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Abstract: Accurate 6D object pose estimation is an important task for a variety of
robotic applications such as grasping or localization. It is a challenging task due to
object symmetries, clutter and occlusion, but it becomes more challenging when
additional information, such as depth and 3D models, is not provided. We present
a transformer-based approach that takes an RGB image as input and predicts a
6D pose for each object in the image. Besides the image, our network does not
require any additional information such as depth maps or 3D object models. First,
the image is passed through an object detector to generate feature maps and to
detect objects. Then, the feature maps are fed into a transformer with the detected
bounding boxes as additional information. Afterwards, the output object queries
are processed by a separate translation and rotation head. We achieve state-of-
the-art results for RGB-only approaches on the challenging YCB-V dataset. We
illustrate the suitability of the resulting model as pose sensor for a 6-DoF state
estimation task. Code is available at https://github.com/aau-cns/poet.

Keywords: 6D Pose Estimation, Transformer, Object-Relative Localization

1 Introduction

Accurately estimating the 6D pose of objects from RGB images is essential for robotics tasks such
as grasping or localization [1, 2]. Grasping tasks require the robot to know the exact position of the
object such that it can place its end-effector effectively. In autonomous driving, it is critical that the
vehicle has sufficient knowledge of its surroundings including the relative 6D pose of all objects in
its vicinity. For unmanned aerial vehicle (UAV) navigation, especially in close proximity to people
or infrastructure, realizing precise control depends on the estimation of 6D object poses. In recent
years, vision-based 6D pose estimation with deep learning [3] has been on the rise. Approaches
differ in terms of input data, network architecture, post processing and number of viewpoints [4,
5, 6, 7]. Observing objects from multiple viewpoints introduces constraints to the pose of objects
and improves estimation [7, 8]. Availability of 3D object models allows for an iterative refinement
of an initial pose estimate by either iterative closest point (ICP) [9] matching of pointclouds or by
matching keypoints with a perspective-n-point (PnP) [10] algorithm. However, these algorithms are
computationally demanding. Besides being used for post processing, 3D models can be utilized as
an additional input to the network [5]. This may include model keypoints and corresponding features
or information about the object such as symmetry axes and planes. Additionally, prior information
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about the object class or a depth map corresponding to the input RGB image, which improves the
networks ability to estimate the objects’ distance to the camera [8], can be passed to the network.
Although additional input information can greatly benefit the accuracy of the final estimated pose,
apart from requiring a more detailed data base containing accurate 3D models and depth maps
corresponding to RGB images, it results in higher computational complexity and thus, longer run
time in comparison to the same neural network-based architecture taking only RGB images [8].

While the requirements for real-time performance depend on the specific application, more often the
availability of high-quality, detailed 3D models or depth maps is limited. Depending on the type of
additional input information, additional sensor hardware is also required, which may not be available
during inference. In this work, we focus on a pose estimation framework purely based on RGB
images and information provided by a backbone object detector. To the best of our knowledge, we
are the first to incorporate global image context information into the pose estimation task by passing
multi-scale feature maps to a transformer network and relying only on 2D image information. Our
approach does not depend on the number of objects present. Our framework, dubbed PoET (Pose
Estimation Transformer), can be used on top of any 2D object detector. We evaluate our approach on
the YCB-V [3] dataset and compare our results to state-of-the-art approaches. Finally, we illustrate
the suitability of the obtained model as a pose sensor for a 6-DoF state estimation task, where ”pose
sensor” means the combination of a camera and PoET providing information about the camera pose
relative to objects, i.e. its relative position and orientation. Our contributions are the following:

• We present a transformer-based framework that takes a single RGB-image as input,
estimates the 6D pose for every object present in the image and can be trained on top
of any object detector framework. A detailed ablation study supports our design choices.

• The framework is independent of any additional information which is not contained in the
raw RGB image. In particular, it does not depend on depth maps, object symmetries or 3D
object models. Hence, our results are achieved without iterative refinement and the whole
network can be trained using 3D model independent loss functions.

• We achieve state-of-the-art results on the YCB-V [3] dataset for RGB-only methods and
competitive results in comparison to approaches utilizing 3D models.

• We show the feasibility of the resulting model as a pose sensor in a 6-DoF localization task.

The rest of the paper is organized as follows: In Section 2, related work for 6D pose estimation is
reviewed. Following the presentation of our method and implementation details in Section 3, the
experiments and the corresponding results are discussed in Section 4 including an ablation study
investigating our network architecture. Additionally, we illustrate how PoET and its relative 6D
pose estimates can be used for localization in Section 4.3. Finally, the limitations are discussed in
Section 5 and the paper is concluded in Section 6. We refer the reader to the supplementary material
for an extensive ablation study and additional results on the LM-O [11] dataset.

2 Related Work

Classical image-based 6D pose estimation approaches can be split into feature-based methods and
template-based methods. For the latter, object pose is determined by matching object templates
against the input image [12, 13]. While template-based approaches work well on texture-less
objects, they are prone to fail in scenarios where objects are occluded. In feature-based methods,
local features are extracted from the image and then matched to the 3D model to determine
correspondences [14]. Based on these 2D-3D correspondences, the 6D pose of the object can be
derived. While these approaches can handle occlusion of objects, they require textures in order
to perform the matching. If RGB-D images are available, the additional information provided by
the depth can be used to improve the initial pose estimate by iterative refinement [15, 16] such
as e.g., ICP [9]. Even though those methods can achieve state-of-the-art performance, they are
computationally expensive and the availability of depth maps is not guaranteed.

In recent years, advancements in deep learning for computer vision tasks have been applied to single-
view, image-based 6D pose estimation, either to replace components of classical approaches [17, 18,
19, 20], or as end-to-end learned methods, where the 6D pose is directly estimated from the input
using convolutional neural networks (CNNs). Xiang et al. [3] proposed with PoseCNN, a CNN-
based method to regress the 3D translation and rotation of each object present in the image using
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Figure 1: Overview of the PoET network architecture for single-view, multi-object 6D pose estimation.
Bounding box information for each detected object is passed to the transformer as an object query. Afterwards,
for each object query the egocentric 3D translation and 6D rotation [25] is predicted.

an object symmetry-aware loss function. Li et al. [8] proposed a framework that introduces prior
knowledge about the object class into the network and perform pose estimation by discretizing the
possible translation and rotation values to unique bins resulting in a classification task.

Aside from depth images, using 3D object models for pose estimation yielded promising results [21,
4, 5, 6, 7]. The approaches differ in terms of how the 3D model is used. Kehl et al. [21] and Li et al.
[4] predict the 6D pose of objects and then refine the estimated pose. With GDR-Net, Wang et al.
[22] are able to integrate PnP into an end-to-end trainable network. Similarly, Li et al. [6] use the 3D
model of an object for iterative pose refinement. Given an initial pose estimate, a network is trained
to iteratively refine the pose by matching a rendered image created from the 3D model to the original
image. Labbé et al. [7] apply this approach to multiple viewpoints of the same scene resulting in
improved pose estimation. In yet another approach, Billings and Johnson-Roberson [5] provide the
3D model as an additional input to their network, dubbed SilhoNet. Their network predicts the
object silhouette and a 3D translation vector derived from the 2D bounding box position. Based on
the former, the 3D rotation of the object is estimated and corrected for silhouette symmetric objects
- a significant restriction, as the real error in rotation for symmetric objects can be very large.

Similar to our approach, Amini et al. [23] presented a transformer-based architecture to directly
regress the 6D pose for multiple objects contained in a single image. By extending the Detection
Transformer [24] with translation and rotation heads, they are able to train the whole network in
an end-to-end fashion. However, they require the object 3D model as they use a symmetry aware
loss [3]. Our approach does not require any additional information such as depth maps, 3D models
or known object symmetries, but instead directly estimates the translation and rotation of objects in
the camera coordinate frame from a single RGB image. In contrast to other methods that work with
regions of interest for pose estimation, we keep the complete image feature map and provide the
regions of interest as an additional input to our transformer network.

3 Method

We present a novel transformer-based neural network for the 6D pose estimation task. Taking a
single RGB image as its input, the 6D pose of every object detected in the image is predicted
simultaneously. After generating (multi-scale) feature maps by passing the image through an object
detector, they are processed by a transformer architecture. At the end, translation and rotation
are estimated in a decoupled manner. In this section, we first present the general structure of our
network. Afterwards, we talk about specific implementation details and data preparation.

3.1 Network Architecture

Fig. 1 shows a detailed overview of our network architecture, which consists of three steps. First,
the input image is passed through a backbone object detector network. Both the generated (multi-
scale) feature maps and the predicted bounding boxes are used in subsequent processing. PoET can
be trained on top of any object detector architecture and thus extend a pre-trained object detection
framework to include 6D object pose estimation. Second, the (multi-scale) feature maps used for
the object detection step are passed to the encoder of a multi-head attention-based transformer.
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Our transformer architecture is a modified version of the Deformable DETR transformer module
proposed by Zhu et al. [26]. In contrast to the original DETR [24], the deformable transformer allows
to process multi-scale feature maps similar to state-of-the-art object detectors. By only attending to
a limited number of feature map keypoints in the decoder, the transformer achieves a higher pass-
through rate. Additionally, a deformable transformer shows faster convergence rates than a regular
transformer architecture. The main idea behind using a transformer architecture for feature map
refinement is to generate features that capture the global information contained in the image. For
example, such additional information might be the image location of other objects present or general
information of the overall scene extracted from the image.

While the encoder of the deformable transformer is kept unchanged, we modified the decoder
to incorporate more information from the object detection step: First, the learned object query
embedding is replaced by bounding box information. For each detected object, the bounding box
center coordinates (cx, cy), the width w and the height h are normalized and then position-encoded
[27] to generate the object query embeddings. The embedding dimension L is chosen such that
2·np ·L equals the hidden dimension dh of the transformer. In our case, the number of parameters np
equals to 4. Moreover, the inter-query attention heads ensure that information is properly propagated
between the different object queries. Second, the Deformable DETR originally only attends to
a limited number of keypoints which are randomly sampled around reference points. Instead of
predicting reference points from query embeddings by a trainable fully connected layer, we directly
feed the normalized center coordinates (cx, cy) as the reference points to the decoder. By feeding
this additional information to the decoder along with the encoder-refined image feature maps and
the inter-query attention heads, the decoder generates new object query embeddings which not only
contain local information regarding the object but also global information extracted from the image.
Third, the object queries outputted by the transformer are passed through a translation and rotation
head. This allows us to simultaneously estimate the pose for multiple objects independent of how
many objects are present and which class they belong to. As we approach the pose estimation
problem from a global image context perspective by extracting features from the whole image, the
network directly estimates the translation and rotation with respect to the camera.

Our translation head is a simple multi-layer perceptron (MLP) with input dimension dh, one hidden
layer and output dimension 3. We directly predict the translation t̃ = (t̃x, t̃y, t̃z) with respect to
the camera frame. Given the ground-truth translation t, our translation head is trained with a simple
L2-loss defined as

Lt = ||t− t̃||2 . (1)
The rotation prediction head is identical to the translation head besides the output dimension. For
estimating the rotation, we use the 6D rotation representation proposed by Zhou et al. [25] as this
representation does not suffer from discontinuities with respect to learning as e.g., quaternions do.
Hence, the network predicts a 6-dimensional output vector. Afterwards, the 6D representation is
used to determine the estimated rotation matrix R̃ ∈ SO(3) as described in [25]. The rotation head
is trained using a geodesic loss [28] given by

Lrot = arccos
1

2

(
Tr

(
RR̃T

)
− 1

)
, (2)

where R is the ground-truth rotation and Tr(·) is the matrix trace operator. To ensure numerical
stability of the loss during training, the argument of the arccos is clamped between−1+ε and 1−ε,
where ε = 1e− 6. Our whole network is then trained with a weighted multi-task loss expressed as

L = λtLt + λrotLrot , (3)
where the loss is calculated for each object and then averaged across all objects present across all
images in the batch. λt and λrot are the weighting parameters for the translation and rotation loss
respectively. PoET can be trained either class-specific or class-agnostic. In the class-specific case
with ncls different classes, the translation and rotation output dimension are changed to 3 · ncls
and 6 · ncls, respectively. For each object query, one hypothesis for each class is regressed and the
final output is chosen depending on the class predicted for the bounding box. However, no class
information is fed into the transformer.

3.2 Implementation Details & Data Preparation

While PoET can be trained on top of any object detector, we used Scaled-YOLOv4 [29] as the
backbone object detector as it offers a good trade-off between speed and accuracy. An MS-
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Figure 2: Qualitative results of the relative 6-DoF object poses predicted by PoET for the YCB-V dataset.

COCO [30] pre-trained Scaled-YOLOv4 is fine tuned for 10 epochs on the YCB-V dataset for the
object detection task. During the training of PoET, the weights of the object detector backbone are
frozen.

We implement PoET using PyTorch [31] and train it for 50 epochs using AdamW [32] with a
learning rate of 2e − 5 and a batch size of 16. Our best performing network has five encoder and
decoder layers, dh = 256, 16 attention heads and a positional embedding dimension of L = 32. The
network is simultaneously trained for 3D translation and 3D rotation estimation and the weighting
parameters are set to λt = 2 and λrot = 1, such that both losses are in the same value range.

Given the commonly used data split for YCB-V [3, 5, 6, 7, 8, 33], we train our network on 80
of the available 92 video sequences and reserve the remaining 12 sequences and their challenging
keyframes for testing and evaluation. Moreover, we include 80,000 synthetic images generated from
2D projections of the 3D object models provided by the original authors [3]. We refer the reader to
the supplementary material, for more details regarding our implementation.

4 Results & Experiments

In this section, we present PoET’s performance on the YCB-V benchmark dataset for 6D pose
estimation. For evaluation, we use the AUC of ADD-S metric [3] and additionally report the average
translation and rotation error in cm and degree, respectively, as done by [5]. We compare our results
to state-of-the-art, single-view, RGB-based approaches and list the results of other approaches as
reported in the corresponding work. We conduct an ablation study on the network architecture and
our modifications to the transformer part. The ablation study investigates the influence of the object
detector backbone, transformer modifications, data augmentation, network architecture and rotation
representation on PoET’s performance. While we present here our most important findings, we refer
the reader to our supplementary material for additional ablation results. Finally, we illustrate how
PoET’s relative pose estimates can be used for camera localization.

4.1 6D Pose Estimation

Our best performing network is class-specific, consists of 5 encoder and decoder layers with 16
attention heads, and was trained according to Section 3.2. Methods that rely on an object detector
to predict regions of interest (ROIs) usually do not elaborate whether and, if so, how multiple
predictions, bad predictions and missing predictions are treated within their approach. Therefore,
to allow for a fair comparison, we also report the results of PoET and other approaches given
ground-truth bounding boxes in addition to the results on predicted bounding boxes. We present
representative qualitative results in Fig. 2.

In Table 1 we report our results for the AUC of ADD-S metric. Both for predicted and ground-truth
bounding boxes, PoET outperforms (overall and also for most individual classes) other state-of-the-
art RGB-based methods that either work on the whole input image [3, 23] or that predict ROIs for
pose regression [8]. We also outperform SilhoNet [5] which feeds additional information from the
3D model to its network and reduces predicted rotations by known object symmetries. This shows
that PoET and its feature maps containing global image context reduce the need for any additional
inputs. This is especially highlighted when comparing the performance of PoET to the ROI-based
approaches SilhoNet and MCN [8] in the case where all networks are provided with ground-truth
bounding boxes. Only models that explicitly utilize 3D object models during inference, either
through PnP during the estimation [22] or by performing iterative refinement after estimating an
initial pose [7, 6], achieve slightly better results but this comes at the cost of significantly increased
computational complexity and the need for accurate 3D models to be known a priori.
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Table 1: Comparison with state-of-the-art on YCB-V. We report the AUC of ADD-S. gt denotes results
achieved with providing ground-truth ROIs to network. The 3D model row indicates how the object model
is used: either to calculate the loss function, as an additional input, for symmetry reduction or for PnP or
iterative refinement (IR) based pose estimation. (*) denotes symmetric objects. Bold and italic values indicate
state-of-the-art results for methods not based on PnP/IR, using ground-truth or predicted ROIs, respectively.

Method PoseCNN [3] SilhoNet [5] SilhoNetgt MCN[8] MCNgt T6D [23] PoETgt PoET GDR-Net [22] CosyPose [7] DeepIM[6]
3D Model Loss Input + Sym Input + Sym 2D 2D Loss 2D 2D PnP IR IR
master chef can 84.0 84.0 83.6 87.8 91.2 91.9 92.9 88.4 96.6 - 93.1
cracker box 76.9 73.5 88.4 64.3 78.5 86.6 90.4 80.5 84.9 - 91.0
sugar box 84.3 86.6 88.8 82.4 85.1 90.3 94.5 92.4 98.3 - 96.2
tomato soup can 80.9 88.7 89.4 87.9 93.3 88.9 94.0 91.4 96.1 - 92.4
mustard bottle 90.2 89.8 91.0 92.5 91.9 94.7 94.8 91.7 99.5 - 95.1
tuna fish can 87.9 89.5 89.9 84.7 95.2 92.2 94.0 90.4 95.1 - 96.1
pudding box 79.0 60.1 89.1 51.0 84.9 85.1 93.8 89.0 94.8 - 90.7
gelatin box 87.1 92.7 94.6 86.4 92.1 86.9 92.7 91.7 95.3 - 94.3
potted meat can 78.5 78.8 84.8 83.1 90.8 83.5 94.1 91.2 82.9 - 86.4
banana 85.9 80.7 88.7 79.1 70.0 93.8 94.3 89.5 96.0 - 72.3
pitcher base 76.8 91.7 91.8 84.8 91.1 92.3 94.3 91.7 98.8 - 94.6
bleach cleanser 71.9 73.6 72.0 76.0 86.8 83.0 92.6 85.4 94.4 - 90.3
bowl* 69.7 79.6 72.5 76.1 85.0 91.6 92.1 90.5 84.0 - 81.4
mug 78.0 86.8 92.1 91.4 91.9 89.8 94.1 91.4 96.9 - 91.3
power drill 72.8 56.5 82.9 76.0 87.2 88.8 94.3 88.8 91.9 - 92.3
wood block* 65.8 66.2 79.2 54.0 87.2 90.7 92.0 75.7 77.3 - 81.9
scissors 56.2 49.1 78.3 71.6 80.2 83.0 92.5 75.2 68.4 - 75.4
large marker 71.4 75.0 83.1 60.1 66.4 74.9 81.6 81.2 87.4 - 86.2
large clamp* 49.9 69.2 84.5 66.8 86.5 78.3 95.7 88.6 69.3 - 74.3
extra large clamp* 47.0 72.3 88.4 61.1 79.5 54.7 96.0 83.5 73.6 - 73.2
foam brick* 87.8 77.9 88.4 60.9 79.2 89.9 89.7 81.3 90.4 - 81.9
All 75.9 79.6 85.8 75.1 86.9 86.2 92.8 87.1 89.1 89.8 88.1

The improved performance of PoET compared to other RGB-based models in terms of the ADD-S
score is due to a better estimate of the 3D translation as can be seen in Table 2. Again, ground-
truth-based results are also presented. In contrast to directly estimating the 3D translation like
PoET, PoseCNN as well as SilhoNet determine the 3D translation by estimating the depth and
center pixel coordinates of an object and then reprojecting them using the known camera intrinsic
parameters, which is considered the easier task to learn [3]. MCN treats the translation estimation as
a classification problem by binning the translation space. In addition to the global image information
provided by the multi-scale feature maps, our approach also learns to model the camera intrinsics,
which results in a more accurate estimation of translation.

For 3D rotation estimation, we achieve the same average error as regular PoseCNN. Not surprisingly,
networks that reduce the possible rotation space based on known object symmetries achieve a better
result but with limited applicability to real-world scenarios. The mean average 3D rotation error
is shown in Table 2. The influence of reducing the rotation by geometrical symmetries (†) is
highlighted for PoseCNN. Since PoET makes use of the full multi-scale RGB feature maps, it
outperforms SilhoNet for objects that have no symmetries in the silhouette space and only performs
significantly worse for objects with rotational symmetries around an axis in 3D space, but without
requiring a priori knowledge about the 3D shape of objects or restricting the rotation space based
on symmetries. The main source for rotational errors are objects with rotational symmetries around
one axis (master chef can, tomato soup can, tuna fish can). We have investigated the axes of our
rotation errors and compared them to the symmetry axes for symmetric objects. The average tilt
of rotation error axes with respect to symmetry axes across all test images and symmetric objects
is only 15 degrees. If we ignore rotational errors about symmetry axes, our average rotation error
reduces to 11.24 degrees, outperforming all RGB-only competitors, see Table 2. We refer the reader
to the supplementary material for additional ablation experiments as well as PoET’s performance
for the stricter BOP[33] and AUC of ADD [3] metrics and for the LM-O benchmark dataset [11].

4.2 Ablation Study

The ablation study investigates the influence of different components on the performance of our
PoET framework. By assuming a perfect object detector that provides ground truth bounding boxes
to PoET, we ensure that the evaluation includes every object present in the image even for those
which might be not detected by the object detector. During the ablation study, we focus on the
AUC of ADD/ADD-S metric, the average translation error and rotation error. All results reported
in this section are for the same hyperparameter configuration as described in Section 3.2, the same
fixed seed and trained for the same number of epochs. The final results are summarized in Table 3.
We compare our best performing network from Section 4.1 (Baseline) to a class-agnostic version
(Agnostic) and a network with less layers (Small). Finally, we investigate the influence of the
integration of bounding box information into the transformer on the performance of PoET. We train
PoET with learnable reference points (RP), trainable query embeddings (Q) or the combination of
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Table 2: Comparison of average translation in cm and rotation error in degrees on YCB-V. Bold and italic
values indicate the state-of-the-art for results, when working on ground-truh or predicted ROIs respectively. †
indicates that the rotation predictions are reduced by geometric symmetries as described in [5].

Method PoseCNN[3] SilhoNet[5] SilhoNetgt PoETgt PoET PoseCNN PoseCNN† SilhoNet† SilhoNetgt PoETgt PoET
master chef can

Tr
an

sl
at

io
n

E
rr

or
[c

m
]

3.29 3.02 3.14 1.37 2.26

R
ot

at
io

n
E

rr
or

[°
]

50.7 7.57 1.21 1.11 89.25 80.12
cracker box 4.02 5.24 2.38 1.48 3.14 19.69 19.69 19.86 9.53 9.68 21.87
sugar box 3.06 2.10 1.67 0.94 1.42 9.29 9.29 12.28 11.50 3.95 4.40
tomato soup can 3.02 2.40 2.24 1.09 1.62 18.23 8.40 1.91 1.82 50.97 49.29
mustard bottle 1.72 1.65 1.41 0.94 1.42 9.94 9.59 5.78 5.07 23.71 27.73
tuna fish can 2.41 1.57 1.49 0.95 1.79 32.80 12.74 1.46 1.50 60.30 63.72
pudding box 3.69 7.15 1.91 1.01 1.94 10.20 10.20 20.95 18.39 6.36 6.87
gelatin box 2.49 1.09 0.79 1.20 1.41 5.25 5.25 12.52 8.48 6.69 7.19
potted meat can 3.65 4.30 2.74 1.13 1.75 28.67 19.74 7.27 10.93 5.06 6.75
banana 2.43 4.12 2.59 1.06 1.95 15.48 15.48 16.29 5.70 7.90 20.40
pitcher base 4.43 1.31 1.29 0.95 1.55 11.98 11.98 6.64 6.61 7.51 8.04
bleach cleanser 4.86 3.60 3.99 1.09 2.47 20.85 20.85 51.28 48.42 16.32 21.93
bowl* 5.23 3.30 4.08 1.51 1.76 75.53 75.53 49.95 53.95 16.06 25.71
mug 4.00 2.61 1.43 1.28 1.85 19.44 19.44 18.14 7.02 3.86 5.59
power drill 4.59 6.77 3.19 0.98 2.29 9.91 9.91 30.54 10.66 5.92 6.45
wood block* 6.34 5.59 3.23 1.41 4.75 23.63 23.63 25.52 23.23 5.88 14.32
scissors 6.40 9.91 2.59 1.38 3.72 43.98 43.98 155.53 154.82 3.19 6.27
large marker 3.89 3.24 2.31 2.68 2.75 92.44 13.59 10.44 10.72 24.95 25.91
large clamp* 9.79 6.27 3.51 0.98 2.33 38.12 38.12 3.54 6.03 2.61 4.88
extra large clamp* 8.36 4.86 2.12 0.91 3.10 34.18 34.18 29.18 7.30 2.38 26.01
foam brick* 2.48 3.98 2.31 1.90 3.42 22.67 22.67 13.84 17.36 37.20 36.34
All 4.16 3.49 2.45 1.20 2.12 27.79 17.82 16.04 13.48 23.65 27.26

Table 3: Ablation study results of PoET on YCB-V. We report the AUC of ADD/-S and the average translation
and rotation error. Ablation of class mode (Agnostic), network size (Small) and transformer modifications
(RP, Q, RP + Q). The exact meaning of the tags are described in the text.

Metric Baseline Agnostic Small RP Q RP + Q
AUC of ADD-S 92.8 88.9 91.8 87.6 82.2 42.0
AUC of ADD 80.8 73.2 78.1 66.8 59.5 12.2
Avg. T. Error [cm] 1.20 1.95 1.48 1.92 2.99 9.06
Avg. Rot. Error [°] 23.65 24.92 25.64 37.31 35.39 74.26

both (RP + Q). In all three cases the performance is reduced in comparison to a version of PoET
that uses bounding box information to generate query embeddings and reference points. This shows
that providing a transformer with bounding box information can greatly benefit its training process
leading to improved performance for the same training duration. We kindly refer the reader to the
supplementary material for an in-depth analysis and discussion of the ablation study.

4.3 Localization

PoET is well suited for vision-based object-relative localization. A transformation between
coordinate frames A and B expressed in coordinate frame C is fully defined by the translation
Ctab and the rotation Rab. Given a set of landmarks with known ground-truth pose (Ri

wo, t
i
wo), a

single frame that captures at least one of those landmarks can be used in combination with PoET to
localize the camera by estimating the relative pose (R̃i

co, t̃
i
co) to all landmarks present in the frame.

For each landmark, the estimated camera pose (R̃i
wc, t̃

i
wc) can be determined by

R̃i
wc = Ri

woR̃
iT

co and W t̃iwc =
W tiwo −Ri

woR̃
iT

co
C t̃ico. (4)

The final camera pose (R̃wc, t̃wc) can then be determined by taking the average over all landmarks
present in the image. YCB-V’s test sequences offer 12 different camera trajectories and each with
a different constellation of multiple objects serving as landmarks. For each individual frame we
estimate the camera pose and compare it to the ground-truth. In Fig. 3 we show an example trajectory
for a single sequence. For further examples we refer the reader to the supplementary material.

We compare three different approaches: using all detected objects (all), perform simple outlier
rejection by taking and choosing the hypothesis the majority of objects agree on (out) or by
incorporating the camera pose estimate from the previous frame into the outlier rejection in cases
with multiple hypotheses having the same number of votes (prev). For the sake of comparison,
we also calculate the camera pose by choosing the estimated camera pose being closest to the
current ground-truth camera pose (best). Moreover, we differentiate between PoET being provided
either object detections from the backbone (bb) or ground-truth bounding box information (gt).
We calculate the sample error mean and standard deviation across all frames for the position and
attitude and summarize them in Table 4. Simple outlier rejection greatly benefits the localization
error. This is due to wrong relative object pose estimates having a large impact on the final
estimated camera pose when taking a simple average. Incorporating the camera pose estimate
from the previous frame only slightly improves the localization as it only helps in multi-hypothesis
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cases. In comparison to the estimated trajectories using the best estimated camera pose, our outlier
rejection based trajectories perform worse with around factor two. Nonetheless, the localization
results when considering only individual frames are remarkable. The difference in performance
between backbone and ground-truth detections is due to the backbone potentially missing an object
or assigning a wrong class and thus throwing off the estimate.

To further motivate the use of PoET as a pose sensor in mobile robotics, we have integrated it in
a state-of-the-art sensor fusion framework [34] and performed state estimation experiments with
YCB-V objects in our motion capture room using inertial data for propagation and PoET for the
pose update. For a representative trajectory, the average error in rotation was (roll, pitch, yaw) =
(4.0, 6.9, 14.8) degrees and in translation (x, y, z) = (0.084, 0.179, 0.032) meters. The performance
for our real data is only slightly worse compared to the performance on the benchmark dataset,
even though we were using a completely different camera, than the one used to record the original
dataset, and the objects have slightly changed in appearance in comparison to the original YCB
objects. Nonetheless, PoET is able to provide sufficiently accurate pose data. Summarizing, PoET
achieves sufficient localization accuracy such that it can be used as a pose sensor for robotics.
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Figure 3: Example trajectory of a single sequence for gt
and out. We plot the ground-truth and estimated position
and attitude.

(x, y, z) ± (σx, σy , σz) [mm]

bb

all (119, 157, 52)±(121, 131, 59)
out (56, 54, 28) ± (100, 106, 36)
prev (42, 43, 26) ± (56, 59, 27)
best (28, 27, 23) ± (31, 35, 22)

gt

all (102, 138, 41) ± (107, 117, 53)
out (38, 34, 19) ± (80, 80, 28)
prev (32, 28, 19) ± (45, 39, 21)
best (21, 19, 17) ± (28, 32, 18)

(yaw, roll, pitch) ± (σy , σr, σp) [deg]

bb

all (19.6, 7.1, 12.4) ± (18.6, 11.8, 14.9)
out (5.4, 1.6, 2.2) ± (10.4, 2.8, 4.3)
prev (4.1, 1.4, 1.9) ± (5.0, 2.2, 2.1)
best (2.6, 1.5, 1.7) ± (3.0, 1.8, 1.7)

gt

all (18.0, 6.7, 11.0) ± (16.5, 10.8, 12.9)
out (3.7, 1.2, 3.0) ± (8.9, 2.0, 3.0)
prev (2.8, 1.2, 1.4) ± (3.7, 2.2, 1.5)
best (2.0, 1.3, 1.2) ± (3.0, 1.4, 1.3)

Table 4: Sample error mean and standard
deviation of camera pose across all 12 test
sequence frames. Position and attitude are
reported in mm and degree.

5 Limitations

In Section 4.1 it was discussed that PoET is outperformed by methods utilizing 3D object
information for rotation estimation in particular for objects that have rotation-symmetric silhouettes.
Wrongly estimated rotations lead to the assumption that the camera views the objects from a different
angle resulting in wrong hypotheses for the localization task as discussed in Section 4.3. Moreover,
the low resolution of the images in the YCB-V dataset means that RGB textures are not as dominant,
especially when augmentation is used. This is the main reason why PoET has difficulties to estimate
silhouette rotation-symmetric objects that are not symmetric in RGB space, see e.g. Table 2.

6 Conclusion

In this work we presented a novel, transformer-based framework for multi-object 6D pose
estimation. It can be used on top of any object detector and the only input required is a single
RGB image. The image is passed through an object detector backbone to create (multi-scale) image
feature maps and to detect objects. Bounding box information of detected objects is fed into the
transformer decoder which improves the learning. By taking the whole image into consideration
during the estimation process, our framework does not rely on any additional information. We
outperform other RGB-based methods by a wide margin on the YCB-V dataset. This is especially
important for scenarios where no detailed 3D models or prior object information is available, or
where computational efficiency is required and thus any input besides the RGB image has to be
dropped. Moreover, we highlighted how PoET’s relative 6D object pose estimation can be used as a
pose sensor for robot localization tasks.
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1 Introduction

In this supplementary material, we present additional results for our PoET framework that allow
other works to perform detailed comparisons in the future. While the paper discusses the core results
and main findings for our approach, we conduct and present the results of an extensive ablation
study, which investigates the influence of the network architecture, the rotation representation, data
augmentation, transformer modifications and the backbone on PoET’s performance. Moreover, we
provide results for additional metrics and visualize qualitative results for a better understanding.
Besides that, we provide additional details regarding our implementation and the dataset preparation.
Finally, we evaluate PoET on the benchmark dataset Linemod-Occluded (LM-O) [1] and investigate
different quaternion losses.

2 Implementation Details & Data Preparation

As discussed in the main paper, PoET can be trained on top of any object detector. For the YCB-V
dataset [2] a Scaled-YOLOv4 [3] is used as the backbone object detector as it offers a good trade-off
between speed and accuracy. An MS-COCO [4] pre-trained Scaled-YOLOv4 is fine tuned for 10
epochs on the YCB-V dataset for the object detection task. For the LM-O dataset we train PoET on
top of a publicly available, pre-trained Mask R-CNN [5]1 network. During the training of PoET, the
weights of the object detector backbone are frozen.

In order to utilize the benefits of batch processing, the number of input object queries has to be con-
stant across all images. This is usually not the case, as the number of objects present in an image can
vary significantly. Therefore, the number of object queries nq is fixed for a specific dataset to the
maximum number of objects present in any of its images. If fewer objects are present in an image,
the remainder of the object queries are filled up with dummies. Such a dummy object is assigned a
bounding box (cx, cy, w, h) = (−1,−1,−1,−1), a dummy class and a dummy query embedding.

1https://github.com/ylabbe/cosypose

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.
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In case that the object detector predicts more objects than the number of allowed object queries, the
top-nq predictions are chosen based on the classification score. Due to the transformer’s attention
mechanism, it should learn not to focus on dummy embedding feature vectors. For the loss calcu-
lation and the evaluation, dummy object queries are disregarded, as object queries are matched to
ground-truth objects based on bounding box center distance, predicted class and generalized inter-
section over union (GIoU) using an adjusted Hungarian matcher similar to [6]. Dummy embeddings
are not needed in inference, as only single images are processed. During training, the ground-truth
bounding box and class are used instead of the object detector predictions.

We implement PoET using PyTorch [7] and train it on a single NVIDIA GeForce RTX 3090 for 50
epochs using AdamW [8] with a learning rate of 2e− 5 and a batch size of 16. Our best performing
network has five encoder and decoder layers, dh = 256, 16 attention heads and a positional em-
bedding dimension of L = 32. The network is simultaneously trained for 3D translation and 3D
rotation estimation and the weighting parameters are set to λt = 2 and λrot = 1, such that both
losses are in the same value range after scaling. During evaluation, our whole pipeline consumes
around 5.3GB of VRAM and runs with 71 FPS.

YCB-V [2] contains 21 objects [9] and consists of 92 video sequences totalling 133,827 frames
(real). Each video sequence contains multiple objects and the level of object occlusion and scene
clutter varies between the sequences. Throughout the whole dataset at most 9 objects are contained
in one scene and thus we fix nq to 10. Following the proposed and commonly used data split [2, 10,
11, 12, 13, 14], we train our network on 80 of those 92 video sequences and reserve the remaining 12
sequences for testing. Out of these 12 sequences, the challenging keyframes are used for evaluation.
The original authors of the dataset provide 80,000 synthetic images generated from 2D projections of
the 3D object models (synt). We include these synthetic images during training for better network
generalization. The background of the synthetic images is blank and thus, to improve network
generalization even further, we randomly choose an image from the MS COCO dataset [4] as a
background. Even though the BOP challenge also provides photorealistic images (pbr) for YCB-V,
we do not utilize this data at all.

LM-O [1] is a single video sequence of the LM dataset [15] containing 1214 frames and the anno-
tated ground-truth pose for 8 objects. In this specific scene, there is significant occlusion between
the objects. Following the BOP challenge [10], we only use the 50,000 publicly available synthetic
images, which were generated using physically-based rendering (pbr), for training PoET. Given that
per image only a single instance of each object is present, the number of object queries nq is set to
10. For evaluation we use the ADD(-S) metric as described by Hinterstoisser et al. [15].

We also perform random RGB augmentation during training by not only modifying the image color,
sharpness, brightness and contrast, but also blurring the image and converting it to grayscale. How-
ever, images are not scaled, flipped or cropped.

3 Main Ablation Study on YCB-V

In this ablation study, we want to investigate the influence of different components on the perfor-
mance of our PoET framework. By assuming a perfect object detector that provides ground-truth
bounding boxes to PoET, we ensure that the evaluation includes every object present in the image
even for those which might be not detected by the object detector. During the ablation study, we
focus on the AUC of ADD/ADD-S metric, the average translation error and rotation error. All re-
sults reported in this section are for the same hyperparameter configuration as described in the main
paper and the same fixed seed. The final results are summarized in Table 1. Detailed results for each
class along with an in-depth analysis are provided in Section 4.

Network Architecture. We utilize our best performing model from the main paper as our baseline
model (Baseline). First of all, we compare it to its class-agnostic counterpart (Agnostic). We
observe that having dedicated outputs in the rotation and translation head for each class improves
the results across all four metrics. Especially the average translation error is improved. We also
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Table 1: Ablation study results of PoET on YCB-V. We report the AUC of ADD/-S and the average
translation and rotation error. Ablation of class mode (Agnostic), network size (Small), rotation
representation ((Silho)Quat), data augmentation (w/o Aug.) and transformer modifications (RP,
Q, RP + Q). The exact meaning of the tags are described in the text.

Metric Baseline Agnostic Small Jitter Quat SilhoQuat w/o Aug. RP Q RP + Q
AUC of ADD-S 92.8 88.9 91.8 90.7 91.8 88.8 85.6 87.6 82.2 42.0
AUC of ADD 80.8 73.2 78.1 73.5 77.3 71.6 63.2 66.8 59.5 12.2
Avg. T. Error [cm] 1.20 1.95 1.48 1.58 1.25 2.11 2.36 1.92 2.99 9.06
Avg. Rot. Error [°] 23.65 24.92 25.64 30.35 28.63 27.54 37.95 37.31 35.39 74.26

investigate the influence of a smaller transformer network (Small) by training a PoET that only has
3 encoder and decoder layers; everything else is kept the same. While the smaller network results
in an expected loss of performance across all metrics, it is still very competitive and leads to faster
processing times (88 FPS). Therefore, by accepting minimal drops in performance a more efficient
PoET can be trained in terms of memory consumption and computational time, which is beneficial
for systems with hardware limitations.

Rotation representation. One of the design choices made was to use a 6D rotation representation.
However, quaternions are still a popular rotation representation due to their ability to express a
rotation with just 4 values and also they do not suffer from gimbal lock such as the Euler angle
representation. Therefore, we want to show that PoET can be trained using quaternions (Quat). The
output dimension of the rotation head is adjusted to 4 · ncls, the output is L2 normalized to ensure
unit vector requirement for quaternions and the loss function is replaced by

Lrot = − log(< q, q̃ >2 +ϵ) , (1)

where < ·, · > represents the regular vector dot product and ϵ is a small number for numerical sta-
bility. The 6D representation achieves only slightly better results than the quaternion representation.
The main reason is that Quat has on average a bigger rotation error. Important to note, the choice
of loss function influences the performance of PoET in case of the quaternions. We train PoET also
using the same quaternion loss function as Billings and Johnson-Roberson [14] (SilhoQuat). We
can observe that while the average rotation error is slightly better, the average translation error is
almost twice as big. The main reason for a decreased performance with respect to the translation
estimation might be due to the different loss landscapes of the two different quaternion rotation loss
functions. A more detailed analysis is provided in Section 9.

Data Augmentation. In previous work [16, 12] it was mentioned that data augmentation in the
RGB space is beneficial for the pose estimation task. We investigated the influence of our data
augmentations as described in Section 2 on PoET’s performance (w/o Aug). The results clearly
indicate that including simple RGB data augmentation has a significant impact on PoET’s ability to
learn the task of 6D pose estimation.

Transformer Modifications. Finally, we investigated the influence of replacing learnable reference
points and query embeddings by directly passing bounding box information to the transformer de-
coder as described in our main paper’s methods section. We either make the reference points (RP),
the query embeddings (Q) or both (RP + Q) learnable. In the latter case, the transformer architecture
does not perform at all in comparison to the baseline network given that they were trained for the
same number of epochs. In general, directly feeding bounding box information as reference points
and object query embeddings does not only yield an improvement in terms of performance, but it
also saves computational complexity as it means less trainable components.

Backbone. Besides the ablation study regarding PoET’s network architecture, we also want to
investigate how the quality of the predictions of the object detector influences the performance. We
measure quality of bounding boxes in terms of IoU with respect to their corresponding ground-truth.
In order to model the decreasing object detector quality, we add jitter to the ground-truth bounding
boxes before evaluating on them by sampling from a truncated normal distribution. Given a ground-
truth bounding box, we sample a new center such that it is contained within the original bounding
box. Furthermore, we sample new widths and heights from another truncated normal distribution
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Figure 1: Comparison between Baseline and PoET trained with jitter bounding boxes for different
bounding box qualities. With varying σ the IoU of the ground-truth boxes decreases and so the
performance of PoET.

limiting them to be between 0.7 and 1.3 of the original size. The degree of noise is determined by
the standard deviation σ. For both truncated normal distributions we use the same σ and calculate
the AUC of ADD-S and the average IoU across all bounding boxes by varying σ between 0 and 0.1.
While σ = 0 corresponds to no additional noise, a σ = 0.1 results in 99% of the sampled values
being within a range of 150 pixels with respect to their original value. The results of this analysis
can be found in Fig. 1. With decreasing object detector quality, the performance of PoET decreases.
While the peak performance of Baseline cannot be matched by Jitter, we can see that the latter
is not as influenced by the decreasing IoU of the object detector. Even though PoET’s performance
depends on the quality of the object detector, we would still achieve state-of-the-art AUC of ADD-S
when using non-perfect object detectors. For reference, FCOS [17], Faster R-CNN [18] and Scaled-
YOLOv4 [3] evaluated on the keyframes achieve an average IoU across all detections of 0.86, 0.86
and 0.92 respectively. The main reasons for the discrepancy between the expected AUC of ADD-S
score of PoET and the true one achieved by PoET working on Scaled-YOLOv4 is due to the fact
that an object detector does not always detect all the objects present. However, the achieved score is
close to the expected score. Moreover, we also compare our baseline to a PoET trained with jittered
bounding boxes and σ = 0.02 (Jitter), but evaluated with ground-truth bounding boxes to make
the comparison of the ablation networks independent of the quality of the object detector.

4 In-depth Analysis of Ablation Study

This section serves as an extension to our ablation study on the YCB-V dataset [2]. We present
detailed results for each class for the AUC of ADD-S, AUC of ADD, average translation and average
rotation error in Table 2, Table 3, Table 4 and Table 5 respectively.

The difference in performance in terms of the AUC of ADD-S metric for our different ablation
networks mostly stems from their performance with respect to the translation estimation. When
comparing the achieved ADD-S scores, reported in Table 2 of the ablation networks to their average
translation and rotation errors, as reported in Table 4 and Table 5 respectively, one can see that the
better the translation estimation is, the better the ADD-S score is, while the rotation seems to have
a slightly smaller influence, e.g. for Agnostic and Small. On the other hand, a better estimation
of the object rotation improves the performance on the AUC of ADD metric. Nevertheless, for the
AUC of ADD metric a good translation estimation is required as can be seen by comparing Quat

to SilhoQuat. We refer the reader to Section 9 for an in-depth comparison between Quat and
SilhoQuat.

The class-agnostic version of PoET (Agnostic) mostly achieves two to three points less than the
Baseline model for the AUC of ADD-S metric. However, the performance drops especially for
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the wood block and the foam brick, two objects that show symmetries in the RGB as well as sil-
houette space. While Agnostic can better estimate the rotation of these two objects, the translation
estimation suffers heavily due to not learning class-specific outputs.

As already mentioned in Section 3, Small achieves slightly lower scores across all metrics than our
Baseline. To no surprise, this is due to the smaller network architecture offering less parameters
to better capture objects’ characteristics. The performance drop is especially noticeable for the
banana. There are many objects in the dataset that share similar shapes and thus can be easier
learned. However, the banana has a unique shape and the smaller network seems to be not able to
capture important characteristics of the banana.

Applying simple RGB data augmentation during the training improves the performance of PoET
drastically. For the translation we can observe an improvement across all classes. While most
classes also benefit from RGB augmentation in terms of rotation error (especially objects symmetric
in RGB and silhouette space), we have observed the opposite effect for the master chef and the
tomato soup can. These two objects are symmetric in silhouette space, but contain enough features
in the RGB space to precisely determine the orientation of the object. Therefore, it is apparent that
RGB augmentation benefits the network to focus more on geometric features of objects rather than
RGB features.

In the main ablation study it was already discussed that replacing learnable reference points and
object query embeddings by bounding box information yields better results for PoET. Given the
results from Table 2, it is clear that using positionally-encoded bounding box information as the
query embedding contains the most information. Namely, making this part of the transformer learn-
able (Q) performs significantly worse than our Baseline. A version of PoET trained with learnable
reference points (RP) does also not achieve the same scores as the Baseline but it still performs
better than Q. This shows that the positional bounding box encoding contains a lot of information, as
RP can still predict sufficient reference points from the query embeddings and thus achieve higher
scores. However, there are differences between RP and Q when comparing on the class level. While
RP performs better for objects that have either (borderline) rotational symmetries in the silhouette
space or multiple symmetry axes and planes in the RGB as well as silhouette space, having learnable
query embeddings (Q) benefits PoET for objects that have either unique shapes (scissors, pitcher base
and bananas) or that have features in RGB space that break the symmetries present in the silhouette
space (gelatin and pudding box). Nonetheless, there are still outliers to this observation, e.g., the
cracker box. Learning both reference points and query embeddings (RP + Q) significantly degrades
performance across all classes. Further investigation is needed as to why this is the case.

These results illustrate that the design decisions for the baseline model indeed lead to a significant
improvement in performance.
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Table 2: Ablation study results of PoET on YCB-V. We report the AUC of ADD-S scores for each
class and average score over all classes. Ablation of class mode, network size, rotation representa-
tion, data augmentation and transformer modifications.

Object Baseline Agnostic Small Jitter Quat SilhoQuat w/o Aug RP Q RP + Q
master chef can 92.9 87.6 92.6 91.4 92.4 88.6 82.4 91.0 71.5 58.1
cracker box 90.4 88.0 89.4 85.3 86.3 85.5 80.9 84.8 79.1 46.6
sugar box 94.5 91.2 92.4 93.6 93.3 89.4 92.7 88.0 89.5 49.5
tomato soup can 94.0 89.9 92.8 92.8 93.4 88.3 92.4 88.5 85.3 27.3
mustard bottle 94.8 87.4 90.0 89.1 91.6 82.7 88.3 88.2 81.7 59.1
tuna fish can 94.0 90.9 93.1 93.3 95.3 92.0 84.4 91.4 87.5 51.3
pudding box 93.8 93.6 93.0 92.0 94.1 89.2 88.0 84.4 89.9 37.2
gelatin box 92.7 90.6 92.3 93.4 91.0 92.9 84.6 86.9 91.7 40.0
potted meat can 94.1 90.8 92.9 91.8 93.9 89.7 91.6 90.2 83.9 59.3
banana 94.3 91.0 89.4 88.0 86.0 91.5 86.9 80.5 87.0 52.8
pitcher base 94.3 92.6 92.8 91.5 92.9 89.8 92.0 83.9 89.5 70.8
bleach cleanser 92.6 90.1 89.3 91.6 90.5 87.9 84.5 87.7 85.6 58.8
bowl* 92.1 87.6 94.2 91.1 93.2 92.4 93.5 89.9 80.5 17.8
mug 94.1 89.5 92.2 93.9 93.8 92.0 86.4 93.6 82.0 53.7
power drill 94.3 91.9 91.9 91.6 92.0 88.1 90.2 88.5 85.9 45.7
wood block* 92.0 81.4 92.9 86.4 90.5 85.2 75.6 91.2 63.4 31.5
scissors 92.5 90.8 91.8 88.3 92.6 90.5 83.8 68.7 80.6 25.9
large marker 81.6 84.5 84.7 83.1 85.3 82.0 60.8 85.6 77.3 18.5
large clamp* 95.7 93.0 95.6 94.7 96.0 92.6 88.7 93.6 80.5 20.3
extra large clamp* 96.0 88.5 94.8 94.8 94.5 88.6 91.4 91.3 83.6 45.3
foam brick* 89.7 75.2 88.9 87.2 90.3 85.3 79.3 91.0 69.3 11.6
All 92.8 88.9 91.8 90.7 91.8 88.8 85.6 87.6 82.2 42.0

Table 3: Ablation study results of PoET on YCB-V. We report the AUC of ADD scores for each class
and average score over all classes. Ablation of class mode, network size, rotation representation, data
augmentation and transformer modifications.

Object Baseline Agnostic Small Jitter Quat SilhoQuat w/o Aug. RP Q RP + Q
master chef can 40.6 28.3 34.9 37.9 37.6 45.5 40.3 30.6 21.5 16.8
cracker box 79.6 72.8 78.7 67.6 67.4 70.0 55.7 64.0 41.2 3.9
sugar box 89.6 83.4 85.0 87.1 86.7 79.3 85.3 74.0 78.4 12.0
tomato soup can 72.5 66.1 67.9 70.1 69.6 64.1 73.5 62.6 53.0 9.7
mustard bottle 82.2 69.4 76.4 59.1 71.8 50.6 53.7 64.0 63.9 12.2
tuna fish can 66.2 64.3 63.8 62.8 68.8 63.4 40.5 65.2 51.9 16.1
pudding box 88.4 88.2 86.8 84.9 88.5 79.1 77.4 69.3 80.5 13.8
gelatin box 87.0 83.4 85.4 87.9 82.7 86.8 68.4 73.9 84.4 11.3
potted meat can 88.3 81.1 85.4 83.5 87.3 79.9 81.0 79.4 66.6 29.1
banana 86.3 81.6 70.5 45.0 72.4 81.2 52.1 41.8 42.7 8.1
pitcher base 87.0 83.4 82.7 80.1 82.3 77.8 80.5 38.8 75.6 23.8
bleach cleanser 82.8 81.0 77.3 76.6 74.4 68.1 58.8 73.2 69.8 26.3
bowl* 76.9 62.4 82.3 66.8 68.7 59.4 60.9 71.9 45.0 1.3
mug 86.9 77.4 82.6 86.1 85.3 82.1 69.3 85.4 62.5 16.1
power drill 88.0 82.7 83.7 81.6 83.4 74.2 77.3 71.2 71.1 13.5
wood block* 83.8 64.2 86.1 73.1 78.6 70.3 50.6 81.4 35.7 2.9
scissors 85.9 82.3 83.7 75.8 85.5 81.3 63.0 33.5 66.2 15.4
large marker 73.3 76.1 76.3 73.0 76.9 72.8 48.4 76.5 66.8 7.7
large clamp* 90.0 83.7 89.4 87.3 90.8 82.5 74.6 85.3 64.7 2.1
extra large clamp* 90.4 71.7 86.7 87.7 86.4 69.5 72.2 80.5 64.3 14.4
foam brick* 72.0 53.7 75.4 70.0 78.6 66.6 44.9 79.3 44.1 0.3
All 80.8 73.2 78.1 73.5 77.3 71.6 63.3 66.8 59.5 12.2
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Table 4: Ablation study results of PoET on YCB-V. We report the average translation error in cm
for each class and average score over all classes. Ablation of class mode, network size, rotation
representation, data augmentation and transformer modifications.

Object Baseline Agnostic Small Jitter Quat SilhoQuat w/o Aug. RP Q RP + Q
master chef can 1.37 2.43 1.38 1.68 1.49 2.29 3.47 1.75 5.47 7.60
cracker box 1.48 2.05 1.78 2.50 2.14 2.54 3.12 2.25 3.00 9.28
sugar box 0.94 1.57 1.42 1.16 1.04 2.03 1.33 2.22 1.99 9.38
tomato soup can 1.09 1.87 1.30 1.35 1.09 2.25 1.39 2.04 2.70 11.70
mustard bottle 0.94 2.28 1.77 1.93 1.02 3.46 1.96 1.94 3.23 6.64
tuna fish can 0.95 1.80 1.32 1.30 0.79 1.63 3.12 1.58 2.51 7.83
pudding box 1.01 0.99 1.19 1.45 0.84 2.00 2.02 2.49 1.62 8.79
gelatin box 1.20 1.59 1.42 1.14 1.44 1.28 2.67 2.14 1.40 8.90
potted meat can 1.13 1.82 1.40 1.59 1.06 1.98 1.54 1.83 3.07 7.20
banana 1.06 1.76 2.02 1.60 1.49 1.77 2.30 2.51 1.62 6.63
pitcher base 0.95 1.32 1.10 1.49 1.07 1.88 1.39 2.92 1.71 5.82
bleach cleanser 1.09 1.68 1.75 1.39 1.44 2.22 2.63 1.87 2.50 6.40
bowl* 1.51 2.37 1.05 1.38 1.17 1.46 1.14 1.71 2.85 14.54
mug 1.28 2.24 1.69 1.33 1.31 1.77 2.92 1.40 3.73 8.47
power drill 0.98 1.57 1.52 1.48 1.02 2.05 1.54 1.54 2.60 7.53
wood block* 1.41 3.54 1.29 2.52 1.53 2.81 4.57 1.38 6.69 13.10
scissors 1.38 1.73 1.53 2.16 1.14 1.93 2.16 3.67 3.23 12.31
large marker 2.68 2.30 2.15 2.57 2.12 2.63 4.64 2.11 2.94 11.16
large clamp* 0.98 1.59 1.01 1.22 0.75 1.71 2.42 1.37 3.34 12.40
extra large clamp* 0.91 2.12 1.24 1.19 1.13 2.20 1.83 1.73 3.15 8.34
foam brick* 1.90 4.64 2.31 2.58 1.79 2.80 3.42 1.76 5.29 14.12
All 1.20 1.95 1.48 1.58 1.25 2.11 2.36 1.92 2.99 9.06

Table 5: Ablation study results of PoET on YCB-V. We report the average rotation error in degrees
for each class and average score over all classes. Ablation of class mode, network size, rotation
representation, data augmentation and transformer modifications.

Object Baseline Agnostic Small Jitter Quat SilhoQuat w/o Aug. RP Q RP + Q
master chef can 89.25 107.22 106.61 92.34 92.68 72.89 58.75 103.36 70.19 82.52
cracker box 9.68 13.76 8.47 14.82 20.46 11.40 27.55 25.62 52.10 94.01
sugar box 3.95 5.12 4.29 5.15 7.57 3.97 5.77 11.32 8.80 32.04
tomato soup can 50.97 54.62 59.57 56.96 56.63 51.62 43.58 59.95 76.68 81.93
mustard bottle 23.71 31.69 21.20 67.50 45.24 76.25 96.55 51.75 20.42 125.40
tuna fish can 60.30 48.55 61.78 64.54 52.37 57.98 84.49 53.85 73.29 75.59
pudding box 6.36 7.02 7.43 4.92 10.96 8.08 11.35 27.65 15.61 51.83
gelatin box 6.69 7.92 4.84 6.09 13.85 3.80 18.01 26.92 10.27 90.58
potted meat can 5.06 6.80 6.20 6.27 9.30 6.67 14.00 11.89 14.77 41.17
banana 7.90 5.12 26.63 81.88 26.71 5.62 60.20 78.62 82.19 119.98
pitcher base 7.51 8.98 11.71 12.04 11.60 10.08 12.46 71.09 14.26 67.58
bleach cleanser 16.32 8.12 15.61 26.35 27.92 33.37 50.96 20.61 17.86 62.75
bowl* 16.06 29.26 12.23 34.62 26.86 48.01 45.97 21.18 62.19 82.84
mug 3.86 7.29 5.88 5.58 8.46 3.76 17.51 6.39 10.32 51.55
power drill 5.92 5.90 4.90 10.47 12.75 12.20 15.90 29.50 11.40 81.50
wood block* 5.88 4.85 3.94 6.90 15.77 6.45 13.76 9.06 20.51 63.41
scissors 3.19 4.20 7.43 8.53 12.73 5.72 68.54 146.30 10.33 113.19
large marker 24.95 19.85 27.00 27.82 23.43 24.64 49.56 26.12 28.68 90.32
large clamp* 2.61 4.00 3.24 3.33 7.26 2.67 8.42 6.36 11.10 85.03
extra large clamp* 2.38 16.15 3.71 2.58 6.89 26.88 28.00 8.60 13.67 70.12
foam brick* 37.20 11.39 12.89 27.38 19.32 25.14 102.18 18.79 28.20 82.56
All 23.65 24.92 25.64 30.35 28.63 27.54 37.95 37.31 35.39 74.26
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5 Backbone Comparison on YCB-V

The results of PoET reported in the main paper for the YCB-V dataset [2] were achieved with a
Scaled-YOLOv4 [3] as the object detector. Moreover, the ablation study discusses the influence
of the object detector quality on the performance of PoET. However, only the quality influences
the performance of PoET and not the actual object detector architecture. In Table 6 we compare
PoET trained on top of a Scaled-YOLOv4 (YOLO) to PoET trained on top of a pre-trained Mask
R-CNN (R-CNN). We evaluate YOLO and R-CNN with ground-truth bounding boxes as well as the
object detectors’ actual predictions. In either case, the actual feature maps of the respective object
detector is utilized. Moreover, we provide results of other state-of-the-art RGB-based methods for
better comparison.

While the AUC of ADD-S score varies slightly for different classes, PoET achieves the same average
score independent of the actual object detector architecture given ground-truth bounding boxes.
Using the actual predictions confirms our ablation study’s findings that the quality of the object
detector influences PoET’s performance. As reported in the main paper, our YOLO object detector
performs better on YCB-V than a Mask R-CNN [5]. This is reflected in the small difference of the
average AUC of ADD-S between YOLO and R-CNN. These results are a clear indication that PoET can
be used in combination with different pretrained object detectors to achieve state-of-the-art results.
Additionally, we provide the AUC of ADD scores in Table 7 and compare them to PoseCNN [2],
the only other RGB-based method reporting results for this metric.

Taken together, these results illustrate that PoET can be used with different object detector back-
bones achieving competitive performance even for older object detector architectures.

Table 6: AUC of ADD-S. Comparison of PoET’s performance trained on top of different object
detectors for the YCB-V dataset [2]. We report results for PoET trained on top of a Scaled-YOLOv4
[3] (YOLO) and Mask R-CNN [5] (R-CNN) evaluated with ground-truth (gt) and predicted bounding
boxes. In either case, the actual feature maps of the respective object detector is utilized. Addi-
tionally, we compare the results to other RGB-only state-of-the-art methods. The 3D model row
indicates how 3D model information is incorporated into the network. 2D indicates that only 2D
image information is used.

Object PoseCNN[2] SilhoNet[14] SilhoNetgt MCN[13] MCNgt YOLOgt YOLO R-CNNgt R-CNN
3D Model Loss Input + Sym Input + Sym 2D 2D 2D 2D 2D 2D
master chef can 84.0 84.0 83.6 87.8 91.2 92.9 88.4 92.8 85.2
cracker box 76.9 73.5 88.4 64.3 78.5 90.4 80.5 92.0 87.0
sugar box 84.3 86.6 88.8 82.4 85.1 94.5 92.4 95.1 92.0
tomato soup can 80.9 88.7 89.4 87.9 93.3 94.0 91.4 95.6 91.7
mustard bottle 90.2 89.8 91.0 92.5 91.9 94.8 91.7 92.5 91.0
tuna fish can 87.9 89.5 89.9 84.7 95.2 94.0 90.4 95.3 92.3
pudding box 79.0 60.1 89.1 51.0 84.9 93.8 89.0 88.6 81.1
gelatin box 87.1 92.7 94.6 86.4 92.1 92.7 91.7 93.7 89.3
potted meat can 78.5 78.8 84.8 83.1 90.8 94.1 91.2 93.8 86.9
banana 85.9 80.7 88.7 79.1 70.0 94.3 89.5 84.7 80.3
pitcher base 76.8 91.7 91.8 84.8 91.1 94.3 91.7 94.9 93.1
bleach cleanser 71.9 73.6 72.0 76.0 86.8 92.6 85.4 93.8 88.0
bowl* 69.7 79.6 72.5 76.1 85.0 92.1 90.5 92.9 88.6
mug 78.0 86.8 92.1 91.4 91.9 94.1 91.4 94.2 88.5
power drill 72.8 56.5 82.9 76.0 87.2 94.3 88.8 94.9 91.6
wood block* 65.8 66.2 79.2 54.0 87.2 92.0 75.7 91.6 74.4
scissors 56.2 49.1 78.3 71.6 80.2 92.5 75.2 89.8 63.7
large marker 71.4 75.0 83.1 60.1 66.4 81.6 81.2 90.8 86.5
large clamp* 49.9 69.2 84.5 66.8 86.5 95.7 88.6 96.2 87.9
extra large clamp* 47.0 72.3 88.4 61.1 79.5 96.0 83.5 94.5 88.8
foam brick* 87.8 77.9 88.4 60.9 79.2 89.7 81.3 88.5 79.7
All 75.9 79.6 85.8 75.1 86.9 92.8 87.1 92.7 86.1
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Table 7: AUC of ADD. Comparison of PoET’s performance trained on top of different object detec-
tors for the YCB-V dataset [2]. We report results for PoET trained on top of a Scaled-YOLOv4 [3]
(YOLO) and Mask R-CNN [5] (R-CNN) evaluated with ground-truth and predicted bounding boxes.

Object PoseCNN [2] YOLOgt YOLO R-CNNgt R-CNN
master chef can 50.9 40.6 42.2 38.6 37.0
cracker box 51.7 79.6 57.9 83.2 70.8
sugar box 68.6 89.6 85.0 91.0 84.5
tomato soup can 66.0 72.5 69.5 72.9 68.4
mustard bottle 79.9 82.2 76.9 72.3 67.1
tuna fish can 70.4 66.2 59.7 70.0 65.4
pudding box 62.9 88.4 79.3 80.1 68.2
gelatin box 75.2 87.0 84.9 88.2 79.6
potted meat can 59.6 88.3 81.8 87.4 76.1
banana 72.3 86.3 74.1 57.8 53.7
pitcher base 52.2 87.0 82.1 88.7 84.7
bleach cleanser 50.5 82.8 68.6 88.4 76.0
bowl 6.5 76.9 68.7 69.1 59.7
mug 57.7 86.9 81.1 87.1 74.8
power drill 55.1 88.0 75.5 89.6 82.1
wood block 31.8 83.8 49.3 82.6 52.2
scissors 35.8 85.9 62.5 80.6 47.7
large marker 58.0 73.3 72.6 83.8 77.7
large clamp 25.0 90.0 75.9 91.4 75.2
extra large clamp 15.8 90.4 65.1 86.5 75.0
foam brick 40.4 72.0 60.0 75.1 61.9
All 53.7 80.8 70.1 79.3 68.5
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6 Qualitative Results

6.1 6D Pose Estimation

Figure 2: Qualitative results for selected frames of the YCB-V dataset. Given the relative 6D object
poses predicted by PoET we project the 3D model into the image.

In Fig. 2 we present PoET’s qualitative results for the 6D pose estimation task on the YCB-V dataset.
The results range from almost perfect estimation in the top left image to failure cases in the bottom
right image. The qualitative results show that PoET is able to handle occlusion due to its feature
maps containing global information.

6.2 Localization Trajectories

In this subsection we provide further examples for the localization task discussed in the main pa-
per. We introduced three different approaches to the problem of localizing a camera given landmark
world positions and using PoET’s relative object pose estimates. Furthermore, we investigated the
best possible estimate by choosing the hypothesis that is closest to the current ground-truth cam-
era pose. In Fig. 3 we compare the estimated position and attitude for the two outlier rejection
approaches to the best trajectory approach across one trajectory. In comparison to the best possi-
ble estimate, simple outlier rejection performs only slightly worse for this specific trajectory. We
visualize the 3D trajectories in Fig. 4.

Additionally, we provide PoET’s performance for the localization task for a different trajectory in
Fig. 5. There we compare between PoET being provided either ground-truth or backbone bounding
box information. In both cases, it is possible to estimate good trajectories based on PoET’s relative
object poses. However, PoET with backbone information performs slightly worse and is more prone
to wrong estimates resulting in a noisier estimated trajectory.

Summarizing, these results support our claim that PoET can be used as a pose sensor for the local-
ization task in robotics applications.

10



0 500 1000 1500 2000 2500
-1

-0.5

0

0.5

1

m

Position

x
est

x
gt

y
est

y
gt

z
est

z
gt

0 500 1000 1500 2000 2500

frames

-100

-50

0

50

100

de
gr

ee

Attitude

yawest

yawgt

rollest

rollgt

pitchest

pitchgt

(a) out

0 500 1000 1500 2000 2500
-1

-0.5

0

0.5

1

m

Position

x
est

x
gt

y
est

y
gt

z
est

z
gt

0 500 1000 1500 2000 2500

frames

-100

-50

0

50

100

de
gr

ee

Attitude

yawest

yawgt

rollest

rollgt

pitchest

pitchgt

(b) prev

0 500 1000 1500 2000 2500
-1

-0.5

0

0.5

1

m

Position

x
est

x
gt

y
est

y
gt

z
est

z
gt

0 500 1000 1500 2000 2500

frames

-100

-50

0

50

100

de
gr

ee

Attitude

yawest

yawgt

rollest

rollgt

pitchest

pitchgt

(c) best

Figure 3: Estimated trajectories (est) for the same trajectory as in the main paper.
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(a) out (b) prev

(c) best

Figure 4: Visualization of the estimated trajectory for the same YCB-V scene shown in the main paper. We
compare the estimated trajectory (est to the ground-truth trajectory (gt).
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Figure 5: Comparison of estimated trajectories between PoET with ground-truth (gt) or predicted (bb) bound-
ing box information. This is a different trajectory than the one used for discussion in the main paper.
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7 Results on LM-O

In Table 8 we report the results of PoET for the ADD(-S) metric as described by Hinterstoisser
et al. [15]. In contrast to other state-of-the-art approaches, we only train on pbr data as dictated
by the BOP challenge [10]. Moreover, we only train a single PoET model, instead of training an
individual network for each object class. Similarly as for YCB-V, methods that utilize either PnP or
iterative refinement and thus 3D object models achieve state-of-the-art results. PoET outperforms
other purely RGB-based approaches by more than 10 points.

Furthermore, we conduct a comparison between PoET trained on top of a pre-trained Mask R-CNN
[5] for the LM-O dataset [1, 15] by evaluating it with ground-truth and predicted bounding boxes.
Once again, evaluating with ground-truth bounding boxes results in better scores. Nevertheless,
PoET still achieves state-of-the-art results for RGB-only methods when evaluated on actual predic-
tions.

Table 8: Comparison with state-of-the-art on LM-O. We report the ADD(-S). PE indicates the num-
ber of pose estimators trained. N means that one PE was trained for each class. (*) denotes sym-
metric objects. real, synt and pbr, respectively, refer to real data, synthetically generated data by
projecting the 3D models onto a black image background and photorealistic simulated images.

PnP IR
Method PoseCNN [2] PoET PoETgt Pix2Pose [19] PVNet [20] GDR-Net [16] DeepIM [11]

PE 1 1 1 N N N 1
Data real + syn pbr pbr real real + syn real + pbr real + syn
Ape 9.6 10.2 12.7 22.0 15.8 46.8 59.2
Can 45.2 31.8 51.0 44.7 63.3 90.8 63.5
Cat 0.9 9.0 10.9 22.7 16.7 40.5 26.2

Driller 41.4 33.9 53.3 44.7 65.7 82.6 55.6
Duck 19.6 15.4 22.6 15.0 25.2 46.9 52.4

Eggbox* 22.0 44.7 50.4 25.2 50.2 54.2 63.0
Glue* 38.5 58.7 63.9 32.4 49.6 75.8 71.7
Holep. 22.1 24.7 29.8 49.5 36.1 60.1 52.5
MEAN 24.9 28.5 36.8 32.0 40.8 62.2 55.5
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8 BOP Results

In the main paper we presented the results on YCB-V [2] following the most commonly used eval-
uation metrics [2, 11, 12, 13, 14, 16]. In recent years the evaluation protocol of the BOP challenge
[10, 21] has become more popular and thus, we present the results of PoET for YCB-V on the BOP
metrics. We refer the reader to [10] for a detailed explanation of the evaluation metrics. We report
the average recall (AR) score by calculating the mean of the three main metrics: AR = (ARMSPD

+ ARMSSD + ARV SD) / 3. The final results are summarized in Table 9. To the best of our knowl-
edge, we are the only approach to report their results on the BOP challenge that relies solely on 2D
image information. In contrast to the AUC of ADD-S metric, the metrics employed by the BOP
challenge are stricter with respect to the objects final estimated rotation. Therefore, it is no surprise
that state-of-the-art results are achieved by methods that either use 3D object model keypoints to
predict the final pose (PnP) or that perform iterative refinement utilizing the 3D model given an
initial estimate (IR). Nevertheless, PoET achieves competitive results and even outperforms the two
PnP-based methods Pix2Pose [19] and CDPNv2 [22].

Table 9: Comparison of state-of-the-art methods on YCB-V for BOP metrics [10]. The results of
other approaches are either obtained from the corresponding work or from the official leaderboard:
https://bop.felk.cvut.cz/leaderboards/. PnP and IR stand for methods that either use PnP
or iterative refinement respectively. 2D indicates that only RGB-image information was utilized.

Method 3D Model ARMSPD ARMSSD ARV SD AR
PoET 2D 54.2 57.2 49.4 53.6
PoETgt 2D 66.4 71.9 66.5 68.3
Pix2Pose [19] PnP 57.1 42.9 37.2 45.7
EPOS [23] PnP 78.3 67.7 62.6 69.6
CDPNv2 [22] PnP 63.1 57.0 39.6 53.2
GDR-Net [16] PnP 84.2 75.6 66.8 75.5
CosyPose [12] IR 85.0 84.2 77.2 82.1
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9 Quaternion Loss

In this section we compare different quaternion loss functions and their loss landscapes to each
other. In the main paper we achieve state-of-the-art results on the YCB-V dataset [2] using a 6D
rotation representation. PoET achieves similar results by using a quaternion representation and the
loss function

Lrot = − log(< q, q̃ >2 +ϵ) , (2)

where < ·, · > represents the regular vector dot product and ϵ is a small number for numerical sta-
bility. However, as shown in the ablation study, using the same quaternion loss function as SilhoNet
[14] results in a worse performance. This loss function is given by

Lrot = log(ϵ+ 1− | < q, q̃ > |) , (3)

where | · | denotes the absolute value. Comparing the loss function landscape from Eq. (2) with
the one from Eq. (3) in Fig. 6, it is observable that for small errors our loss converges to 0, while
the loss from [14] goes to −∞. The former will result in a more stable training towards the end
due to smaller gradients. On the other hand, for large errors our loss function is close to ∞ and thus
yielding stronger gradients, while the other loss function is close to 0. Having those smaller gradients
towards the end of the training benefits the multi-task loss as the translation loss is not overshadowed
by the rotation loss. Thus, the network can focus on further improving its performance with respect
to the translation estimation as can be seen in Table 4. On the contrary, Table 5 shows that the large
gradients of Eq. (3) for small errors influence PoET to achieve better average rotational error. In the
end, being able to better estimate the object translation benefits the pose estimation task in terms of
the AUC of ADD-S metric.
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Figure 6: Comparison of the loss landscapes between our proposed quaternion loss function in
Eq. (2) and the one used by [14] as shown in Eq. (3). For small errors, that is < q, q̃ > being close
to -1 or 1, our loss function results in smaller gradients and thus allows our network to better learn.
For both loss functions ϵ is set to 1e − 4.
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