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Abstract— Multicopter Unmanned Aerial Vehicles (UAV) are
small and agile robots with the potential to become prominent
in performing autonomous tasks in various Global Navigation
Satellite System (GNSS)-denied environments. These environ-
ments can potentially be rendered even more challenging due
to external factors impairing the robot’s perception, such as
low or too bright light, permeation with aerosols or smoke. A
precondition of autonomous operation, though, is the ability of
a robot to accurately localize itself in the surrounding environ-
ment. Millimeter-wave Frequency Modulated Continuous Wave
(FMCW) radar sensors are resilient to the aforementioned fac-
tors while being lightweight, inexpensive and highly accurate. In
this paper, we present a Radar-Inertial Odometry (RIO) method
for estimating the full 6DoF pose and 3D velocity of a UAV. In
an Extended Kalman Filter (EKF) framework, we fuse range
measurements and velocity measurements of 3D points detected
by an FMCW radar sensor together with Inertial Measurement
Unit (IMU) readings. In real experiments we show that our
approach enables accurate state estimation of a UAV and that
it exhibits improvements over similar existing state-of-the-art
method.

I. INTRODUCTION

Increasing UAV autonomy in challenging environments

recently attracts substantial interest in the research commu-

nity. That is because these lightweight and agile platforms

have the ability to be successfully used in exploration of

environments which are prohibitive to other kinds of robots.

Notable examples are environments where GNSS signal is

not available or is unreliable and where external condi-

tions prevent cameras from capturing images applicable in

the navigation algorithms, such as Visual-Inertial Odometry

(VIO). There exist several well-established approaches to

address the pose estimation problem of a UAV which fuse

measurements from a camera sensor and an IMU. These

approaches, however, are limited by known issues of camera

sensors like withstanding the lack of sufficient lighting or the

excess of it, scarcity of visual features and image blur [1].

These limitations render VIO methods vulnerable in many

scenarios, such as environments permeated by smoke or

aerosols or while executing very dynamic motions, causing

grabbed images to be blurred.

There exist event cameras, whose purpose is to partly

mitigate some shortcomings of the traditional cameras, never-

theless, event cameras remain expensive [2], difficult to tune,

and are prone to high noise in low-light conditions. LIDAR

sensor is also explored in some approaches [3], nevertheless
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Fig. 1. Experimental platform used in this work with the FMCW radar
sensor mounted in its custom-made housing tilted at 45° angle.

since this modality uses near-visible wavelengths, it is prone

to similar drawbacks as cameras in conditions like fog, rain

etc.

Having in mind all the above-mentioned issues, in order

to obtain a state estimation system for a UAV it seems

reasonable to combine an IMU and a radar sensor. In recent

years thanks to using millimeter-wave technology, FMCW

radar sensors became considerably miniaturized, lightweight

and very accurate. They have been used with success in the

automotive applications [4], [5], [6] and the aforementioned

technological advances also make them applicable on UAVs.

An FMCW radar sensor is a good compliment of an

IMU onboard a UAV. It can mitigate the drawbacks of a

camera sensor related to the vulnerability to environmental

conditions [7] while at the same time being lightweight and

providing comparable or higher measurement rates. Radars

provide distance, Doppler velocity, and to certain extent

angular measurements of salient points in the environment,

which allows reducing the significant pose drift built up

by IMU integration. That being said, Radars suffer from

problems like e.g., noisy data, ghost objects and multi-path

reflections [8], making them non-trivial sensors to be fused

with other modalities.

In this paper, we present a novel RIO method which

employs stochastic cloning [9] to enable matching of the

measured 3D points from the previous radar scan to the

ones in the current scan. In addition to these relative dis-

tance measurements of matched 3D points, we also use

Doppler velocity information measured from all features in

the current scan. We fuse all measurements in a tightly-

coupled formulation in our EKF setup. The tight coupling



enables the incorporation of single distance and velocity

measurements in the update step. This property relieves us

from any constraints on required minimal number of matches

(as it is e.g., needed for a prior Iterative Closest Point

(ICP) and subsequent loose coupling of the resulting delta-

pose in the EKF). This is a particularly strong advantage

in view of robustness and accuracy over loosely coupled

approaches since, e.g., ICP [10] works poorly on noisy and

sparse FMCW radar point clouds. Our RIO method makes

no assumptions on the environment and makes use of no

other sensors than IMU and a lightweight millimeter-wave

FMCW radar.

This paper is organized as follows. Section II reviews the

related work in the area of RIO. Section III introduces the

preliminaries of our work. In subsection III-A we introduce

the notation used, the system overview in subsection III-

B and brief FMCW radar theory in subsection III-C. In

section IV we describe our RIO method. Subsection IV-A

outlines how the state vector and covariance matrix of our

system are augmented using stochastic cloning in order to

enable robust 3D point matching. Subsection IV-B explains

our point matching algorithm. Subsequently, subsection IV-

C details our distance measurement model. In the subsec-

tion IV-D our velocity measurement model is elucidated. We

summarize our estimator in subsection IV-E. Experiments

conducted in order to validate the proposed method are

outlined in Section V. In subsection V-A we report the

experimental setup used during the experiments and the

subsection V-B presents the results of the evaluation. Finally,

we present conclusions in Section VI.

II. RELATED WORK

Robot state estimation methods relying on FMCW radar

sensors are becoming more and more prevalent in research.

Authors in [11] estimate the ego-velocity of a UAV by

fusing readings from IMU and FMCW radar in a nonlinear

optimization based framework over a sliding window of

past measurements. The presented method is shown to be

effective in poorly lit environments as compared with VIO,

the emphasis is placed on estimating velocity and not the

full 6DoF pose though. In [12], the authors present an

EKF based RIO system for a UAV using only instantaneous

velocity measurements of detected 3D points, that is, no scan

matching is performed. The authors of this work resort to

using an additional barometer sensor in order to overcome

high vertical drift. In [13], the same authors propose a similar

approach (including a barometer for drift reduction), this

time with online calibration and using a radar with very wide

Field of View (FoV) angle in both azimuth and elevation

(130°) which improves the estimation. Methods presented

in [14] and [15] use high-resolution, expensive and of

considerable size mechanically rotating radar. In the former, a

Convolutional Neural Network (CNN) is introduced capable

of predicting robust features in radar scans, which are then

used to estimate the optimal relative transformation. In the

latter method, a direct approach is shown using the entire

radar scan as opposed to only extracted features. Namely,

the application of Fourier-Mellin transform to Cartesian and

log-polar scans is explored to obtain respectively translation

and rotation of the robot. The authors in [16] use a rotating

radar to estimate the ego-motion, making use of landmarks

extraction based on estimating the signal noise statistics and

subsequent matching of these landmarks exploiting local

geometrical relationships between them within a scan. Size,

cost, and power consumption of the rotating radar sensor

used in [14], [15], [16] are fairly prohibitive factors limiting

its use in UAVs as mentioned in [17]. In [17] an approach to

RIO is presented and demonstrated on a slow wheeled mobile

robot platform which uses a lightweight and low-cost FMCW

radar with no modifications to the environment. This ap-

proach employs the Normal Distributions Transform (NDT)

for finding the optimal transformation between associated

points across subsequent scans. The retrieved pose is fused

loosely coupled with an IMU in an Unscented Kalman Filter

(UKF). The presented system accomplishes high precision

in the order of centimeters. It is, however, evaluated on a

flat 2D scene which reduces significantly the dynamics of

motion and removes the vertical drift problem as opposed to

an application on a UAV.

In this paper, we present a method for real-time capable

and accurate RIO, suitable for a UAV using an IMU sen-

sor and a single, small, lightweight, and low-cost FMCW

radar providing sparse and noisy 3D point clouds along

with Doppler velocities of the detected points. The main

contributions of this paper are:

• Tightly-coupled formulation to include both radar dis-

tance and velocity measurements for IMU integration

correction in a C++ EKF framework, allowing accurate

3D velocity and 6DoF pose estimation with nearly a

third of the drift compared to state of the art.

• Application of stochastic cloning of past robot poses

for formulating an update equation on the accurately

measured point distances rather than on the full 3D

point positions polluted by the highly imprecise azimuth

and elevation angular radar measurements.

• Improved 3D point matching across sparse, noisy radar

scans in full 6DoF motion allowing ad-hoc point corre-

spondence generation for point-distance based updates

with a single past radar pose in the state in contrast to

maintaining many 3D point vectors.

• Benchmark comparison against a state-of-the-art

method [12] using similar setup in a real-world

experiment.

III. PRELIMINARIES

A. Notation

A normally distributed multivariate variable is defined

as Xi ∼ N (xi,Σii), with a mean xi and covariance

(uncertainty) Σii, which is called the belief of i. Names

of reference frames are capitalized and calligraphic, e.g.,

{I} for IMU. A pose between the reference frames A

and B is defined as ATB =

[

ARB
A
ApB

0T 1

]

∈ SE(3) ,

with R ∈ SO(3) and p ∈ R
3. The transformation of



a coordinate vector C
CpP1

pointing from the origin of the

reference frame C to a point P1, expressed in C, can be

transformed into the frame A by

[

A
ApP1

1

]

= ATC

[

C
CpP1

1

]

(read as
from

in x to). Rotations are stored as unit quaternion

q̄ ∈ SO(3) with ∥q̄∥ = 1 allowing a direct mapping

between rotation matrices and unit Hamiltonian quaternions

by ARB = R
{

Aq̄B

}

∈ SO3 and Aq̄B = q̄
{

ARB

}

[18].

I is the identity matrix. The a priori and a posteriori of a

belief are indicated by a {•}(−) and {•}(+), respectively.

{•}# specifies measured (perturbed) quantities.

B. System Overview

In our RIO method we use error-state EKF formula-

tion [19] in which IMU is a core sensor used for the system

state propagation. Updates are performed with the FMCW

radar measurements, which provide both position and relative

radial velocity of reflecting objects. Every time a radar

measurement is taken, we augment the state of our EKF

filter with the pose of the robot at which the measurement

took place using stochastic cloning. Once a subsequent radar

measurement is taken, we use the stored pose together with

the current one in order to spatially align the radar scans

and match the corresponding points across them. Distances

to matches are used to form the residual vector in the EKF.

Next, we use projections of the current robot velocity onto

normal vectors to all points detected in the current radar scan

together with their measured velocities to further augment the

residual vector. Residual vectors are then used in the update

step to estimate the mean of the error-state, which is injected

into the regular state. The coordinate frames arrangement for

measurements in our system is shown in Fig. 2.
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Fig. 2. Two subsequent UAV poses are used in the distance and velocity
measurement models. In the velocity measurement model, only the readings
from the current pose are used.

C. FMCW Radar Theory

In our setting, we use a millimeter wave FMCW radar

emitting a linear chirp signal. In such a case, the range

to a reflecting object can be determined from the mixed

transmitter and receiver signals. Such mixed signal has the

frequency proportional to the time delay of the reflected

transmitter signal. Consequently, by applying Fast-Fourier

Transform (FFT) over the mixed signal one can infer the

range to the reflecting object as:

d =
fdc0

2K
(1)

Where fd is the frequency of the mixed signal, c0 is the

speed of light and K is the frequency slope of the linear

chirp. By performing 2D FFT over a series of chirps,

the relative radial velocity of the object can be retrieved.

When multiple receiver antennas are available, calculation of

angular information of reflecting objects is possible. Due to

the spatial separation of the receiver antennas, the measured

signals at each receiving antenna will be phase-shifted,

ϕant =
2πdant

λ
(2)

where dant is the separation distance between receiving

antennas. Based on the antenna’s geometrical arrangement,

either azimuth or elevation angle of objects with respect

to the radar can be determined. Using antenna arrays, both

angles can be estimated. The angular resolution of a FMCW

radar is mostly limited by the number of receiver antennas

NRX on the chip. Although FMCW radars are thus capable

of providing a 3D position of a reflecting object along with

its relative Doppler velocity, the distance to the object and

its relative Doppler velocity are the most precise parts of the

information in small, light, and cost-efficient FMCW radars.

Moreover, the radar that is used in our work provides the

intensity of the reflection for each point, which we exploit

in our data association algorithm described in subsection IV-

B.

IV. RADAR-INERTIAL STATE ESTIMATION

The state vector x in our filter is defined as follows:

xT = [xN ,xC ]

=
[[

GpI ,
Gq̄I ,

GvI ,ba,bω

]

,
[

GpR, Gq̄R

]] (3)

with the navigation state xN and the stochastic clone state

xC of the IMU pose corresponding to the previous radar

measurement as described in Section IV-A. The previous

radar measurement is not part of the state vector. GpI , GvI ,

and Gq̄I are the position, velocity, and orientation of the

IMU/body frame {I} with respect to the navigation frame

{G}, respectively. bω and ba are the measurement biases

of the gyroscope and accelerometer, respectively. GpR and
Gq̄R define the pose of the IMU frame corresponding to the

last radar measurement {R} with respect to the navigation

frame {G}. We will use this frame in Sec. IV-B for ad-hoc

point correspondence generation such that we do not need

to keep 3D points in the state vector in order to use distance

based measurements (Sec. IV-C).

The evolution of the state is expressed by the following



differential equations:

GṗI = GvI ,
Gv̇I = GRI

(

Ia
# − ba − na

)

+ Gg,

GṘI = GRI

[

Iω
# − bω − nω

]

×

,

ḃa = nba
, ḃω = nbω

, GṗR = 0, GṘR = 0

(4)

where Ia
# and Iω

# are the accelerometer and gyroscope

measurements of the IMU with a white measurement noise

na and nω . nba
and nbω

are assumed to be white Gaussian

noise to model the bias change over time as a random

process. The gravity vector is assumed to be aligned with

the z-axis of the navigation frame Gg = [0, 0, 9.81]
T

.

Since we use an error-state EKF formulation we introduce

the following error state vector from the states defined in

Equation (3):

x̃T = [x̃N , x̃C ]

=
[[

Gp̃I ,
G
θ̃I ,

GṽI , b̃a, b̃ω

]

,
[

Gp̃R, G θ̃R

]]

.
(5)

For translational components, e.g., the position, the error is

defined as Gp̃I = Gp̂I−
GpI , while for rotations/quaternions

it is defined as ˜̄q = ˆ̄q−1 ⊗ q̄ =
[

1; 1
2 θ̃

]

, with ⊗ and θ̃

being quaternion product and small angle approximation,

respectively.

A. Stochastic Cloning

In order to process relative measurements relating to es-

timates at different time instances, Roumeliotis and Burdick

introduce the concept of Stochastic Cloning (SC) in [9].

To appropriately consider the correlations/interdependencies

between the estimates from different time instances, an

identical copy of the required states and their uncertainties

is used to augment the state vector and the corresponding

error-state covariance matrix. Given the error-state definition

in Equation (5), x̃C is defined as the error state of the

stochastic clone of the IMU pose state xT

I =
[

GpI ,
GqI

]

and

xT

O =
[

GvI ,ba,bω

]

are the other states of the navigation

state. As cloned state is fully correlated with the IMU pose, it

leads to the following stacked/augmented covariance matrix

of the corresponding error-state

x̃ =





x̃I

x̃O

x̃C



 ,Σ =





ΣI ΣIO ΣI

ΣOI ΣO ΣOI

ΣI ΣIO ΣC



 (6)

with ΣN =

[

ΣI ΣIO

ΣOI ΣO

]

being the 15× 15 uncertainty

of the navigation state x̃N , and ΣC = ΣI being the 6 × 6
uncertainty of the cloned IMU pose error state x̃I .

The cloned pose does not evolve with time, meaning no

state transition (i.e., Φ
k+1|k
C = I) and no process noise (i.e.,

G
k+1|k
C = 0) is applied, while the original state estimate

propagates as usual. From this, the error state propagation

can be derived as

x̃k+1 = Φk+1|kx̃k +Gk+1|kwk,
[

x̃k+1
N

x̃k+1
C

]

=

[

Φ
k+1|k
N 0

0 Φ
k+1|k
C

]

[

x̃k
N

x̃k
C

]

+

[

G
k+1|k
N

G
k+1|k
C

]

wk

=

[

Φ
k+1|k
N 0

0 I

] [

x̃k
N

x̃k
C

]

+

[

G
k+1|k
N

0

]

wk

(7)

with the linearized state transition matrix Φ and the lin-

earized perturbation matrix G computed as explained by

Weiss in [20] or related work. The full error-state uncertainty

of Equation (6) can then be propagated as

Σk+1 = Φk+1|kΣk(Φk+1|k)T +Gk+1|kQk(Gk+1|k)T

=

[

Σk+1
N Φ

k+1|k
N Σk

NCI

IΣk
CN (Φ

k+1|k
N )T Σk

C

]

(8)

with I being the identity matrix (since cloned states do

not evolve in time), Q being the discretized process noise

matrix, Σk
CN = (Σk

NC)
T the cross-covariance between the

navigation error-state and the stochastic clone error-state, and

Φ
k+1|k
N the error-state transition matrix of the navigation

error-state x̃N . This propagation allows us to rigorously

reflect the cross-correlations between the cloned state and

the evolved state in our error-state formulation. The above

described formalism enables us to correctly use the state

variables in order to align the previous radar scan to the

current one prior to point matching.

B. 3D Point Matching

In order to estimate the distance to detected points using

our measurement model, we need to perform point matching

between the current and the previous radar scan aligned to

the current UAV pose. This is roughly following the idea of

[21] in order to avoid tracking 3D points in the state vector.

With a single past pose in the state vector, we can find point

correspondences in an ad-hoc fashion, as follows.

We base our point matching algorithm on work described

in [16] and [17] for 2D ground vehicle setups and extend

it to our 3D UAV setting. Having two consecutive radar

scans which are aligned using the pose information stored

in the state vector, as the first step, we solve the linear sum

assignment problem using the Munkres algorithm [22]. We

pose the problem as follows:

min
∑

i

∑

j

Ci,jXi,j (9)

Where X is a boolean matrix where Xi,j = 1 iff row i is

assigned to column j. Constraints of the problem are such

that each row is assigned to at most one column and each

column to at most one row. Entries of the C matrix are

computed as Euclidean distances between all points RpP

from a previous radar scan at time instance tp and from a

current radar scan at tc:

Ci,j = ∥Rptc
Pi

− Rp
tp
Pj
∥ (10)



In the second step, using the proposed potential matches from

the previous step, we build a matrix S of scores where each

entry is computed as:

si,j =
1

1 + ∥Rptc
Pi

− Rp
tp
Pj
∥

(11)

unless the value of reflection intensity in the current scan

is below a certain threshold or the Euclidean distance is

above certain maximum threshold. If either of the two

aforementioned conditions holds true, the entry is set to

si,j = 0. In the third step, a greedy search is performed

on the pairs of points whose corresponding entries in S

are non-zero. If a point in the previous scan has more than

one candidate for a match in the current scan, then, from

among the candidates, we choose the one which minimizes

the following expression:

di,j = |
∑

k

∥Rptc
Pi

− Rptc
Pk

∥ −
∑

k

∥Rp
tp
Pj

− Rp
tp
Pk

∥|

(12)

Where Rp
{tc,tp}
Pk

are already matched points in the current

and previous scans respectively. This idea has been exploited

in [16] and relies on the fact that subsequent radar scans

should ideally keep the relative arrangements between the

constituting points. The result of this 3D point matching part

is a set of 3D point correspondences (see Figure 3) between a

previous and the current radar scan. We can then compare the

current radar measurements with the estimated distance value

computed from the previous radar scan and the estimated

state variables as described in the following section.

Fig. 3. Matched points between subsequent scans projected onto the x-y
plane. Our matching algorithm proves to be robust in the face of outliers
and sparse, noisy 3D pointclouds.

C. Distance Measurement Model

In order to estimate the distances to the matched 3D

points in the current scan, we transform the corresponding

3D matches Rp
tp
Pj

from the previous radar scan at time

instance tp to the current radar reference frame, considering

the robot’s spatial evolution:

Rp′tp
Pj

=IRT

R

(

−I
IpR + (GRtc

I )T
(

−Gptc
I +

Gp
tp
I + GR

tp
I

(

I
IpR + IRR

Rp
tp
Pj

))) (13)

where IRR and IpR is the constant pose (orientation and

position) of the radar frame with respect to the IMU frame.
GR

{tc,tp}
I and Gp

{tc,tp}
I are the IMU orientation and position

corresponding to the previous and current radar scans at tp
and tc, respectively, with respect to the navigation frame {G}.

Note that, at this point, we could already formulate a

measurement for the matched 3D point in the past with the

currently measured one. However, as mentioned in Sec. III-C,

low-cost FMCW radars have fairly precise measurements of

the object’s distance and Doppler velocity, but heavily lack

of precision in azimuth and elevation. Thus, we transform

the 3D point from Cartesian space to Spherical coordinates

and only use the most informative dimension, the distance.

Additional measurement formulations for azimuth and eleva-

tion could be included with higher measurement uncertainty.

The low information versus added complexity and the non-

Gaussian noise distribution in these dimensions are, however,

arguments to not include them in our RIO framework.

The estimated distance, which is compared to the current

distance measurement, is calculated for each point as the

norm of the transformed point from tp:

dPj
=

∥

∥

∥

Rp′tp
Pj

∥

∥

∥
(14)

where dPj
is the distance to a single matched 3D point

Rp′tp
Pj

in the previous radar scan at tp aligned to the current

radar pose at tc. Since this measurement relates to states

from pastime instances, stochastic cloning is necessary as

introduced in Section IV-A.

D. Velocity Measurement Model

In order to estimate the velocities of the detected radar 3D

points RvPi
in the current scan at tc, we transform the cur-

rent robot ego-velocity from the IMU frame into the current

radar frame and subsequently project it onto the direction

vector pointing towards the corresponding 3D point. This is

expressed by the following measurement model:

RvPi
=

rT

∥r∥

(

IRT

R
GRT

I
GvI+

RT

R

(

Iω × I
IpR

))

(15)

where r = RpPi
is the 3D point detected in the current

scan, Iω is the current angular velocity of the IMU in the

IMU frame, and GvI is the current linear velocity of the

IMU in the navigation frame. In order to reject outliers, we

apply a chi-squared test to each measurement’s residual, in

which we check if the Mahalanobis distance corresponding

to the residual is contained within the interval defined by

the thresholds associated with a chosen percentile of the χ2

distribution.

E. Estimator Summary

In summary, our EKF-based RIO approach consists of

Eq. 4 and Eq. 8 to propagate the state and its covariance

using the IMU measurements. We then use a tightly-coupled

formulation to compare the distances of matched features

with current radar distance measurements using Eq. 13 and



Eq. 14, and also include in a tightly-coupled fashion the

velocity information the radar sensor provides using Eq. 15

to correct IMU integration errors. The inclusion of both the

point distance measurements and current point velocity in-

formation in a tightly-coupled fashion is key to the improved

performance of our approach compared to state-of-the-art

methods.

Although used in the position and velocity updates (Eq. 13

and Eq. 15), we do not keep 3D points in the state vector.

This idea is borrowed from [21] where 3D points are

triangulated from images on-the-fly without inclusion in the

state vector. Our adaptation to RIO and highly simplified

implementation of this idea suffers from reduced estimation

consistency, but results in less complexity. A thorough analy-

sis of the statistical impact of this simplified implementation

can be tackled in future work.

V. EXPERIMENTS

The above described approach enables a simple, yet com-

putationally efficient RIO method. In the following, we test

our method on a real platform with real data.

A. Experimental Setup

The sensor used for the experiments is the lightweight and

inexpensive 77GHz multichannel millimeter-wave FMCW

radar transceiver manufactured by Texas Instruments inte-

grated on an evaluation board AWR1843BOOST, shown

attached to the UAV in Fig. 1, equipped with a USB interface

and powered with 2.5V. The frequency spectrum of chirps

generated by the radar is between fl = 77GHz and fu =
81GHz. The radio frequency (RF) signals propagate in a

FoV of 120 ◦ in azimuth and 30 ◦ in elevation. Measurements

are obtained at the rate of fm = 20Hz. The radar is attached

to one extremity of the experimental platform facing forward

by a tilt of about 45 ◦ with respect to the horizontal plane

as shown in Fig. 1. This improves the velocity readings

compared to nadir view while keeping point measurements

on the ground and thus at a reasonable distance. For inertial

measurements, we use the IMU of the Pixhawk 4 flight

controller unit (FCU) with a sampling rate of fsi = 200Hz.

We manually calibrate the transformation between the radar

and IMU sensors, which is used as a constant spatial offset

in the EKF. The initial navigation states of the filter are set

to the ground truth values with a random offset drawn from

the states initial uncertainties as listed in Table I. The above

described platform is moved in a hand-held manner across a

spacious room, as shown in Fig. 4, repeatedly performing five

times the same rectangular-shaped trajectory of approximate

dimensions of slightly more than [4.5m× 5.5m] traversing

the total distance of 116.4m. The scene was augmented with

some arbitrary reflective clutter since the test environment

was otherwise a clutter-less clean lab space. No position

information from the added objects of any sort was used

in our approach other than what the onboard radar sensor

perceived by itself.

We use a motion capture system to record the ground truth

trajectories. During acquisition, we recorded sensor readings

TABLE I

INITIAL STANDARD DEVIATION OF THE NAVIGATION STATES
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0 0.32 cm 0.32 cm/s 0.1 rad 0.71m/s2 0.1 rad/s

Fig. 4. Indoor space where experiments were performed with reflecting
clutter scattered on the scene. The objects were placed randomly and no
global position (nor attitude) information of any sort was used in our
approach.

from the IMU and radar together with the poses of the UAV

streamed by the motion capture system. Our EKF-based RIO

is executed offline but at real-time speed on the recorded

sensor data on an Intel Core i7-10850H vPRO laptop with

16GB RAM in a custom C++ framework.

B. Evaluation

We evaluate our RIO approach with the data recorded in an

indoor space equipped with a motion capture system. Ground

truth trajectories as well as the estimated ones can be seen in

Fig. 5 to Fig. 8. On these plots, one can observe drift of the

estimate versus the ground truth in position and yaw, since

these four dimensions are unobservable in a RIO framework.

The amount of drift is a direct measure of quality for a given

approach.

Fig. 5. Top view of the UAV 3D trajectory. The true trajectory is plotted
in orange and the estimated one in blue. The biggest (angular) drift can be
noted after the last turn. Note the coloured dots marking the end and the
beginning of trajectories.



Fig. 6. Side view of the UAV 3D trajectory. The true trajectory is plotted
in orange and the estimated one in blue. The total of 116.4m distance is
covered.

Assessment of position, attitude, and velocity tracking

is provided on plots 7, 8 and 9 respectively. For the

position, one can clearly see the random walk behavior of

this unobservable state. On this aspect, note that the provided

metrics below are a snapshot of such a random walk (i.e.,

one of many realizations) – as are the numbers in e.g.,

[12]. Nevertheless, the vast improvement against state-of-the-

art shows that our approach generally has some beneficial

aspects.

For the attitude, the drift in yaw is clearly visible. In this

dataset we also observe an offset in pitch occurring after

the first few seconds and remaining throughout the rest of

the run. We assume a slight misalignment of the tracking

system reference frame with respect to gravity. This value is

observable in a RIO framework and will converge towards a

gravity aligned reference frame.

The 3D velocity state is observable and the plot, besides

the noticeable jitters also in the ground truth data, does not

show a particularly unexpected behavior. The ground truth

was computed by numerically differentiating the tracking

system’s position signal.

Fig. 7. Estimated position plotted in blue against ground truth plotted in red.
Note the thick black line passing through the time instant at which 60m

distance has been traversed (this is for better metrics comparison against
state of the art detailed in the text).

On figure 10 we plot the drift from the true trajectory as

percent of the traveled distance, drift in meters (norm of the

position error) and the Total Traveled Distance (TTD).

Fig. 8. Estimated attitude plotted in blue against ground truth plotted in red.
The offset in pitch angle is assumed to be caused by a slight misalignment
of the motion capture system’s reference frame and the gravity.

Fig. 9. Estimated velocity plotted in blue against ground truth plotted in
red. We compute the ground truth velocity by numerically differentiating
the motion capture system’s position.

Fig. 10. Drift as % of the TTD, position error norm and the TTD. The drift
(position error norm) remains below 4 m throughout the executed trajectory
and reaches 3.32 % at the end of the TTD.

The first tinit = 8 s of the experiment was the initialization

period during which agile motions were performed in-place

in order to initialize the filter before executing the trajectory.

All values are plotted after this initialization phase. We

choose to compare our work to the state-of-the-art approach

in [12] in which the authors use the same radar sensor to

provide metrics for their loosely coupled radar-velocity based

RIO approach using indoor hand-held data. In the following,

we show the same metrics underlining the benefit of a) tight



coupling and b) use of both distance and velocity information

from the radar sensor. Note that in the same work, the authors

also included a barometric pressure sensor in their RIO to

further reduce drift. This would, however, be a different

comparison.

Firstly, we evaluate final drift values. We can note on

the Fig. 10 that over the TTD of 116.4m we achieve a

final drift below 4m. Authors in [12] in their hand-held

experiment achieve drift close to 4m (or about 6.67%) over

the trajectory of 60m, which is roughly half of the distance

covered in our experiment. Exact numbers for our approach

are 3.86m (3.32% for TTD equal to 116.4m) and 1.54m
(2.56% for TTD equal to 60m). Next, we compare the norm

of Mean Absolute Error (MAE) of position and velocity for

TTD of 60m. For our approach, these numbers are 1.05m
and 0.38 m

s respectively, against 1.95m and 0.14 m
s for

authors in [12]. At the TTD of 116.4m the norm of MAE of

position equals to 1.36m and is still lower than the one from

[12] at 60m despite the inherent drift of the unobservable

position in RIO approaches. The norm of MAE of velocity

for our method at TTD of 116.4m equals to 0.36 m
s . The

higher MAE in velocity compared to state of the art is an

interesting fact: the velocity states are fully observable and

should converge well. For ground truth velocity generation,

we used the tracking system’s position at 100Hz and used

a median filtered, delta-time scaled difference of this signal.

This has highly limited precision and may have contributed

to the relatively large MAE in velocity.

VI. CONCLUSIONS

In this paper we presented a tightly coupled EKF based

approach to RIO in which we fuse IMU readings with both

velocity and distance measurements to 3D points detected

by lightweight and inexpensive FMCW radar. We make use

of the past IMU pose and a rigid body assumption such

that we can generate several point correspondences between

two radar scans in an ad-hoc fashion. This requires only

maintaining (through stochastic cloning) a 6DoF past pose in

the state vector compared to tracking many 3D point vectors.

In this context, we showed that our improved matching

method can cope with noisy and sparse radar point clouds

and generate reliably point correspondences between two

scans. With this, we showed that using both distance and

velocity measurements, we accomplish accurate 6D pose and

3D velocity estimation of a mobile platform (in this case

a hand-held UAV). In particular, the use of the accurately

measured distance information to a point is beneficial as it

does not include the point’s azimuth and elevation angular

information which is generally very poorly measured by low-

cost FMCW radar. Moreover, we showed that using our

method, we reduce the position drift compared to similar

state-of-the-art approach. Last but not least, our method is

applicable in a variety of environments where potentially

GNSS systems are unavailable and vision sensors, commonly

used for UAV navigation, cannot be relied upon.
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