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Abstract— Multicopter Unmanned Aerial Vehicles (UAV) are
known for their high agility and aggressive manoeuvres. Despite
significant advances in state estimation for such vehicles with
multiple sensors, their accurate state estimation in highly agile
manoeuvres is still a challenge in the research community.
In this paper, we present a radar-inertial based method for
estimating the full 6D pose and 3D velocity of a UAV includ-
ing sensor extrinsics and Inertial Measurement Unit (IMU)
intrinsics. In an Extended Kalman Filter (EKF) framework,
we fuse range measurements of corner reflectors detected by
a Frequency Modulated Continuous Wave (FMCW) radar
sensor together with IMU readings. Our tightly coupled fusion
approach and the high-frequency state correction together
with the inherent benefits of radar sensors (e.g. resilience
to aerosols, light changes, etc) enables tracking of highly
aggressive trajectories in real experiments which are shown to
be particularly challenging for a state of the art Visual-Inertial
Odometry (VIO) approach we compare against.

I. INTRODUCTION

Increasing UAV autonomy in challenging environments

is currently a widely researched topic. These lightweight,

rapidly-moving platforms have the potential to serve in

exploration of environments which are inaccessible to other

kinds of robots. Of particular interest are environments where

Global Navigation Satellite System (GNSS) signal is not

available and where cameras are not able to capture images

useful for the navigation algorithms such as VIO. Also,

in order to robustly navigate through the environment with

agility, UAVs need fast and reliable state information for

the closed-loop motion control. There exist a number of

approaches to tackle the pose estimation problem of a UAV

which fuse measurements from a camera sensor and an IMU.

These approaches, however, suffer from known pitfalls of

camera sensors like coping with a lack of lighting, lack of

features, image blur [1] and are limited by the rate at which

images are acquired by the camera sensor. These limitations

render VIO methods vulnerable in many scenarios such as

executing aggressive trajectories. There exist event cameras,

whose purpose is to mitigate some of the shortcomings of

the traditional cameras, nevertheless, event cameras remain

expensive [2], difficult to tune, and are prone to high noise

in low-light conditions.
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Fig. 1. Experimental platform used in this work and the FMCW radar
sensor mounted in its custom-made housing.

Given the previously enumerated issues, a viable approach

to estimate the pose of a UAV is to combine an IMU with a

radar sensor. Radar sensors have been successfully used in

automotive industry [3], [4], [5] for the past few years. Poten-

tially, using a radar onboard a UAV can alleviate drawbacks

of a camera sensor, since radar can acquire data at rates

several times faster than a camera while at the same time

being lightweight and insensitive to the lighting conditions

of the environment in which it operates. In addition, radars

are able to cope with fog or smoke in the air [6], making

them more robust in such scenarios. That being said, they

suffer from problems like e.g. noisy data, ghosts objects and

multipath reflections [7], making them non-trivial sensors to

be fused with other modalities.

In this paper, we present a method which uses a tightly-

coupled EKF formulation in which we fuse measurements

from an IMU with radar range measurements of targets in

the environment. This approach enables fast and accurate

provision of the UAV state estimate even in scenarios where

VIO suffers from both low rate (relative to the trajectory

agility) correction information and image blur adversely

affecting the state estimates. Also, a tightly-coupled formu-

lation allows for state updates having sparse measurements,

that is, contrarily to loosely-coupled formulations, ours does

not require a prior 3D triangulation step for which distances

to at least three features must be measured simultaneously.

This paper is organized as follows. Section II reviews

related work in the area of radar-based state estimation.

Section III gives details on basic FMCW radar theory and

our state estimation method. Subsection III-A introduces

the system overview. Subsection III-B briefly describes the



concept of FMCW radars. Subsection III-C briefly describes

how the radar signal is processed in order to be used in

the estimation procedure. Subsection III-D describes how the

range measurements from the radar sensor are matched to the

reflectors at every iteration. Subsection III-E explains how

the tightly-coupled EKF is designed. Experimental validation

of the proposed method and results are outlined in Sec-

tion IV. In subsection IV-A we report the experimental setup

we used during the experiments. Subsection IV-B presents

the results of the evaluation. Finally, we draw conclusions in

Section V.

II. RELATED WORK

Several approaches are found in the recent literature where

radar is used to estimate the motion of a mobile robot.

In [8] the ego-velocity is estimated from an IMU and

a millimeter-wave FMCW radar measurements by solving

a nonlinear optimization problem over a sliding window

of previous measurements. The estimated ego-velocity is

then compared against a VIO-obtained estimate showing

the usefulness of the method in environments with limited

lighting. This method, however, while showing good results

estimating the ego-velocity, does not provide the full 6D

pose of the robot nor any extrinsic calibration capability.

The rate at which ego-velocity is estimated is not reported,

the radar rate was only 10 Hz. In [9] a system based on

a Convolutional Neural Network (CNN) is presented, which

allows the prediction of robust features in radar images which

are then used to compute the pose between two subsequent

scans by matching the predicted features and estimating the

optimal transform between them. This system uses a high-

resolution rotating radar though. As opposed to the above

mentioned feature-based method, in [10] a direct method is

presented, that is, one where a whole radar scan information

is taken into account instead of features. Namely, a Fourier-

Mellin transform is applied onto radar cartesian and log-polar

images to estimate respectively rotation and translation of

the robot. Again though, a high-end rotating radar is used

for the state estimation. Both methods operate at frequencies

of 28.5 Hz and 10 Hz respectively which might be a limiting

factor in performing high-speed manoeuvres with UAVs. In

[11] again a rotating FMCW radar is used in a framework

with a CNN which calculates embeddings based on radar

scans in order to recognize places used subsequently to

localize the robot on a known map by computing similarities

between the embeddings. Another application of a rotating

FMCW radar for ego-motion estimation includes probabilis-

tic landmark extraction and subsequent scan matching [12].

Importantly, the size, cost and power consumption of the

rotating radar sensor used in [9], [10], [11], [12] is a heavily

limiting factor for its use in UAVs [13]. In [13] an approach

to Radar-Inertial Odometry (RIO) is presented on a slow

turtlebot which uses a lightweight and low-cost FMCW radar

with no modifications to the environment. In this approach

the Normal Distributions Transform (NDT) is used for

scan matching. Matched scans are used for pose estimation

which is fused with IMU in an Unscented Kalman Filter

(UKF). The presented method achieves centimeter precision

Fig. 2. Corner reflectors used in our experiments.

in indoor environments, it is however not evaluated on fast

and aggressive motions for which data associations would be

much more challenging and also requires Angle-of-Arrival

(AoA) information from the radar which is known to have

very poor resolution on low-cost FMCW arrays [7], [14].

In [15] authors show an EKF-based method which fuses

ego-velocity estimated from a single millimeter-wave FMCW

radar scan using linear least squares with IMU measurements

to estimate the state of a UAV. However, to compensate

for the large height-measurement error the authors add a

barometric altitude sensor to the system. Also, aggressive

manoeuvres are not in the scope of the evaluation of that

approach. In [16] an approach to VTOL is presented using

FMCW radar measurements to known targets fused with

the IMU. Fusion is achieved within a loosely-coupled EKF

making use of the noisy 3D point measurements instead of

the more accurate distance readings. In [17] authors present a

radar-based method for 3D localization in landing situations,

nevertheless the radar used in this work is a bulky cooperative

sensor.

Our work contributes a method for fast and accurate state

estimation suitable for a rapidly moving UAV using a single

small, lightweight, and low-cost FMCW radar measuring

ranges to so-called corner reflectors [18] in the environ-

ment and an IMU sensor. The approach uses reflectors at

known positions and self-calibrates system extrinsics, IMU

extrinsics, and estimates the 6DoF pose with 3D velocity. We

show that with this method we can outperform VIO when

sharp and aggressive motions are executed. Moreover, the

presented approach can be used in environmental conditions

completely prohibitive for VIO like fog or lack of light. We

evaluate our approach experimentally and compare against

the state-of-the-art VIO algorithm in [19], using the platform

shown in Fig. 1. Although VIO is generally thought of as

an odometry approach where no external global features are

used for positioning, in our work we use a VIO with per-

sistent features that render it locally non-drifting. Persistent

features are robust features seen in the environment and

which thus are added to the state vector. Consequently, if the

motion is such that these features are continuously in the field

of view, they (locally in this area) eliminate the drift. The

fact that in our experiments the UAV operates in the same

restricted area allows the persistent features to be always

in the field of view allowing a fair comparison against our

RIO approach. Comparison with the existent RIO approaches

used on UAVs such as [20], [15], [21] is not as meaningful



as with a VIO that includes persistent features since the drift

is always present in those, making the contrast unfair.

III. METHODOLOGY

A. System overview

We consider our approach a tightly coupled approach since

we use the one-dimensional distance measurement from the

onboard radar sensor to a radar target as information for

IMU integration correction. We do not pre-process several

distance measurements from several targets to triangulate

first a 3D position to only then use this result as position

correction. Compared to the pre-triangulation method, our

tightly coupled approach has several advantages: first, a

quick non-linear observability analysis shows that all motion

states including IMU biases are locally observable if the

system is excited in acceleration and angular velocity while

observing only one target (intuition to this fact can be

gained from [22]). Thus, the radar does not need to observe

all targets at once like in the triangulation pre-processing

approach. Note that, at least sequentially, it needs to observe

at least two different targets to eliminate any gauge freedom.

Second, omitting the pre-processing step from the distance

measurement to a 3D position measurement reduces the dis-

tortion of the noise characteristics that may otherwise impact

the EKF assumptions on Gaussian distributions. Third, we

can process measurements as they arrive and do not need

any sort of synchronization between the targets. Fourth, the

only geometric condition to avoid singularities (in this case

to eliminate the gauge freedom in 3D position and yaw) is

that at least two targets have different positions in a direction

perpendicular to gravity (i.e. in the xy-plane).

Our estimator setup is such that at least two of the

targets need to be placed at known location to eliminate said

gauge freedom (3D position and yaw), positions of addi-

tional targets can seamlessly be integrated in the estimation

process. For the initialization of additional targets online,

the approach in [23] could be adapted to use initial distance

measurements from a newly observed target. That said, in

this paper we only focus on the radar-inertial estimation of

the motion states as proof of concept.

The targets generate a clear signal in the radar receiver.

We perform a Fast Fourier-Transform to extract the distance

to each target and then use this information in the EKF

framework. The data association is done by matching the

measured range closest to the expected range calculated from

the current vehicle pose and a given target location. The

following subsections detail each step further.

B. FMCW Radar Theory

FMCW radars rely on frequency-modulated continuous

waves emitted into free space. In case of linear sweeps, such

signals are known as linear chirp signals described by

xT (t) = Aej
(

ωt+πSt2
)

+A∗e−j

(

ωt+πSt2
)

(1)

where (·)∗ denotes the complex conjugate, A is the signal

amplitude, S = B
Ts

is known as the chirp rate, ω = 2πfT

is the lower chirp frequency, and B is the bandwidth of

the signal. FMCW radar sensors usually transmit multiple

chirp signals as described by Eq. (1) sequentially in time.

Surrounding objects in the vicinity of the radar sensor reflect

the emitted signal and are captured by the receiver antenna.

The resulting signal at the receiving element of the radar can

be modeled as a time-delayed and damped copy of xT (t).
This time delay is known as the Time-of-Flight (ToF) and

is given by τ = 2(d+vt)
c

where c is the speed of light, d is

the distance to the object, and v is the object’s velocity. The

received chirp signal is processed in an electronic mixer and

low-pass filtered giving a signal modeled as

xR(t) = Ãejγ(t) + Ã∗e−jγ(t) (2)

where γ(t) = 2τ(ω + 2πSt− πSτ). For digital processing,

the receiver signal xR(t) is discretized using an Analog-to-

Digital Converter (ADC) operating at a sampling rate fs.

Each chirp is represented by a finite sequence with length

denoted as number of samples Ns. Changing Ns or Nc

affects sensing range dmax as well as range and velocity

resolution ∆r and ∆v, respectively. These quantities are

summarized by

dmax =
Nsc

4B
∆r =

c

2B
∆v =

λfs

2NcNs

(3)

where λ is the wavelength of the electromagnetic wave [24].

C. Radar Signal Processing

Range and velocity can be determined from the so-called

instantaneous frequency obtained as the time-derivative of

the exponent in Eq. (2), fi(t) =
1
c0

(

ω
π
v + 2Kd0 + 4Kvt

)

.

The first term is known as the Doppler shift, the second term

only depends on the range, and the third term is the change

of the frequency due to movement of the object. By using

signal processing techniques such as Fast-Fourier Transform

(FFT) processing, these quantities can be extracted from the

instantaneous frequency. By using multiple receiver anten-

nas, extraction of spatial information of surrounding objects

is achieved. Due to the spatial separation of the receiver

antennas, the measured signals at each receiving antenna will

be phase shifted,

ϕant =
2πdant

λ
(4)

where dant is the separation distance between receiving

antennas. Based on the antenna arrangement, either azimuth

or elevation angle of objects with respect to the radar can

be determined. Using antenna arrays, both angles can be

estimated. The angular resolution of a FMCW radar is mostly

limited by the number of receiver antennas NRX. Single

objects can be estimated very accurately using low number of

antennas. However, resolving multiple closely spaced objects

remains a difficult task using few receiver antennas

In the proposed work, the receiver signal is convolved

with a Hamming window to minimize spectral leakage. Very

low and high frequency contributions which are not in the

region of interest are filtered out using a bandpass filter.

The bandpass filter was designed with cut-off frequencies



mapped to ranges rc,L = 0.1 m and rc,H = 1.7 m to

suppress frequency peaks caused by noise and multipath

reflections. After filtering, the signal is thresholded above

an experimentally obtained value of cnoise = 0.15 and the

resulting signal is searched for clusters. The frequency value

corresponding to the maximum value of each cluster is

returned and mapped to a range value (Fig. 3).

Fig. 3. Range-amplitude plot after performing FFT of the radar raw signal.
The dashed red lines depict thresholds assumed for cropping the radar signal
in frequency (mapped to range) and for application of the threshold above
which targets are identified.

D. Data association

With the output of the processing module we obtained

range values of all targets in the field of view of the radar

sensor. Compared to obtaining Doppler velocity information

or angular information, the range values only need a single

FFT pass for calculation. This enables very fast measure-

ments and subsequent propagation correction in the estimator

framework. However, this lightweight data processing comes

at the difficulty of data association. Each identified peak (i.e.

measurement) in the range-amplitude plot (Fig. 3) needs to

be associated with a target in the world to derive the neces-

sary correction in the EKF formulation. For this association,

we first compute estimates of the ranges between the current

vehicle position and the targets from the information we have

at the current time step. Then, a greedy search is minimizing

the error of a given measurement with the computed possible

range estimates. If the previous radar scan already had a

similar range measurement, this information is included as

a prior. Since the radar scans are very fast compared to

the vehicle motion, this element helps speeding up the data

association process. The matched range measurement with a

target forms then an update information pair for the EKF. If

a range measurement differs more than 3 cm to any possible

target range, then the measurement is discarded.

E. Tightly coupled Extended Kalman Filter formulation

The EKF framework uses an IMU for the propagation

of the state formulation defined by Eq. (5). The states are

the position of the IMU/body frame pWI and velocity vWI

expressed with respect to the world frame, the orientation

of the IMU in the world frame qWI , gyroscopic bias bω
and accelerometer bias ba. The 3D translation between

the onboard radar senor and the IMU is expressed as the

calibration state pIS in the IMU frame. riW represents the i-

th corner reflector (i.e. radar target) 3D position in the world

frame with i = 1, 2, .... Note that at least two such targets

need to be known and fixed to eliminate the gauge freedom.

The full state vector X is then defined as follows:

X =
[

pTWI , v
T
WI , q

T
WI , b

T
ω , b

T
a , p

T
IS , r

i
W

T
]T

(5)

The system dynamics of the core states are defined according

to [25]. The dynamics and process noise of the calibration

state pIS are assumed to be zero because of the rigid body

assumption. In our setup, riW are kept fix as known values.

The EKF framework uses a regular error state (including

error quaternion) definition. Please note that this work uses

the Hamilton notation for the Quaternion representation [26].

An estimated range measurement ẑi from the radar sensor

to a target i and the corresponding error using the true

measurement zi from the data association process can then

be defined as

ẑi = |riW − (pWI +R(qWI)pIS)| (6)

z̃i = zi − ẑi (7)

Where R(qWI) rotates a vector from the IMU frame to the

world frame using the quaternion qWI and | · | represents

the L2 norm. This renders the update step very efficient for

any number of currently visible targets by the radar sensor.

With a standard computer, we achieve an update rate of about

90 Hz in our setup described below.

IV. EXPERIMENTS

The above described method enables a simple, yet com-

putationally very efficient radar-inertial state estimation with

self-calibration capabilities (IMU intrinsics, radar-IMU ex-

trinsics). In the following, we test our method on real

platforms with real data.

A. Experimental setup

The sensor used for the experiments is the lightweight

60 GHz multi-channel FMCW radar transceiver Infineon

BGT60, shown attached to the UAV in Fig. 1, mounted on

the Infineon XMC4500 board equipped with a USB interface.

The frequency spectrum of chirps generated by the radar

is between fl = 57 GHz and fu = 63 GHz. We set the

sampling frequency to fsr = 2 kHz, the number of samples

to Ns = 200 and the number of chirps to Nc = 20. For

inertial measurements we use the IMU supplied on the PX4

platform. We set the sampling rate of the IMU to fsi =
200 Hz. For comparison with VIO, we use images grabbed

by the onboard mvBlueFOX-MLC camera connected over

USB. We set the frequency of the camera to fsc = 20 Hz

which is a reasonable choice from the potential on-board

processing viewpoint. Although VIO can benefit from the

stereo-camera setup, we do not make use of it because of

the limited payload of the UAV. We set the camera exposure

time to e = 8 ms for a typical indoor scene.

We placed three corner reflectors (Fig. 2) as radar targets

at the locations CR1 = [x = 0.23, y = 0.65, z = 0.36]m,



CR2 = [x = 0.52, y = 0.53, z = 0.48]m and CR3 = [x =
0.48, y = 0.86, z = 0.59]m.

We then acquired two datasets performing highly aggres-

sive hand-held trajectories with the platform in Fig. 1. Each

acquisition involved very sharp and aggressive movements

(norm of max. angular velocity ω = 12.6 rad
s

, norm of max

linear acceleration a = 33.0 m
s2

) of the sensor rig such that

high motion blur was affecting the camera sensor. Fig. 4

depicts the setup from the onboard camera view with motion

blur above the well textured area (left) and a sharp image on

the low textured area (right). The trajectories were carried out

just above the set of three corner reflectors (Fig. 5) allowing

the same (visual) feature set to be visible during the entire

experiment and thus allowing the VIO to leverage persistent

features for locally non-drifting estimation. A sample range-

Doppler reading by the radar of such a scene is depicted in

Fig. 6. The two acquired datasets are recorded with feature-

poor and feature-rich backgrounds in order to see the effect

the background has on the VIO performance.

Fig. 4. Radar target setup shown from the onboard camera view. Left:
above well textured area during a high-speed motion causing significant
motion blur. Right: still phase above low textured area.

During acquisition, we recorded sensor readings from the

camera, IMU, and radar together with the poses of the

UAV and corner reflectors streamed by the optitrack system

for ground truthing. Both estimators, our EKF-based radar-

inertial state estimation and OpenVins [19] as state of the

art reference VIO are run offline on the recorded sensor data

on an Intel core i7 vPRO laptop with 15 GB RAM. For a

fair comparison of the proposed methodology with the VIO,

we carefully fine tuned the feature tracker (incl. persistent

features) of OpenVins to get the best possible result out

of the VIO algorithm given the high aggressiveness of the

performed movements and the challenging amount of motion

blur contained in the camera images.

B. Evaluation

First, we evaluate if our proposed data association yields

adequate results to be used as update information in our

EKF estimator framework. For this, we compare the mea-

sured ranges using the approach described in Sec. III-D

to the ground truth range computed from the Optitrack

measurements of the radar sensor and the corresponding

target 3D position. Fig. 7 depicts in red the ground truth

ranges during a 25 second long test and shows in blue the

measurements obtained with our method. Note that often, our

approach could not clearly associate the measured ranges to

a target (gaps between the blue stars). This is due to the

noise in the radar reading and our gating approach such

Fig. 5. Ground truth trajectory of the UAV above the set of three corner
reflectors. Trajectory of the UAV is plotted in blue, green, magenta and red
diamonds are the corner reflectors placed on the floor, the black and yellow
dots are final and initial UAV positions respectively.

Fig. 6. Range-Doppler map generated from a typical scene as shown
e.g. in Fig. 4 from the three corner reflectors. The ellipses in the velocity
dimension are fairly wide which reflects high uncertainty of the Doppler
velocity measurement. Thus, and because of the lighter computation, we
only use range measurements in our approach.

Fig. 7. Ranges measured with radar matched to the ground truth. Ground
truth is plotted in red, matched radar range in blue.

that any measurement differing more than 3 cm to any

possible target range is directly discarded (see Sec. III-D).

That said, our tightly coupled estimator approach is resilient

to intermittent target losses as any available measurement

is seamlessly used as 1D measurement whenever available.

Fig. 7 shows this particularly well around t=15 s where

only the first target yields measurements. From this data

we measured a standard deviation of σm = 1 cm for the

measurements. This noise value was included in the EKF



TABLE I

EXPERIMENTS AND RMSE AFTER CONVERGENCE

pos [m] roll [deg] pitch [deg] yaw [deg] drift [%]

well textured scene

Ours 0.0268 0.7861 1.3476 1.2105 7.0985

VIO 0.0894 0.9272 0.6389 3.7205 13.2782

poorly textured scene

Ours 0.0311 1.1901 1.3047 1.4743 5.1859

VIO 0.2183 1.1429 0.7438 8.9878 19.9222

process. As Fig. 6 shows, Doppler velocity could additionally

be extracted from the radar signal. However, it significantly

increased computational load for its calculation, as it requires

to compute the FFT across all ranges for each chirp, and

the fact that velocity is already observable with only range

measurements are all factors that do not motivate to use the

Doppler velocity as measurement. With our implementation

we achieve an average range measurement rate of about

90 Hz.

Second, we test the estimator performance when the

extracted ranges are fused together with IMU in an EKF

framework. We compare this radar-inertial estimation with

visual-inertial odometry for highly aggressive maneuvers.

Fig. 8 and Fig. 9 show the absolute position error plots

for our approach (red) and VIO (green) compared to the

Optitrack ground truth in well-textured and poorly-textured

scenes respectively. With the well tuned VIO, we managed

to achieve non-diverging results for the VIO algorithm in

both cases. A non-negligible drift (final error divided by

overall path length), however, persists for both cases: about

13% for the well-textured scene, and nearly 20% for the

poorly-textured one (see Tab. I for details). Fig. 10 shows a

similar plot for the attitude error in the well-textured test. The

unobservable yaw is most affected by the challenging data

since the persistent features are lost due to the motion blur.

We encourage to not take the figures and Tab. I as direct

comparisons between the two algorithms since this would

compare unobservable states in VIO against observable ones

in our approach. Rather, they show the behavior of the

approaches in challenging situations: for VIO they show

an order of magnitude higher drift than usually reported in

literature discussing well-behaving scenarios despite data-set

specific tuning of the VIO algorithm. The increase in drift

is caused by the VIO not being able to consistently keep the

persistent features because the high motion blur. With the

lack of their locally non-drifting information, the algorithm

thus goes back to the mode in which only odometry infor-

mation can be used. For our approach, the figures show an

RMSE below 3 cm in position despite the very agile motion

and only using sequential 1D range measurements for IMU

integration correction.

Third, we evaluated the self-calibration capability of

the proposed estimator. Fig. 11 shows the evolution of the

extrinsic calibration state pIS representing the 3D translation

between the onboard IMU and radar sensor. After a wrong

initialization, the state converges well.

Fig. 8. Absolute position estimation error for feature-rich scenario. Errors
for VIO are plotted in green, for our radar based approach in red. The
position drift of the VIO is more than 13% showing the impact of the
challenging data.

Fig. 9. Absolute position estimation error for feature-poor scenario. Errors
for VIO are plotted in green, for our radar based approach in red. With our
best tuning efforts, we managed to get non-diverging results and a position
drift of about 20% for VIO.

Fig. 10. Attitude estimation error for the feature-rich scenario. Errors
for VIO are plotted in green, for our radar based approach in red. The
challenging motion clearly affects the (unobservable) yaw drift of the VIO.

Fig. 11. Estimated translation pIS between radar and IMU sensors for
one of the experiments (feature-rich scenario). x, y and z coordinates are
plotted in red, green and blue respectively.



V. CONCLUSIONS

In this paper, we presented a method which uses a tightly-

coupled formulation of an Extended Kalman Filter in which

we fuse measurements from an IMU with range measure-

ments from a low-cost and lightweight FMCW radar. We

presented a data association method to match targets in the

environment with the signals in a radar scan. To eliminate

any gauge freedom, we fixed at least two targets defining

the gravity aligned world frame and can seamlessly include

additional target positions due to the tightly coupled estima-

tor formulation. We showed that this approach enables fast

and accurate estimation of the UAV pose even in scenarios

where VIO suffers from the image blur adversely affecting

its accuracy (despite using persistent features for locally non-

drifting information). Our computationally simple approach

only extracting range information from the raw radar signals

and use them as sequential 1D measurements in an EKF

formulation enabled estimator update rates of about 90 Hz.

Our EKF formulation is capable of estimating the navigation

states, IMU intrinsics, and radar sensor extrinsics. The fast

and motion-blur free measurements are particularly relevant

for UAVs performing aggressive manoeuvres. As the next

steps, moving from this rather area-bound proof of concept

presented here, we will integrate radar sensors with longer

range and perform larger tests that dynamically include

multiple targets in an online estimation process to fully

leverage the potential of the here presented approach.
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