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Abstract— Collaboratively estimating the state of two robots
under communication constraints is challenging regarding com-
putational complexity and statistical optimality. Previous work
only achieves practical solutions by either disregarding parts
of the measurements or imposing a communication overhead,
being non-optimal or not entirely distributed, respectively.

In this work, we present a centralized-equivalent but dis-
tributed approach for pairwise state estimation where two agents
only communicate when they meet. Our approach utilizes ele-
ments from wave scattering theory to efficiently and consistently
summarize (pre-compute) past estimator information (i.e., state
evolution and uncertainty) between encounters of two agents.
This summarized information is then used in a joint correction
step taking into account all past information of each agent in
a statistically correct way.

This novel approach enables us to distribute the pre-
computations of both state evolution and uncertainties on
the agents and reconstruct the centralized-equivalent system
estimate with very few computations once the agents meet
again while still applying all measurements from both agents
on both estimates upon encounter. We compare our approach
on a real-world dataset against a state of the art collaborative
state estimation approach.

I. INTRODUCTION

For systems with multiple, autonomous agents, pairwise
estimation of states between two agents is key for precise
and robust localization in challenging environments. Features
like sensor sharing (e.g., propagating global information
from a GNSS reception on one agent to the other) or
instantaneous capturing of a dynamic scene via shared pose
information and the resulting variable baseline-stereo setup
[1][2] are only some of the benefits that directly result from
an accurate pairwise state estimation across two agents. As a
specific real-world example, the variable and ad-hoc baseline
formation finds application in e.g., landslide or avalanche
monitoring, where two aerial agents can form a flexible,
sufficiently large baseline on-demand and use their cameras
for joint photogrammetric reconstruction of the dynamic
events.

Optimal results in terms of consistency and accuracy of
the estimated states of the system can only be achieved
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with centralized fusion of all information of both agents
each time a new reading is processed. This is generally
computationally not tractable for small mobile systems with
limited computing power. Current approaches either approxi-
mate inter-agent correlations or assume them to be unknown.
Other approaches that maintain correlations between agents,
on the other hand, need to communicate when global pose
information becomes available to keep the belief equivalent
to the centralized fusion.

Our approach for a centralized-equivalent decoupling
scheme utilizing elements of the scattering theory efficiently
solves estimation problems with pairwise communication
constraints. We show that this theory, typically used in
physics, can also be used for pairwise state estimation,
requiring communication only on meet-ups, i.e., when one
agent can sense the other and locate itself relatively to it.

The analogy between waves traveling through media and
estimation problems was partially covered in our previous
work [3]. However, the focus was only on interpreting
measurements as sections of a scattering medium, leading to
remarkably fast covariance pre-integration by concatenating
those sections into one medium. A vital aspect of this work
is to complete the previous theory with reusable mean pre-
computations of the state variables, again by using methods
of wave scattering and considering estimates to be waves.
Information from measurements summarized in this way can
be distributed and directly re-applied by estimators. In partic-
ular, the ability of scattering theory to smooth estimates, i.e.
estimate states of the past with more recent measurements,
and to change the initial conditions are essential for the
presented distributed estimation approach.

We show in this work that both the covariances and the
means can be computed with just a few steps using Scattering
Theory. All the advantages like changing of initial conditions
and concatenating measurements also carry over to the mean
computations. The main limitation is that scattering theory
was developed for linear systems. Therefore, we present
methods to apply it on non-linear systems that paves the way
for efficient distributed estimation in a multitude of realistic
estimation problems.

Our contributions are:

« Extending previous work on linear systems [4] to cover
efficient mean and covariance pre-computations for non-
linear systems by the use of scattering theory (IV-C).

o Centralized-equivalent estimates under asynchronous
communication constraints for pairwise distributed state
estimation on computationally constrained vehicles (V).

o Comparison of the proposed method to a centralized



implementation using real data (VI).

II. RELATED WORK

Before introducing the related work, the terms centralized
and centralized-equivalent are explained. Centralized estima-
tion refers to an estimation approach, where all measure-
ments of each agent are processed in one entity leading to
the statistically best possible beliefs. This approach requires
constant communication between the central entity and all
the agents. If the communication overhead is intractable,
the next best estimation scheme is the centralized-equivalent
estimation. Compared to the centralized version, the commu-
nication is reduced in some way. However, once the agents
can communicate, a belief can be computed equivalent to
the centralized version, i.e., a centralized-equivalent belief
is achieved. In the past decades, different filter-based ap-
proaches for collective multiagent localization have been
presented. Previous approaches can be roughly classified as
(i) centralized-equivalent (e.g., [5], [6]), (ii) approximated
(e.g., [7], [8]), (iii) covariance intersection based methods for
unknown correlations (e.g., [9], [10]), (iv) optimizing corre-
lations (e.g., [11]), and (v) graph-based methods (e.g., [12]).

The general challenge in all these approaches remains
to decouple (statistically) the individual agents to relax the
communication constraints, while at the same time maintain
and account for coupling/cross-correlations between agents
to achieve statistically optimal and consistent estimates.
Current approaches apply different decoupling strategies at
the cost of estimator consistency.

In i) [6], Kia et al. proposed a centralized-equivalent de-
coupled approach based on passing messages with correction
terms after joint or global observations to the rest of the
agents in a network.

The approximated decoupled filter approaches (ii) are a
reasonable choice for real-world applications in terms of
scalability regarding the number of involved agents, commu-
nication constraints, and accuracy with respect to centralized
equivalent approaches, while not being consistent. Luft et
al.’s approach presented in [7] requires communication only
when agents meet (O(1)) and the maintenance effort for the
interdependencies scales with O(N) for N agents.

At high sensor rates, as it is the case for systems using
an IMU as propagation sensor (in aided inertial systems the
rate is typically between 100 Hz — 1 kHz), the mainte-
nance effort was identified as a limitation for large swarms.
Therefore, Jung and Weiss [8] proposed the use of common
correction buffers, allowing the maintenance cost to scale
with O(1) with increasing number of known agents.

In contrast to these desired properties of [7], [8], one
major disadvantage remains: directly or indirectly correlated
agents that are not participating in the current observa-
tion between two other agents do inherit the information
of this observation. Meaning that their beliefs experience
no correction despite their (theoretical) coupling via cross
correlation terms. The reduced computational complexity of
these approaches is often favored over the resulting loss in
accuracy.

As for the works [9], [10] of iii), unknown correlations
are only an issue if the inter-agent correlation terms are
not maintained although the agents interacted in the past.
Otherwise, inter-agent correlations can be assumed to be
zero if they never met. Similarly in iv) [11], the inter-
agent correlations are not maintained and must be inferred
via optimization and consistency considerations. They can
therefore not be completely recovered.

In our previous work, we used Scattering Theory (ST)
[13], [14], [4] to perform covariance pre-integration in a
single-agent multi-sensor setup [3] and further developed our
findings [15] for single agent invariant filtering approaches
[16], [17], [18] to enable statistically consistent covariance
pre-integration.

Levy et al. [19] also propose a scattering based distributed
estimation strategy, but in contrast to our work, they need to
the smooth the distributed estimates in an additional opera-
tion before they have the centralized-equivalent estimates.

This work achieves centralized-equivalent accuracy and
consistency for a pair of agents in contrast to ii), iii) and
iv), while still needing to communicate less than i) (we do
not need to communicate global information immediately).
Our approach takes past private observations of the other
agent into account upon a joint observation, where a private
denotes a measurement that only concerns the local state of
an agent, and joint denotes a measurement that concerns both
agents.

We achieve centralized-equivalence in two steps by em-
ploying efficient pre-computations through the use of the
scattering theory distributed on each agent as they move and
measure independently. We require communication between
the two agents to exchange pre-computations only at meet-
ups when joint updates are performed (like, e.g., [7], [8]).
In doing so, we do not require extensive bookkeeping or
information distribution across the entire swarm of agents
- two important drawbacks for other centralized-equivalent
approaches, e.g., [5], [6].

The rest of the paper is organized as follows: We first
develop the necessary tools for a single agent in Sec.
The covariance pre-computations derived in the form of
scattering matrices are discussed in as they are needed
for the mean pre-computations. In we derive source
vectors used as pre-computation elements for state mean
values. The novel extension to non-linear systems is shown
in Then, in Sec. [V] we bring the elements of the
single agents together to a pairwise estimation approach
for the mean and covariance computation. The
approach is evaluated on a dataset for differential wheel
robots in Sec. [VIl and in Sec. we draw the conclusions.

III. PRELIMINARIES AND DEFINITIONS

In this section, the fundamental definitions for our ap-
proach are presented and the notation is defined. A linear
system with additive zero-mean white Gaussian noise n,,, n,,
respective noise covariances X, and X, state X, measure-
ment y and control input u in discrete time is given below.
System matrices F and B describe the linear propagation



and H the linear measurement. Subscript ¢ refers to the time
step:

n, ~N(0,3.) (D)
n, ~N(0,%,) (2

Xi+1 = Fix; + Biu; + 10y s
yi = Hix; +ny;

A different non-linear system with additive zero-mean
white Gaussian noise is defined below with the measurement
function &() and system propagation function f(). Using the
same noise, state, control input and measurement variable
names.

n, ~N(0,%,), 3)
n, ~N(0,%,). “4)

The Jacobians of the measurement and the propagation
function with the used linearization points (e.g. subscript x =
X, X is an estimate) are defined below. These matrices are
later used for linearized systems, hence the same name as in
the linear case:

Xit1 = f (Xi, W) + Do,
Vi =h(xi) +ny,,

o af(x,u) o Oh(x)
Fl B 0x X =%;,u=u; Hl B o0x x=%; (5)
State estimates are described by the mean X;; and the

covariance Pi‘j. Furthermore, ¢ indicates the time of the
estimated variable and -|j indicates that all measurements
up until time j are considered. Considering a linear or non-
linear system with given initial conditions {xq,Po} and all
measurements [yo...yn;Up...uy—1] from time 0 to N,
there are three different linear least mean squared estimates
for the state x; at time i: the filtered estimate X;); which
is considering [yq...y:; U ... u;—1], the predicted estimate
X;)i—1 which is considering [yo...y;—1;U0...u;_1], and
the smoothed estimate X; which is considering all mea-
surements [yo...yn;Uo...uy—1]. The estimates X;;_;
and X;|; can be computed with a Kalman Filter or Extended
Kalman Filter (EKF), that is also providing the innovations
e; =y; — H;X;,_1 or e; = y; — h(%X;);_1) and their covari-
ance R, ; during the filtering process. The innovations are
not used in an implementation but are needed for derivations.

IV. SINGLE AGENT PRE-COMPUTATIONS WITH
SCATTERING THEORY

The core aspect of this paper is to consider all private
observations two agents may have had between their previous
and current encounter in a statistically correct fashion. The
method should be equivalent to a fully centralized approach,
but with reduced compute and communication requirements.
The centralized version updates all beliefs of all agents
whenever an agent receives an observation. Our approach
is to continuously process all observations of the agents
separately (distributed) as they move to pre-computation
terms, and then exchange them with the other agent when
they meet. Using these exchanged pre-computations and then
applying the joint measurement is statistically equivalent to a
centralized approach. For our EKF setup, the above involves
precomputations for the covariance and the mean.

A. Covariance Pre-Computations as Scattering Matrices

A quick recapitulation of the previous work on covari-
ance pre-integration [3] will introduce the basic concepts in
scattering theory for covariance pre-computations, which are
useful for example, to update with delayed measurements or
to perform pairwise estimation.

We show how many measurements are combined into one
element S, such that all measurements can be later applied in
one step. We are considering a non-linear system as in Eq.
and {4| First, we bring propagation and update measurements
to the same form as scattering matrices by using their
respective generators M, ; or M,, ; in Eq. . (F,X,) and
(H,X,) are the Jacobian and noise covariance of the state
dynamics and measurements, respectively. The subscripts ¢
and m indicate time propagation and measurement. Next,
we can combine generators, i.e. measurements, by using the
start product [14] Eq. to a single scattering matrix Sﬁ N
in Eq. (9), which is in fact the single agent covariance pre-
computation. For a given initial covariance P; o at time ¢,
we can compute a covariance Py ; = Py at time N
considering all measurements between 7 and N and as shown
in Eq. (E;GP S, n (later used for smoothed estimates) differs
from §; y in that the initial conditions are already applied.

a b A B

S=85 %8 = {c d} * [C D} 6)
[ AT -bC)"ta B+ Ab(I-Cb)™'D o

o _c—|—dC’(I—bC)_1a d(I—Cb)_lD

[F; X, . I 0
M;,; = o F;‘F} M, = [—H?E;lHi I} (8)
SZQ,N =M * My x My i1 * My ig1x...x«Mynv_1 (9)

[T Py o | ®ni  Pny

Si,N = _0 I } *Si,N = |:_ON,'L q,%j (10)

The next set of equations explaining the entries of S; y
is not required for implementation but is a necessary part of
the theory to understand the mean pre-computations. The
first equation Eq. describes the closed loop transfer
function that is required mainly to compute cross-covariances
from innovations to states. Eq. (I2) is the covariance of the
estimation error after all measurements are applied. Eq. (I3)
is called the observability Gramian and is also at the same
time the covariance of the adjoint variable, which is essential
for smoothing and will be introduced in Sec. [[V-B]

Py =Pp(N,i) =Fp,n1Fpn_2...Fp; (11

Pni=Pnin-1 (12)
N-1

Oni= ) &, (j,))Hj R, jH;®,(j, i) (13)
p

®,(i,i) =1 Fpi=F, - K,;H; (14)

K,:=F,PH/R;! R.;=HPH +%, (5

B. Mean Pre-Computations as Source Vectors

The scattering theory has two integral components: the
scattering medium and the waves that travel through the
medium. In simple terms, we treated covariances as (parts
of) scattering media and derived efficient pre-computations



for covariances. Here we will treat estimate means as waves
and achieve similar mean pre-computations. In particular, X
can be considered the forward-in-time wave and the adjoint
variable X as the backward-in-time wave. The adjoint vari-
able is required in the context of smoothing and is described
at the end of this subsection.

In parallel to covariance pre-computations as in Eq. (7H9),
a similar procedure is done for the means. We are considering
a linear system as in Eq. and describe the differences
for a non-linear system in Sec. Note, all variables in
this subsection are defined in Sec.

First, we bring propagation u; (subscript t) and update
measurements y; (subscript m) to the same form as source
vectors by using the Eq. (I6). Every measurement defines
a scattering section {S, s}, consisting of a scattering matrix
and a source vector. To combine source vectors of scattering
sections {S;, s, } and {S,, s, } to one source vector s the dot-
sum is used, as defined in Eq. (I7). The scattering matrices
are defined as in Eq. (6).

[Biu; 0
m,; = 0“} m, {HTE_ } (16)

y,i Y

cmsen= ] [gi]

=)o dele 1) [
T 0 d c I R
_[RrR* A(I =bC)"Hr"T +bR7)
- ] {d(Ibe)’l(R +Crt )}

Finally, many measurements (i.e., their source vectors)
are combined, as in Eq. (I8). These are the single agent
mean pre-computations for linear systems. After adding
the initial conditions, as in Eq. (I9), the resulting source
vector s, 5 solves two estimation problems simultaneously:
The estimation at time N as Xny|ny-1 and the adjoint
variable for smoothing at time 7 as Ay, given all mea-
surements [y;...yn-1;U;...ux—1] and initial conditions
{xi,0,Pio}-

amn

r

0
Si,N =My ; ©MMyy ; 1Mt 41 1My 541 @ ...

o]

The innovations approach presented below helps us to un-
derstand the meaning of the adjoint variable A;y_; from Eq.
and how smoothed estimates X; y_; are defined, which
will be helpful for the derivations in Sec. |V} The covariance
is denoted (-,-) and (x;,e;) = P,»|i_1<I>p(j,i)THjT is just
presented without derivation.

empy, v-1 (18)

sin=sos)y = [’;N‘N—l] (19)
i N—1

N-1

- —1

Xi|N—1 Z xi,ej)(ej, e;) e (20)
j=0

N-1
= Rjji—1 + Z(Xi,ejﬂeﬁej)*lej
Jj=1i
N-1
—X'L\z 1+P'L\z 1Z¢ ]7) H R_l
j=i

= Rili—1 + Pijic1 v 2n

C. Extension to Non-Linear Systems

The Extended Kalman Filter (EKF) is a special case of
the linearized Kalman Filter, where the linearization points
are taken as the last state estimates. On the same linearized
system that the EKF is applied, also the mean computations
of the scattering theory can be applied. This only requires
certain pre-computations (Eq. (9) and Eq. (I8)) to be done,
while the EKF is applied to the measurements for the first
time. This results in one step re-computations of the EKF
means and adjoint variable for new initial conditions (Eq.
(26)). In the following derivations, all measurements are
processed once with an EKF and therefore all linearization
points X} and Xj|} | are available. Linearizing is done at
a propagated or filtered estimate, X" = xl‘ﬁ , or Xin =
x121|“, respectively. The linear system for the EKF at the

linearization point Xi" at time i is described by Eq. (22}23):

8f(x, )
ox

o glin
- ﬁlm(xz %)

f(xi,w) = f (5(1;“7111.) +

Xit1 R ilzlil + F;Ax;
AXZ‘+1 = Xi+1 — )’\(1;11 ~ FZAXL (22)
Oh(x)
h i) A h( hn)
(x ) + 8X Ix — ilm

yi~h (Xllm) + H;Ax;

. —h (”f") ~ H,Ax; (23)
An update to the linearization point is then described as:
Alzlrz = X1|1 1+ Ki(y: — h(f(lzl\nz—l)) = ilii\ni—l + 0%,

— Ax;); = X — AXpi—1 + 0%
Axiu = AXi|i71 —0x; 24
On the linearized system described by Eq. (Z2{24) the
mean computations of the scattering theory, i.e. Eq. (18),
can now be applied with slight adaptations to the update
measurement source vector m,, ;, since we estimate Ax the
propagation is canceled out in my ;:

m,; = m Mo {HTEU (_y(SX h(% *l“))]

Given new initial conditions {x}¢', Pi%'} with Ax; o =
x; — X;,0 the smoothed estimates as well as EKF mean

estimates can be computed in one step:

(25)

S — |:A)(;i,0] Si,N = =s"e s2 N = |:AAAXZJ‘\ITV] (26)
KNy = :‘c‘}G‘N +Axy  (for N as update) 7
XN|v_1 = XN|n_1 +Axy (for N as propagation)  (28)
Xin = Xio + Pio AXin (29)

V. CENTRALIZED-EQUIVALENT PAIRWISE STATE
ESTIMATION WITH SCATTERING THEORY

In the previous section, we described how the two agents
generate pre-computations for means and covariances de-
scribed by Eq.(I8) and Eq. (9), respectively. Assume agents
A and B are initially correlated at time ¢ and then every agent
performs a standard EKF to update its state, assume x 4, with



private measurements, say yi ...y4, but at the same time
also builds up the scattering matrix S, and the source vectors
s, from all its private measurements. Once agent A meets
agent B again, they share {S,,s,} and {Sz,sz} with each
other and update their own state in just two steps with the
private measurements of the other agent as changes of their
own initial conditions.

A. Centralized-Equivalent Mean Computations

Incorporating all information of agent A to agent B is
done by smoothing agent B’s state at the initial time ¢ with
all of agent A’s private measurements to get )‘{ﬁN( A =

B(i,y...yx) as a first step. Then all of B’s own private
measurements yZ .. .yﬁ are applied on top of that changed
initial condition as a second step. For better legibility and
understanding, we present the following derivations using
the regular state notation. For the error-state notation in non-
linear systems, the matrices are replaced by their correspond-
ing Jacobians according to Eq. (22}23). The effect of this
piecewise linearized representation (linearized at each EKF
step) has minimal impact on the performance (c.f. results on
real data in Sec. [VI), yet allows the use of our proposed
scattering theory repertoire for fast (re-)computations. In the
following, X; = %X;,_1 and X; = x; — X;. Deriving iﬁN(A)
and Pl‘ N(A) by applying the innovations e of A on a joint
state vector z;:

X!
bl

z; = €e; = HA,J’i? + nzﬁj
AA ~A N
X; X _
L;A‘N(A)] - LB} +) (ziej)eje) e, (30)
i| N (A) i =i

Computing the covariances from states to innovations, and
noting that X; L X; (so (X;,%;) = 0) and n,; L {X;,%;}
for j > ¢ by definition:

A
(zi,e;) = <L)?'B] ) 31)
(xl ,€5) = (xl 7HAJx —|—n i) (32)
<Xz 7HA JXA> + <&?7n1y4,]> + ...

< X; aHA fo> + <i?an;‘,7>

0+0+<X1 ,HAJX]>+0

= (X; vHAJ pA(Jvz)X?>
< 7~i> PA(J7 ) Hg,j
=Pa,; P, (],z) HAJ (33)
(x,e;) = (&7, &' > (i, 1) HY (34)
= PBA,i<I>p,A(j, i)' HY (35)

Now the smoothed estimate is:

N
flivey = %7+ (xP e5)(ej,e5) ey
j=i
N
=% +Ppaiy_ ®pa(i,i) Hi e e5) ey
Jj=t

=% +Ppadiy (36)

Given the initial covariance P4 ; at start time ¢, it can
be seen in Eq. (36) that the adjoint variable of A, which
was computed by A as part of s,, can be directly used to
smooth B with A’s private measurements. This is a strong
contrast to previous distributed approaches, that approximate
that private measurements do not change the state of other
agents [7], [8]. The corresponding covariance PﬁN( A) of the
smoothed estimate error is then:

~B B B
Xi|IN(A) = Xi — X4|N(A)
=x; — (%] + PBA,i)\?\N)
=% — Pra Ay (37)

(Riin(ay, Xiin(ay) = PB i+ Prai NN, AN PEA

1|N_Z¢pA ],

)THL j(ej,e5) 'e; (38

—1

(Nilvs Aflw) Z‘I’pA (j,i) HY (ej, e))
<ej,ej><ej,ej> “THA @, 4(5,4)
N
= Z ®p,4(5,1) HA j(e;,e;) " Ha,; 8p,a(4,7)
_ g;m (39)
Piina) =Ppi+PpaiOainPha; (40)

O 4,5~ is the observability gramian from the scattering
matrix S, with already included initial conditions of A that
is passed from A to B. For the covariance, state-of-the-art
distributed algorithms approximate that there is no change for
the passive agents, but the private measurements of the active
agent do affect the mean and the covariance c.f. Eq. (36) and
Eq. [@0). Our approach takes these changes into account with
minimal compute and communication requirements.

Now the private measurements of B can be applied on
the smoothed initial estimate, leading to a final estimate
{%Rv(a.B) PNn(a,p)) at time N that is equivalent to
the final estimate of a joint centralized system, although all
computations were done in a distributed fashion with a single
encounter (ie information exchange) of the two agents.
Note that {Sz NS sv} were used, which do not include
the initial conditions of B, since they are replaced by the
smoothed initial estimate. The dots are entries that don’t need
to be computed and can be omitted.

1 PE - PE
[0 zIJIV<A)} *Sﬁﬁ = { N\I\{(A,B)} 1)

~B s B
{Xi\g(m} .Sg’ﬁ = {XN‘N.(A&} (42)



B. Centralized-Equivalent Covariance Computations

The computation of the covariance of the smoothed initial
state and the final state of the passive agent B in Eq. {0} and
Eq. @#I) was derived explicitly to show the contributions of
the active agent’s private measurements on the passive states.
But there is a more direct way, again, using scattering theory,
computing the complete joint covariance of A and B having
processed all private measurements at the final time N.

Two applications show how covariances of smoothing
problems are solved with scattering theory. First, the clas-
sical smoothing with an extended state is shown, then the
smoothing problem for pairwise estimation is solved. For
the first application, we want to smooth the state at time &
with k < 7. We extend the state x; with the state at time k
to get an extended state z;; and a new system with initial
conditions {2 i, Py} as shown:

Zi ) = ;;j Zit1,k = Fizig +Biws + Giny i

] Yi=Hizik +1ny;
Fo-[B ﬂ B, - [%] = [%] Ho= [H 0]
Zk,k = z:} Pk = [];IZ ];z] =B,

Noting that Xy,; is the smoothed estimate of x, applying
all measurements yy ...y; gives the estimates and covari-
ances:

R Rili Py P
Zik = LA(;H Pik = [PZJZ Pk|i:|

Pix can be computed directly with scattering matri-
ces, because scattering matrices and the joint covariances
with interchanged columns satisfy the same Riccati equa-
tions [14], [4]. If the columns of P;; are interchanged,
we get the scattering matrix of the single state system, i.e.
{x;,yi, Fi, By, G;, H;}, with the initial condition of Py(i.e.,
Pk * 8271)

J = {(; (I]} Pis = (PerxSLi)T = L}%Z ];;ﬂ

The second application provides covariances for pairwise
estimation as used in this work. Given agents A and B with
initial covariance P = Par,Papr;Pak, Pryl and
generated covariance pre-computations S,f’]\of and S,f }8 by
their private measurements, we can compdte a centralized-
equivalent covariance before the joint update as:

Sa=PrT) *81?,}8 Prinay =SaT  (43)
Prinayp =T PrnayT
Spp = PrnypT) *Spn Prnabyy =Sppd

Prina,B = T Prna,sypT (44)

First, we get the covariance of the joint system Py n(a)
considering all private measurements of A as in Eq. {@3),
then we also apply all private measurements of B to get
Prna,B) as in Eq. . Permutations, i.e. P _,, for the
input covariances are necessary, because agent A and B
change the role of active and passive, and then the order

in the joint system is also interchanged. As a last step, the
joint measurement can now be applied by both agents as a
standard EKF update on the joint system with centralized-
equivalent covariance P k|N(A,B)-

VI. RESULTS

We have used the UTIAS Multi-Robot Cooperative Local-
ization and Mapping Dataset [20] to evaluate our approach
on real data. Differential drive robots move indoors, logging
odometry data and range-bearing measurements of known
landmarks and other agents when they meet. We used robots
1 and 2 from the first dataset with their trajectories shown
in Fig. [[|and Fig. 2] The sampling rate of the odometry was
25 Hz, and the trajectory duration was 375 sec.

In the distributed case, we have one estimator for each
robot (A and B), estimating x = (0, -, y-) with the heading
and the 2D position, only processing private measurements.
The robots do not communicate unless they meet. From
wheel encoders, the control input is given as turn rate and
velocity u = (w,v). The propagation f() is done by wheel
odometry. Known 2D landmarks (z;,y;) are measured as
y = (d,a) = h(xy,y1, 2, yr) with range d and bearing a.
Upon meeting, i.e. when one robot can sense the other, a
joint measurement becomes available y = h(x4,x?) as a
range-bearing measurement involving both robot states. In
the centralized case, all measurements of both agents are
communicated and processed simultaneously in an EKF with
a combined robot state as x = (x4, x5).

Robot Trajectory - Scattering Theory and EKF
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Fig. 1. The trajectory of the first robot is shown in red, the slow EKF

computations are shown in blue (EKF 2) and the proposed fast EKF
computations are shown in green (EKF 2 with ST). When changing the
initial conditions and recomputing the EKF estimates, we achieve the same
estimates (i.e., path overlap), indicating that the proposed method can
replace computationally intensive re-computations while leading to the same
results.

A. Centralized-Equivalent Pairwise Estimation with Ground
Robots and Range-Bearing Measurements

We use the proposed methods to perform centralized-
equivalent estimation for two robots with asynchronous
pairwise communication constraints and compare the results
to a fully centralized implementation. Robot one and robot
two from the first dataset estimate their state with odometry
and known landmark measurements while building up scat-
tering matrices and source vectors. When they meet, they
exchange these pre-computed elements and can reproduce a
centralized-equivalent joint system update, as if they were
connected and exchanging information during the whole



time. Fig. 3] shows the estimation error against ground truth,
while Fig. [d] shows the error between the estimation methods.
There is an order of magnitude lower difference between the
two approaches compared to the error of the estimations with
respect to ground truth. However, our approach only needs
sporadic communication between the robots compared to the
fully centralized EKF implementation. There is a maximal
error of 2.25 cm and for the heading 0.7 degrees between
the two methods (due to space limitations the heading error
plot is not depicted).

And finally, in Fig. [5] we compare our approach against
Luft et al. [7] in terms of the joint system belief. Their
method has the same communication constraints but different
distributed covariance pre-computations than our approach.
They make certain approximations, and the resulting joint
belief is therefore not centralized-equivalent anymore during
joint updates. The employed Kullback-Leibler (KL) diver-
gence quantifies the difference between two probability dis-
tributions, and should therefore be close to zero if the beliefs
are identical. The KL divergence between the joint system
and our proposed method (shown in light blue) is close to
zero overall, while the values are an order of magnitude
higher for the method of Luft et al. [7] (shown in light
red). This indicates that the proposed method provides indeed
centralized-equivalent beliefs.

Robot Trajectory 2 - Joint System and EKF with ST

Ground truth
o) REEEEE EKF with joint updates using ST
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z [m]

Fig. 2. The trajectory of the second robot (red), the joint estimates (purple)
and the proposed centralized-equivalent approach (blue). The estimation
behavior is the same, although our approach is restricted in communication,
indicating that the proposed method can replace computationally intensive
re-computations while leading to the same results.

B. Computation Times

The presented computation times correspond to the same
experiment as in the previous section. To describe our
approach’s computational efficiency, we need to compare it
to the computations required to process all measurements of
both agents in a joint system at the moment they meet again,
which is done in Fig. [f] The first plot shows the computation
times for propagation of one agent (0.15 ms) in red and
the overhead in each propagation step (0.1 ms) to build the
scattering matrices for our approach in blue. The second plot
shows how fast our approach computes the joint covariances
for joint updates. The longer the agents did not see each
other, the more measurements are processed, and therefore
more processing time is necessary (maximum of 0.069 s at
t = 166). On the other hand, if the measurements would be
all processed by a joint system only once the agents meet and
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Fig. 3. The estimation error for the position of the joint system and the

presented approach is shown. The joint system (purple) and the estimates of
the agents (green and blue for robot 1 and 2, respectively). The estimation
errors are very close for both approaches, showing that the presented
work can achieve the same estimation performance, while performing
computations efficiently and only when the agents meet.

not while they are moving, then the computation takes longer,
as shown in the third plot in red (maximum of 1.0 s at t =
166). Note that the agents can not communicate until they
meet, i.e., can not process the other agent’s measurements
while moving. The relative computation time of our approach
compared to the joint system computation is shown in the
last plot, especially when the agents do not meet for long
times our approach becomes more efficient (6.8% at t = 166
compared to the joint system).

VII. CONCLUSIONS

We presented a distributed but centralized-equivalent state
estimation approach for two robots that have asynchronous
pairwise communications constraints. The approach is based
on the scattering theory and an analogy to waves traveling
through media was presented. In this analogy we first derived
the necessary and novel methods for distributed mean pre-
computations on non-linear systems and then applied it to
pairwise estimation. The combination of many measurements
and the ability to change initial conditions in one step en-
abled us to smooth the state of agents with the measurements
of other agents only when they meet, not requiring any
constant communication channel to be open yet being able to
reconstruct all statistical information from observations the
other agent had since the previous meeting. Our novelty is
that we extended the previous work on Collaborative State
Estimation with constrained and pairwise communication to
be statistically truly centralized-equivalent for two robots.
Furthermore, we showed that the benefits of pairwise updates
are maintained while requiring only very few computations,
because measurements can be readily applied with the help
of scattering matrices and source vectors. We evaluated our
algorithm on real data and showed that the difference to the
estimation in a centralized system is an order of magnitude
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Fig. 4. The plots show the difference in the estimates of the centralized

estimator and the two agents (agent 1 in green, agent 2 in blue) performing
joint updates with the presented centralized-equivalent approach. In the top
plot the difference in « and y is computed as a norm, and in the bottom plot
the difference in heading is shown. The error introduced by the presented
approach is about an order of magnitude lower than the estimation error
itself, comparing the spike at 2.25 cm against a maximum error of 40 cm
in Fig. 3]

Kullback-Leibler Divergence Joint vs ST
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Fig. 5. The symmetric Kullback-Leibler Divergence (KL) quantifies the

difference of two beliefs, in our case considering normal distributions.
We plotted the KL divergence between the belief of the joint system and
the belief of the two agents when they meet and perform a joint update
using scattering theory in light blue. As a comparison the KL divergence
of an approximating approach of Luft et al. [7], which has the same
communication constraints, is also shown in light red. While the difference
for our approach is overall very low, the approximations of Luft et al. lead
to an order of magnitude higher values, indicating that the proposed method
is indeed centralized-equivalent.

smaller than the actual estimation error of both systems.
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