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Abstract— In this paper, we present a Radar-Inertial Odom-
etry (RIO) approach that utilizes performance improving mod-
ules, enhanced for the sparse and noisy radar signals, from
the vision community in order to estimate the full 6DoF pose
and 3D velocity of a robot in an unprepared environment. Our
method leverages a multi-state approach in which we make use
of several past robot poses and trails of measurements from a
lightweight and inexpensive Frequency Modulated Continuous
Wave (FMCW) radar sensor. Furthermore, in our estimation
framework we include a method for promoting measurement
trails to persistent landmarks which correspond to salient
features in the environment. In an Extended Kalman Filter
(EKF) framework, we fuse the range measurements to the
persistent landmarks, trails, and the velocity measurements of
the detected 3D points together with the Inertial Measurement
Unit (IMU) readings. Our method is particularly relevant for
(but not limited to) Unmanned Aerial Vehicles (UAV), enabling
them to localize while performing missions in Global Navigation
Satellite System (GNSS)-denied environments and, thanks to
the properties of the radar sensor, in environments generally
challenging for robot perception due to external factors such
as smoke or extreme illumination. We show in real flight
experiments the effectiveness of our estimator and compare
it to the state-of-the-art.

I. INTRODUCTION AND RELATED WORK

Accurate odometry estimation is a prerequisite for the

autonomous operation of a robot in GNSS-denied and unpre-

pared environments. Unmanned (aerial) vehicles can perform

autonomous missions in such environments while possibly

dealing with the external factors rendering their perception of

those environments even more challenging. Such factors may

include extreme lighting conditions or presence of aerosols in

the air such as fog or smoke. In such scenarios the robustness

of the used sensors is of paramount importance.

In the light of environmental resilience requirements, a

sensor suite composed of an FMCW radar and an IMU raises

an increasing interest in the UAV research community to

form the backbone of the localization system.

FMCW radar does not suffer from the above-mentioned

environment-induced issues [1] yet it is small in size and

deliver measurements at higher or similar frequencies as

other sensors commonly used for navigation. Radars report

distance, Doppler velocity, and to a limited extent angular

measurements of reflecting points in the environment. They

have been thrivingly used in automotive industry [2], [3], [4].

Millimeter-wave technology triggered their miniaturization
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Fig. 1. Experimental platform used in this work with the FMCW radar
sensor and the indoor space where the experiments were conducted. Note the
mounting of the sensor tilted at 45° angle. Reflective clutter was scattered
randomly on the scene. No global position (nor attitude) information of any
sort about scattered objects was used in our approach.

and increased their accuracy which prompted their appli-

cation on UAVs as sensors used for correcting IMU drift

acquired during integration.

In [5] the authors present a nonlinear optimization based

approach in which a cost function is minimized over a

moving window of past IMU and FMCW radar Doppler

velocity measurements to estimate the ego-velocity of an

UAV. The demonstrated method is shown to be effective in

conditions challenging for Visual-Inertial Odometry (VIO),

nevertheless, it does not allow for precise full 6DoF pose es-

timation. Authors in [6] and [7] describe an approach, where

no data association between consecutive radar pointclouds is

needed, only Doppler velocities of points in the current scan

are used. Significant drift in the estimates computed with

these methods is countered by using a barometer sensor. In

[8], the two aforementioned methods are further developed

by making use of the Manhattan world assumptions on the

environment to limit the yaw angle drift. These assumptions

render the demonstrated method to perform on-par with

VIO. A number of other odometry methods are reported

in which a high-resolution, mechanically rotating radar is

used in automotive context. In [9] a deep learning based

method is outlined, which enables the prediction of robust

features in radar scans. The features are subsequently used to

calculate the relative transform between the scans. Another

work making use of deep learning for feature detection

but this time combining it with the probabilistic trajectory

estimation is shown in [10]. In [11] a featureless approach



employing the Fourier-Mellin transform is used to estimate

from an entire radar scan the robot translation and rota-

tion. The authors of [12] propose an approach in which

local geometrical relationships of detected consecutive radar

pointclouds are leveraged in features association. In [13] the

authors robustify the feature extraction scheme shown in [12]

by including prior assumption on the robot motion to reject

outliers. In both methods Singular Value Decomposition

(SVD) is used to estimate the transform between the scan

poses from the features. [9], [10], [11], [12], [13] make

use of bulky and expensive mechanically rotating radar not

readily applicable on a UAV. In [14] the authors adapt the

scan matching method from [12] to a lightweight FMCW

radar showing promising results when fused in loosely-

coupled fashion with IMU, applied however, on a mobile

platform slowly moving over a flat scene, which reduces the

complexity of the scenario as compared to an UAV. In [15],

the authors outline an effective EKF-based tightly-coupled

RIO approach in which a single past robot pose is used to

align two consecutive pointclouds, from which matched 3D

points are used for update together with Doppler velocities.

In the present paper, we significantly reduced the final

drift (by a factor of 4 in average) and increased the accuracy

(in terms of Mean Absolute Error (MAE) by a factor of

2) of RIO compared to the single-frame approach described

in [15] and demonstrate it in real flights. To this end, we

employ the stochastic cloning [16] for augmenting the state

with a chosen number of past robot poses and corresponding

radar scans (3D pointclouds) in a First In First Out (FIFO)

buffer from which measurement trails are constructed. Trails

matched consistently over a given amount of time are pro-

moted to persistent landmarks and added to the state vector.

In addition to these distance measurements to landmarks and

trails, we also use Doppler velocity of points from the current

radar scan. We fuse all measurements in a tightly-coupled

formulation in our EKF setup. The tight coupling permits

the integration of single distance and velocity measurements

during update steps. This property obviates any limitations

on required minimal number of matches (as it is e.g., needed

for a prior Iterative Closest Point (ICP) and subsequent loose

coupling of the resulting delta-pose in the EKF). This is

a particularly strong advantage in view of robustness and

accuracy over loosely coupled approaches since, e.g., ICP

[17] works poorly on noisy and sparse FMCW radar point

clouds. Note that our RIO method makes no assumptions

on the environment and makes use of no other sensors

than IMU and a lightweight millimeter-wave FMCW radar

providing sparse and noisy 3D point clouds along with

Doppler velocities of the detected points. It is suitable for

a UAV and real-time capable. Our main contributions are:

• Application of stochastic cloning for inclusion of mul-

tiple past robot poses used for formulating an update

equation on the accurately measured distances to mul-

tiple points in radar measurement trails.

• Implementation of persistent radar landmarks for in-

creased estimation accuracy reducing global pose drift

by a factor 4 in average compared to state-of-the-art.

• Past radar feature matching and efficient trail genera-

tion/handling for using past measurement-trails.

• Comparison against current methods [15], [6] and [7]

using similar setup in real-world flight experiments.

Note that the leveraged techniques from the vision com-

munity [18], the sparse and noisy radar 3D (versus 2D in

vision) measurements require important enhancements. This

includes a different definition and treatment of 3D instead of

2D trails, a measurement definition along the most precise di-

mension of the sensor (i.e., radial distance), and the inclusion

of Doppler velocity measurements. On the other hand, the

multi-state approach for radar inherently handles hovering

situations where the 2D vision measurements require special

treatment. This paper is organized as follows. Section II

introduces the preliminaries of our work. In subsection II-

A we introduce the notation used, the system overview in

subsection II-B. In section III we describe our RIO method.

Subsection III-A outlines how the state vector and covariance

matrix of our system are augmented using stochastic cloning.

Subsection III-B describes how measurement trails are used

in the update step. Subsection III-C explains how persis-

tent landmarks are implemented and used for update. We

summarize our estimator in subsection III-D. Experiments

conducted in order to validate the proposed method are

outlined in Section IV. In subsection IV-A we report the

experimental setup used during the experiments and the

subsection IV-B presents the results of the evaluation. Finally,

we present conclusions in Section V.

II. PRELIMINARIES

A. Notation

We use the generally known notation for the easier fol-

lowing of the paper. A normally distributed multivariate

variable is defined as Xi ∼ N (xi,Σii), with a mean xi and

covariance (uncertainty) Σii, which is called the belief of i.

Due to the symmetry property of covariances, we abbreviate

lower triangular elements by a {•}. Names of reference

frames are capitalized and calligraphic, e.g., {I} for IMU.

A pose between the reference frames A and B is defined

as ATB =

[

ARB
A
ApB

0T 1

]

∈ SE(3) , with R ∈ SO(3) and

p ∈ R
3. The transformation of a coordinate vector C

CpP1

pointing from the origin of the reference frame C to a point

P1, expressed in C, can be transformed into the frame A

by

[

A
ApP1

1

]

= ATC

[

C
CpP1

1

]

(read as
from

in x to). Rotations

are stored as unit quaternion q̄ ∈ SO(3) with ∥q̄∥ = 1
allowing a direct mapping between rotation matrices and unit

Hamiltonian quaternions by ARB = R
{

Aq̄B

}

∈ SO3 and
Aq̄B = q̄

{

ARB

}

[19]. I is the identity matrix. The a priori

and a posteriori of a belief are indicated by a {•}(−) and

{•}(+), respectively. {•}# specifies measured (perturbed)

quantities. For vectors and block matrices, semicolons and

colons improve the readability such that [A;B] ≡

[

A

B

]

and

[A,B] ≡
[

A B
]

.



B. System Overview

Our RIO method is based on an error-state EKF for-

mulation [20] which uses an IMU as the primary sensor

for the state propagation. Updates are performed with the

FMCW radar measurements, which consist of sparse and

noisy 3D pointclouds and relative radial velocities of detected

points. The principle of sensing of the radar we use is

explained briefly in [15]. Every time a radar measurement

is obtained, we augment the state of our EKF filter with

the pose of the robot at which the measurement took place

using stochastic cloning as described in Section III-A. New

poses are appended to the buffer of past poses in a FIFO

fashion. The maximum number of cloned poses is defined

by the parameter N . From taken measurements, we construct

and maintain a set of trails which record the continuous

detectability of 3D points by the radar sensor, which have

maximum trail length N . Meaning that, every matched point

keeps a history of its detected positions and every element

of this history refers to a cloned robot pose at which the

detection was taken. Such a point with a history of detections

is referred to as a trail and it is kept in memory as long as it is

actively matched to a point in the current scan following our

sparse radar pointcloud matching method described in [15].

If it is not matched, it is inactive and thus removed. For

3D point matching, we use the latest detection of each trail

along with the robot pose at which it was taken, together with

the pose at which the current scan was taken. Specifically,

we use these two poses to spatially align the current radar

scan with the trails and trigger the matching procedure on

such aligned matches. Once matched, the whole trail history

is used to form the residual vector in the EKF update.

Next, we use projections of the current robot velocity onto

normal vectors to all points detected in the current radar scan

together with their measured velocities to further augment

the residual vector. The final component of the residual

vector comes from using persistent landmarks. Namely, in

the case a trail has been continuously seen for N times, it is

removed from the set of trails, added to the state vector as

persistent landmark and matched to the detections. Residual

vectors are then used in the update step to estimate the mean

of the error-state, which is injected into the regular state.

The coordinate frames arrangement for measurements in our

system is shown in Fig. 3.

III. MULTI-STATE RADAR-INERTIAL STATE ESTIMATION

WITH PERSISTENT LANDMARKS

The state vector x in our filter is defined as follows:

x = [xI ;xC ;xL] =
[ [

GpI ;
Gq̄I ;

GvI ;ba;bω

]

;
[

GpI1
; Gq̄I1

; . . . ; GpIN
; Gq̄IN

]

;
[

GpL1
; . . . ; GpLM

] ]

(1)

with the IMU state xI , the stochastically cloned states

xC of the IMU poses corresponding to the previous radar

measurements as described in Section III-A and the set

of persistent landmarks xL as described in Section III-C.

The previous radar measurements (point cloud of reflecting

objects and their Doppler velocities) are not part of the

X

trail 1

trail 2

trail W

*

Fig. 2. Measurement trails used to record a history of detections. The green
star marks a trail that was classified as a persistent landmark. X means that
the trail W has not been matched to any point in the current scan at tc and
will thus be deleted. Dot in each trail is a single past detection. As shown
below time instant t, points in the trail have associated cloned robot poses
at which the measurements were taken.

Fig. 3. Multiple consecutive past UAV poses are used in the distance
measurements models employing persistent landmarks and trails of mea-
surements. In the velocity measurement model, only the readings from the
current pose are used.

state vector. GpI , GvI , and Gq̄I are the position, velocity,

and orientation of the IMU/body frame {I} with respect

to the navigation frame {G}, respectively. bω and ba are

the measurement biases of the gyroscope and accelerometer,

respectively.
[

GpIn
, Gq̄In

]

with n = 1, . . . , N define a set

of past IMU poses with respect to the navigation frame {G}
at the moments of past radar measurements. GpLm

with

m = 1, . . . ,M define the position of persistent landmarks

{L} with respect to the navigation frame {G}. We use
[

GpI1
, Gq̄I1

]

(corresponding to the newest coordinates of

the trails) for ad-hoc point correspondence generation such

that we do not need to keep 3D points in the state vector in

order to use distance based measurements (Section III-A).

The evolution of the state is expressed by the following

differential equations:

GṗI = GvI ,

Gv̇I = GRI

(

Ia
# − ba − na

)

+ Gg,

GṘI = GRI

[

Iω
# − bω − nω

]

×
,

ḃa = nba
, ḃω = nbω

, GṗIn
= 0, GṘIn

= 0,

GṗLm
= 0

(2)

where n = 1, .., N refers to the most recent past IMU

poses which are not changing in time, m = 1, ..,M refer

to M most recent estimated positions of landmarks, Ia
#



and Iω
# are the accelerometer and gyroscope measurements

of the IMU with a white measurement noise na and nω .

nba
and nbω

are assumed to be white Gaussian noise to

model the bias change over time as a random process. The

gravity vector is assumed to be aligned with the z-axis of

the navigation frame Gg = [0, 0, 9.81]
T

.

Since we use an error-state EKF formulation we introduce

the error state vector from the states defined in Equation (1):

x̃T = [x̃I ; x̃C ; x̃L] =
[ [

Gp̃I ;
G
θ̃I ;

GṽI ; b̃a; b̃ω

]

;
[

Gp̃I1
; G θ̃I1

; . . . ; Gp̃IN
; G θ̃IN

]

;
[

Gp̃L1
; ...; Gp̃LM

]

]

(3)

For translational components, e.g., the position, the error is

defined as Gp̃I = Gp̂I−
GpI , while for rotations/quaternions

it is defined as ˜̄q = ˆ̄q−1 ⊗ q̄ =
[

1; 1
2 θ̃

]

, with ⊗ and θ̃

being quaternion product and small angle approximation,

respectively.

A. State Augmentation

In order to process relative measurements relating to es-

timates at different time instances, Roumeliotis and Burdick

introduce the concept of Stochastic Cloning (SC) in [16].

To appropriately consider the correlations/interdependencies

between the estimates from different time instances, an

identical copy of the required states and their uncertainties

is used to augment the state vector and the corresponding

error-state covariance matrix. Given the error-state definition

in Equation (3), x̃C is defined as the error state of the

stochastic clone of the IMU pose
[

GpI ;
GqI

]

. As the newest

cloned state is fully correlated with the IMU pose and

remaining cloned states are correlated with each other, it

leads to the following augmented covariance matrix of the

corresponding error-state:

x̃ = [x̃I ; x̃C1
; . . . ; x̃Cn

; x̃L] , (4)

Σ =















ΣI ΣIC1
· · · ΣICn

ΣIL

• ΣC1
· · · ΣC1Cn

ΣC1L

• •
. . .

...
...

• • • ΣCn
ΣCnL

• • • • ΣL















(5)

with ΣI being the 15× 15 uncertainty of the IMU error-

state x̃I . ΣL is the 3M × 3M uncertainty of a set of M

landmark error-states x̃L = [x̃L1
; . . . ; x̃Lm

]. ΣC1
= ΣI{p̃,θ̃}

is the 6× 6 uncertainty of the newly cloned IMU pose error

state (which is fully correlated, thus ΣIC1
= ΣII{p̃,θ̃}

). All

cross-covariances of the current IMU pose are assigned to

the cross-covariances of the newly cloned state: ΣC1Ci
=

ΣI{p̃,θ̃}Ci
with i = 2, . . . , n and ΣC1L = ΣI{p̃,θ̃}L

. ΣCn
is

the 6× 6 uncertainty of the oldest cloned IMU pose. ΣCiCj

is the cross-correlation between i-th and j-th cloned IMU

pose, ΣICi
is the cross-correlation between the current IMU

state and the i-th cloned IMU pose, and ΣCiL are the cross-

correlations between the IMU poses and the landmarks.

The cloned poses and landmarks do not evolve with time,

meaning no state transition (i.e., Φ
k+1|k
Cn

= I with n =

1, ..., N and Φ
k+1|k
Lm

= I with m = 1, ...,M ) and no process

noise (i.e., G
k+1|k
C = 0 and G

k+1|k
L = 0) is applied, while

the navigation states evolve with the IMU measurements.

The linearized error state propagation can be derived as:

x̃k+1 = Φk+1|kx̃k +Gk+1|kwk,




x̃k+1
I

x̃k+1
C

x̃k+1
L



 =







Φ
k+1|k
I 0 0

0 Φ
k+1|k
C 0

0 0 Φ
k+1|k
L











x̃k
I

x̃k
C

x̃k
L





+







G
k+1|k
I

G
k+1|k
C

G
k+1|k
L






wk

=





Φ
k+1|k
I 0 0

0 I 0

0 0 I









x̃k
I

x̃k
C

x̃k
L



+





G
k+1|k
I

0

0



wk

(6)

with the linearized state transition matrix Φ and the lin-

earized perturbation matrix G computed as explained by

Weiss in [21] or related work. The full error-state uncertainty

of Equation (5) can then be propagated as

Σk+1 = Φk+1|kΣk(Φk+1|k)T +Gk+1|kQk(Gk+1|k)T

=





Σk+1
I Φ

k+1|k
I Σk

ICI Φ
k+1|k
I Σk

ILI

• Σk
C Σk

CL

• • Σk
L





(7)

with Q being the discretized process noise matrix and

Φ
k+1|k
I the error-state transition matrix of the IMU error-

state x̃I . This propagation allows us to rigorously reflect the

cross-correlations between the landmark, the cloned states,

and the evolved IMU states in our error-state formulation.

The above described formalism enables us to correctly use

the state variables in order to align the trails to the current

scan prior to point matching as well as compute residuals

during the update.

B. Multi-State Update With Measurement Trails

Given a set of matched 3D point-trails as in the Fig. 2,

we now want to estimate the distances to the matched points

in the current scan across all points contained in the trails

history. For a single matched trail, using cloned poses in the

buffer, we transform all points Rp
tp
Pj

from the trail history

at time instance tp, where p = 1, . . . , V and V is the length

of the matched trail, to the current radar reference frame,

considering the robot’s spatial evolution:

Rp′tp
Pj

=IRT

R

(

−I
IpR + (GRtc

I )T
(

−Gptc
I +

Gp
tp
I + GR

tp
I

(

I
IpR + IRR

Rp
tp
Pj

))) (8)

where IRR and IpR is the constant pose (orientation and

position) of the radar frame with respect to the IMU frame.
GR

{tc,tp}
I and Gp

{tc,tp}
I are the IMU orientation and position

corresponding to the trail history element at time tp and

current radar scan at tc, with respect to the navigation

frame {G}. Similarly to [15], we transform the 3D point

from Cartesian space to Spherical coordinates and only use



the most informative dimension, the distance for residual

construction.

The estimated distance, which is compared to the current

distance measurement, is calculated for each point in the trail

history as the norm of the transformed point from tp:

dPj
=

∥

∥

∥

Rp′tp
Pj

∥

∥

∥
(9)

where dPj
is the distance to a single point in the matched

trail history Rp′tp
Pj

at tp aligned to the current radar pose

at tc. Since this measurement relates to states from past

time instances, stochastic cloning is necessary as introduced

in Section III-A.

C. Update With Persistent Landmarks

When a trail has been continuously matched for a pre-

defined amount of times in the past, it is promoted to a

persistent landmark and added as such to the state vector.

Specifically, after each update, the set of trails is scanned

for elements which have been matched consecutively for N

times. When a trail meets this criterion, it is used to initialize

a persistent landmark in the state vector and the covariance

matrix is augmented according to [22]. For convenience, we

introduce xD = [xI ;xC ]. Blocks needed for augmenting the

state vector and error-state covariance are shown in the Fig. 4

and are computed as:

Fig. 4. Augmented nominal state and error-state covariance after adding
a persistent landmark.

Σl = HDΣDHT

D +HlRHT

l , (10)

Σlx = HDΣDx (11)

with ΣDx = [ΣD,ΣDL], and ΣDL being the cross-

covariance between the IMU and IMU clones error-state

vector segment, and the persistent landmarks. R is the

covariance matrix of the measurement noise, HD = ∂p
∂x̃D

and

Hl =
∂p

∂ l̃
are the Jacobians of the inverse observation model

of a 3D point radar measurement, p (Eq. 12), with respect to

the IMU and IMU clones error-state variables x̃D, and the

newly added landmark l = xLM+1
, respectively. The inverse

observation model of the 3D radar point in the navigation

frame {G} is expressed as:

G
GpLm

= p (x, z) = GRI

(

IRR
R
RpLm

+ I
IpR

)

+ G
GpI

(12)

with IRR and I
IpR being the pose between the IMU and

radar sensor (which is assumed to be rigid and known a-

priori), R
RpLm

is the radar observation of the trail point in

the current radar reference frame {R} with which an m-

th landmark will be initialized, and GRI and G
GpI being

the current pose of the IMU in the navigation frame. For

readability, the estimate of the m-th landmark is abbreviated

by lm = G
GpLm

.

When a persistent landmark does not have a match within

the current radar scan, then it is discarded from the state

vector and the covariance matrix is shrunk accordingly.

Finally, the estimated distance used for the update is

computed according to:

l′m = R
RpLm

= IRT

R

(

GRT

I

(

lm − G
GpI

)

− I
IpR

)

, (13)

dlm =
∥

∥

∥
l′m

∥

∥

∥
(14)

D. Estimator Summary

Summarizing, in our RIO method we propagate the state

and its covariance according to Eq. 2 and Eq. 7. The update

step of our tightly-coupled EKF consists of three components

- the first one makes use of distances to points in the history

elements of trails compared to current radar measurements

(Eq. 8 and 9), the second one compares distances of persis-

tent landmarks to current radar measurements (Eq. 13 and

14), Finally, the third component employs Doppler velocities

as in [15] reduced to the inlier set using 3-point RANSAC as

detailed in [6]. For all components, we apply outlier rejection

using the chi-squared test.

IV. EXPERIMENTS

In the following, we outline the setup we used and the

experiments we performed to validate our method on a real

platform with the data from real flights as well as the results

of the evaluation.

A. Experimental Setup

The sensor used for the experiments is a lightweight and

inexpensive FMCW radar manufactured by Texas Instru-

ments integrated on an evaluation board AWR1843BOOST,

shown attached to the UAV in Fig. 1, equipped with a USB

interface and powered with 2.5V. The frequency spectrum

of chirps generated by the radar is between fl = 77GHz and

fu = 81GHz. The Field of View (FoV) is 120 ◦ in azimuth

and 30 ◦ in elevation. Measurements are obtained at the rate

of fm = 15Hz. The radar is affixed to one extremity of

the experimental platform facing forward by a tilt of about

45 ◦ with respect to the horizontal plane as shown in Fig. 1.

This improves the velocity readings compared to nadir view

while keeping point measurements on the ground and thus

at a reasonable distance. For inertial measurements, we use

the IMU of the Pixhawk 4 flight controller unit (FCU) with

a sampling rate of fsi = 200Hz. We manually calibrate the

transformation between the radar and IMU sensors, which

is used as a constant spatial offset in the EKF. The initial

navigation states of the filter are set to the ground truth

values. N was set to 7. We placed some arbitrary reflective

clutter in the scene since the test environment was otherwise

a clutter-less clean lab space. No position information from

the added objects of any sort was measured or used in our

approach other than what the onboard radar sensor perceived

by itself.



We use a motion capture system to record the ground

truth trajectories. During acquisition, we recorded sensor

readings from the IMU and radar together with the poses of

the UAV streamed by the motion capture system as ground

truth. Our EKF-based RIO is executed offline on the recorded

sensor data on an Intel Core i7-10850H vPRO laptop with

16GB RAM in a custom C++ framework compiled with gcc

9.4.0 at -O3 optimization level. Execution timings for the

aforementioned machine are shown in Tab. II and confirm

the real-time capability of the implementation.

B. Evaluation

For evaluation of the presented RIO approach, we use the

data recorded in an indoor space shown in Fig. 1 during seven

manually-controlled UAV flights. The flown trajectories were

not pre-planned and included pronounced motions in all three

dimensions. One of the executed trajectories can be seen in

the Fig. 5. We choose to measure the quality of our estimator

using the norm of MAE of position and the final pose drift in

percent (without yaw alignment) in order to easily compare

against the state-of-the-art. In Fig. 6, one can observe the

mean of the ||MAE|| across the flown trajectories. The

||MAE|| increases steadily with the flown distance as the

pose drift builds up as expected. For comparison, we show

that the ||MAE|| is reduced by a factor of 2 with respect to

our previous results presented in [15], and by a factor of 4

with respect to the state-of-the-art shown in [6] where only

an FMCW radar and IMU is used and no assumptions on

environment are made. The sample based 1σ bounds grow

to a value of about σ = 0.25m. Regarding the final drift, as

shown in Tab. I, on average we achieve 0.81% on trajectories

ranging from 127.5m to 175.0m against 5.0% reported for

a 60m long flown trajectory in [6] for a similar setup as ours

consisting of only FMCW radar and IMU. Authors in [6],

[7] also report the final drift values for the same setups, yet

additionally augmented with a barometer sensor to reduce

the vertical drift - even in this case our results with no

additional sensor remain comparable - 0.81% (ours) against

0.60% [6] and 0.36% [7]. Interestingly, the minimum value

of the final drift in our experiments - 0.17% - is even lower

than the lowest value reported in [6], [7] obtained flying the

same distance but with additional sensors and much lower

excitation in their case. Compared to 3.32% final drift for a

hand-held trajectory of 116.4m with low excitation in [15],

our method outperforms it by a factor of 4 in a real UAV

flight with high excitation.

TABLE I

METRICS GATHERED ACROSS ALL FLOWN TRAJECTORIES

Trajectory Length [m] Norm of MAE at 127 m [m] Final drift [%]

1 127.5 0.90 0.17

2 150.5 1.10 1.62

3 158.4 0.68 0.80

4 160.4 0.71 0.61

5 166.7 0.59 0.78

6 168.1 0.84 0.91

7 175.0 0.45 0.81

Average 0.75 0.81

Fig. 5. One of the executed trajectories. As can be seen, we tried to perform
pronounced motions in all three dimensions. Green and red dots represent
the take-off and landing positions on the white table seen in the Fig. 1.

Fig. 6. Mean of the norm of MAE for all flown trajectories. Up to 127m

the mean of all trajectories is taken. From 127m to 150m mean of six
trajectories is taken (since trajectory 1 ended). Blue dashed lines are the
sample based 1σ bounds. For comparison, red and orange dots represent
results presented in [15] and the magenta dot represent the state-of-the-art
result in [6] for the flown trajectory.

V. CONCLUSIONS

In this paper we presented a tightly-coupled and real-time

capable EKF RIO method which builds upon the approach

presented in [15] but effectively leverages multi-state and

persistent landmarks aspects from the vision community

enhanced for the noisy, inaccurate, and sparse radar signals.

In the presented framework, for correcting the drift of the

IMU, during the update step we exploit lightweight and

inexpensive FMCW radar distance measurements to 3D

points taken at several time instants in the past, distance mea-

surements to persistent landmarks as well as Doppler velocity

measurements. We showed in real-world flight experiments

that our method exhibits solid improvements over state-of-

the-art in terms of accuracy and that it has execution times

suitable for real time control. Moreover, the presented odom-

etry approach makes no assumptions on the environment

and can be deployed in GNSS-denied settings. Additionally,

given the employed sensor suite it is largely unaffected by

conditions deemed challenging for other sensors used in UAV

navigation, thus making it promising for applications such as

search and rescue operations.

TABLE II

EXECUTION TIMINGS FOR A SINGLE TRAJECTORY

Average time [ms]

Propagation Update Duration [s] Realtime factor

Trajectory 7 0.08 2.07 436 25.36
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