE International
Conference on Robotics and Automation, pp. 4531–4537, 2011.

[6] M. Li and A. I. Mourikis, “High-precision, consistent EKF-based
visual-inertial odometry,” The International Journal of Robotics
Research, vol. 32, no. 6, pp. 690–711, 2013.

[7] A. I. Mourikis and S. I. Roumeliotis, “A multi-state constraint Kalman
filter for vision-aided inertial navigation,” in Proceedings - IEEE
International Conference on Robotics and Automation, pp. 3565–3572,
2007.

[8] M. Bloesch, S. Omari, M. Hutter, and R. Siegwart, “Robust visual
inertial odometry using a direct EKF-based approach,” in IEEE
International Conference on Intelligent Robots and Systems, 2015.

[9] V. Usenko, J. Engel, J. Stückler, and D. Cremers, “Direct visual-inertial
odometry with stereo cameras,” in 2016 IEEE International
Conference on Robotics and Automation (ICRA), pp. 1885–1892,
IEEE, 2016.

[10] T. Qin, P. Li, and S. Shen, “VINS-Mono: A Robust and Versatile
Monocular Visual-Inertial State Estimator,” 2018.

[11] S. Weiss, R. Brockers, S. Albrektsen, and L. Matthies, “Inertial optical
flow for throw-and-go micro air vehicles,” in Proceedings - 2015 IEEE
Winter Conference on Applications of Computer Vision, WACV 2015,
pp. 262–269, 2015.

[12] S. Weiss, R. Brockers, and L. Matthies, “4DoF drift free navigation
using inertial cues and optical flow,” in IEEE International Conference
on Intelligent Robots and Systems, pp. 4180–4186, 2013.

[13] M. Faessler, F. Fontana, C. Forster, and D. Scaramuzza, “Automatic
re-initialization and failure recovery for aggressive flight with a
monocular vision-based quadrotor,” in Robotics and Automation
(ICRA), 2015 IEEE International Conference on, pp. 1722–1729,
IEEE, 2015.

[14] E. Malis and M. Vargas, “Deeper understanding of the homography
decomposition for vision-based control,” Research Report RR-6303,
INRIA, 2007.

[15] S. Weiss and R. Siegwart, “Real-time metric state estimation for
modular vision-inertial systems,” in Proceedings - IEEE International
Conference on Robotics and Automation, pp. 4531–4537, 2011.


