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Abstract—  Suspended Cable-Driven Parallel Robots
(SCDPR) have intriguing capabilities on large scales but still
have open challenges in precisely estimating the end-effector
pose. The cables exhibit a downward curved shape, also known
as cable sag which needs to be accounted for in the pose
estimation. The catenary equations can accurately describe this
phenomenon but are only accurate in equilibrium conditions.
Thus, pose estimation for large-scale SCDPR in dynamic
motion is an open challenge.

This work proposes a real-time pose estimation algorithm
for dynamic trajectories of SCDPRs, which is accurate over
large areas. We present a novel approach that considers cable
sag to reduce the estimation error for large scales while also
employing an Inertial Measurement Unit (IMU) to improve
estimation accuracy for dynamic motion. Our approach reduces
the RMSE to less than a third compared to standard methods
not considering cable sag. Similarly, the inclusion of the IMU
reduces the RMSE in dynamic situations by 40% compared
to non-IMU aided approaches considering cable sag. Further-
more, we evaluate our Extended Kalman Filter (EKF) based
algorithm on a real system with ground truth pose information.

I. INTRODUCTION

Cable-Driven Parallel Robots (CDPR) have unique advan-
tages over their rigid link counterparts. By replacing heavy
rigid links with lightweight cables, the robot’s inertia is
drastically reduced, allowing for high acceleration dynamics
and large workspaces since the maximum applicable tension
is very high for such low weights of the cables. The costs
and simplicity of the mechanical designs might be seen as
key advantages for using cable robots as a replacement for
conventional solutions in a growing number of industry ap-
plications. Application fields include production engineering
[1], logistics [2], constructions [3], and motion simulation
(4] [5].

When the workspace on the ground needs to stay clear of
the cables, e.g., in production plants, the fully constrained
CDPRs can not operate, and a viable alternative is the
suspended configuration. For so-called Suspended Cable-
Driven Parallel Robots (SCDPR), as shown in Fig. [I] all
cables are attached above the moving platform, and gravity
ensures that all cables are tensed, as shown in [2].
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Fig. 1. The overall architecture of our proposed fusion framework. We
use a suspended cable-driven robot with a relatively large workspace and
a lightweight end-effector which leads to considerable cable sag. Our
proposed kinematic solver together with an onboard IMU can accurately
track the kinematically unobservable oscillations.

For an SCDPR to have three Degrees of Freedom (DoF)
in translation, it must have at least three actuated cables.
However, the operation of SCDPRs with four actuated cables
enlarges the covered workspace and adds more safety to the
system since an additional cable carries the platform while
still being cost-efficient, as in this work.

The parallel actuation with cables comes at a price: Due
to the existence of multiple kinematic loops in parallel
robots, task-space pose estimation of such manipulators is
more complex compared to their serial counterparts. These
complications are even more prominent when these links
are constructed using long cables that exhibit cable sag,
i.e., under the influence of gravity and the negligible cable
bending stiffness, the cables get a downwards curved shape.

The problem of estimating the position p. and orientation
d. of an end-effector given the length of the cables is
known as Forward Kinematics (FK). In contrast, the opposite
problem of finding the cable length out of a given pose
is called Inverse Kinematics (IK). In large scale suspended
cable robots, the unavoidable cable sag necessitates a more
complex kinetostatic analysis in solving the inverse and
forward kinematics problems, and the system exhibits con-
siderable dynamic oscillations before reaching equilibrium.

Accurate and low-latency tracking of the end-effector’s 6-
DoF motion is a requirement for effective control and numer-



ous applications such as robotic inspection [3] or augmented
reality [4]. Even though applying onboard SLAM may be a
solution to this problem, the unavoidable drift and sensitivity
to visual depredations alongside the inherent high compute
intensity prevents the easy adoption of such algorithms for
proper loop-rate control and drift-free tracking.

In this paper, we combine the complementary advantages
of a proposed equilibrium-state kinematic solver and a
high-rate onboard MEMS Inertial Measurement Unit (IMU)
using an Extended Kalman Filter (EKF). With this, we
simultaneously track the transient dynamics using the IMU
while providing a drift-free global pose constraint using the
kinematics solver. Furthermore, we eliminate the necessity
of loop-rate kinematics optimization execution by leveraging
the high-rate IMU for motion propagation and optimizer
initialization. To the best of our knowledge, this is the
first real-time estimator to combine kinematics constraints
considering cable sag with an IMU to achieve improved
accuracy for large-scale cable robots. We provide our open-
source implementations | | and real dataset below.

Our contributions are:

o Presenting a configurable and efficient IK/FK solver
for an underactuated large-scale suspended CDPRs with
four sagging cables and based on a modern C++ opti-
mization framework with automatic differentiation.

o Proposing a pose estimation framework based on an
onboard IMU and our kinematic solver that can track
the dynamic transients of the motion.

o Evaluation of the proposed method with real data on a
field-proven commercial CDPR with ground truth pose
information

II. RELATED WORK

This section reviews the current state of research in cable
robotics pose estimation. In general, the efforts for attaining
accurate end-effector pose estimates may be broken down
into the two categories of improving kinematic solvers and
incorporating sensor fusion and auxiliary sensors. In what
follows, we provide related works to these two directions
and their relation to our proposed methodology.

A. Kinematic Solvers

Unlike medium-size cable robots, where the massless
cable model assumption holds, the kinematic analysis of
large-scale cable robots faces complexities. The effect of
gravity on the cables leads to the sagging phenomenon,
which complicates the kinematic analysis of the system. At
the kinematics level, we are concerned with finding the pose
of the robot in equilibrium state, and the works that address
this problem can be broken down into two categories of real-
time local solvers and slow but global algorithms that can
find all possible solutions.

The full solution to the forward and inverse kinematics
problems of cable robots with sagging cables has been
considered by [6], [7], [8]. On the other hand, real-time
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solvers are often formulated based on the local refinement of
the state using the latest solution as initialization [9] or based
on special configurations that enable finding unique solutions
in real-time [10]. Furthermore, real-time performance can
also be achieved by restricting the solution space through the
addition of a noiseless cable direction sensor as done in [11].
The idea of [11] is related to our formulation in the sense that
we also greatly leveraged from splitting of cable directions to
vertical and horizontal parts as discussed in However,
we do not assume perfect cable directions. Instead, the
end-effector poses and, therefore, the cable directions are
iteratively optimized to achieve the best solutions.

Our forward kinematics solvers considering cable sag are
similar to [9] [12]. However, we use a minimal singularity-
free optimization variable for the end-effector pose, and our
anchor points can be anywhere on the robot, and also, we
propose a parametric solution for the force distribution in
contrast to those works—all of the above in an ensemble lead
to better convergence of the numerical solvers. Furthermore,
we provide the open-source and highly efficient implemen-
tation of our solver based on the Ceres library [13] and with
ROS and Python wrappers to the community together with
the data from a real SCDPR.

B. Auxiliary Sensors and Sensor Fusion

The kinematics solvers introduced in the previous sub-
section do not model the transient and dynamical motions
of the end-effector. Therefore, there is an upper limit on
the achievable accuracy based on cable length measurements
alone. Even though the dynamical modeling of the system
for further improvements may also be considered, the highly
complex computations required for doing so prevent real-
time deployment. More importantly, the states of this dynam-
ical model may not be observable from the encoder’s point of
view. Motivated by these limitations, a new emerging interest
in the literature is to incorporate other sensors alongside the
kinematic modalities to make up for the mutual limitations
of using each sensor alone.

To the best of our knowledge, the authors of [14] were
the first to use sensor fusion for the localization of cable
robots. Their work is based on onboard vision and inertial
sensors alongside the kinematics of the robot based on rigid
cable assumption, which defines cables to be massless and
inextensible. The vision relies on April-Tags with known
locations and their IMU formulation is based on a dual-stage
Kalman filter for estimating orientation and then propagating
the positions.

More recently, [15] proposed a more elegant EKF-based
IMU-Kinematics fusion framework that assumed the cables
to be rigid, and showed improved tracking performance
through Monte Carlo simulations. The authors of [16] and
[17] present similar IMU-Kinematic fusion setups, respec-
tively, for a suspended facade cleaner robot and a wire-based
joystick system. Our work is most closely related to [15],
but we go one step further. The novel accomplishment of
our work is that we additionally consider the mathematically
intricate sagging of the cables in the fusion with an IMU and
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validate our algorithm based on its real-time execution in a
real-world setting.

III. PRELIMINARIES AND DEFINITIONS

In this section, we introduce the coordinate frames and
how to address the 2D problem of finding catenaries in 3D
with a recap on the theory and the boundary conditions we
use.

A. Coordinate Frames and Cable Force Directions

We have three relevant coordinate frames: the global frame
g, the local end-effector frame £ and the IMU frame Z.
According to the following coordinate conventions p. is
defined as gpgc. The left subscript is the frame in which
the vector is expressed, and the right subscripts indicate
that it points from the first frame to the second frame. In
this case, the vector is expressed in G and points from the
center of G to the center of L. For the orientation q. a
Hamiltonian quaternion qg, is used, transforming vectors
from £ to G. The IMU calibration pose {Pimu, Qimu } 1S given
as {zpzr,dzr }. For legibility we will omit the left subscript
G, such that vectors like p, and p; are in fact gp, and gpp.
While b is the vector that goes from the center of the end-
effector to the anchor, py is the anchor’s global 3D position.
The global position of the pulley is p,, which is a constant
3D point.

Considering that the catenary equation solves a 2D prob-
lem, 3D cable directions can be split into a horizontal
and a vertical part. The direction of the cable on the
global z-y-plane is defined to be the unit vector e =
normalize ((Pp)zy — (Pa)zy) and it has the coordinate ¢
that goes from the pulley p, to the anchor p; in positive
direction. Cable forces are split, accordingly, in a horizontal
part fj, along ec, and a vertical part f, in the z direction of
the global frame. Since the cable forces are supposed to carry
an end-effector, we will introduce a positive f, as a lifting
force along +e, on the end-effector. The reaction force on
the cable will then point downwards. And a positive fj, on
the cable along ec will pull on the robot along —ec.

B. Catenary Equations and Boundary Conditions

We first model the cable shape z(cx) under gravity and
with inextensible cables in static equilibrium, see (E]) Note,
z is the cable height, and ¢z is the cable coordinate as
defined above. To find the overall cable shape, an ordinary
differential equation on infinitesimally small cable segments
and their force equilibrium has to be solved. The solution,
as in [18], is shown:

2(cx) = I . (cosh (;C (ex+ Cl)> - Cz) (1)

Ye h
2'(¢cx) = sinh (?C ez + Cl)) )
h
The height z(cx) of the cable at ¢z is aligned with the
global z direction, while the direction of the cable was
previously defined as ec (on the horizontal z-y-plane) with
coordinate ¢x. Accounting for the weight force of the cable

is done by g. = g¢g - pl., where p/. is the weight per
length of the cable and g is the gravitational constant. Since
a differential equation was solved, C7 and C5 describe
integration constants that can be found by using boundary
conditions. The pulley p, is located at ¢z = 0 and has
the height 2(0) = (p.)., while the anchor p; is located
at ct = L = |[(Pb)zy — (Pa)ayl|| and has a height of
2(L) = (pp).. Note that f, is just the magnitude of the
horizontal cable force, while the direction is defined by
ec. An important boundary condition at the end-effector is
2 (x) = _f{L v ensuring that the total cable force has to have
the same direction as the cable, remembering that the vertical
force was introduced as a lifting force at the end-effector and
therefore it has to point down at the cable. It can be seen
that the cable shape z(cx) is coupled to the anchor position
and the cable forces. That is why the kinematic and the static
computations are coupled, and the presented solver will take
this into account.

IV. THE STRUCTURE OF IK/FK SOLVERS AND THE
CONSTITUENT BLOCKS

This section introduces the architecture of our kinematic
solver and describes the computational building blocks that
are used to define it. First, we present our optimization loop
in Then, cable force and catenary computation blocks

are introduced in and [IV-B] respectively. Finally, the op-
timization objectives for the forward and inverse Kinematics

are presented in sections and [[V-D| respectively.
A. The Structure of the Solver

We formulate our kinematic solver for underactuated sus-
pended cable robots with four cables Cy,Co,C3 and Cy4. The
following parameters are considered to be known: pulley
positions p, ;, relative anchor positions 2b;, the mass of
the end-effector m., and the cable weight parameter g..
Furthermore, we know the relative center of gravity (COG)
£bcog, pointing from the center of £ to the COG. Finally, an
initial position Pe injt, Orientation ge i and an initial force
distribution { fx1 init, fo1,init} are assumed to be given, as a
starting point for the optimization. The values and the source
of the initial estimates are discussed for the IK and FK in
section |V| and the corresponding optimization objectives are
defined in respective sections and

Fig. ] illustrates the architecture of our solver. All
known/fixed parameters are fed to the blocks with blue
arrows, and all resultant computations are outputted with
black arrows. Starting from the initial values, in each iter-
ation, the optimizer block (Optimization Step) modifies the
optimization variables to yield a better set with lower cost
and it feeds them back again into the blocks to iteratively
improve the results, until convergence (i.e., no further de-
crease in cost function). We keep the pose variables as a
3-vector and a quaternion. Before optimizing, we transform
the orientation quaternions q to R(q), which are elements
of SO(3). During each optimization iteration, we find &, a
tangent space element of SO(3), to improve the orientation
as Rpew = Roia - exp(&e). Using &, and the exponential
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Fig. 2. The optimization loop of the proposed kinematic solver. Fixed
parameters are fed to the blocks by blue arrows, and the resultant variables
are exported with black arrows. For inverse or forward kinematics modes,
only the corresponding left or right branches are activated.

map to get a correction for the orientation is a minimal and
singularity-free representation (see [19]).

The first block in Fig. 2] (Geometrical Transformation)
computes the parameters in the global frame and also
provides cable force directions as discussed in The
resulting variables of the first block are needed by all of the
other blocks. The other main blocks of our kinematic solvers
are presented in the following sections.

B. Force Computations Block

The outputs of this block are cable forces fc ; that satisfy
the static equilibrium conditions and are defined as a function
of the first cable forces and the calibration parameters. Pro-
viding a parametric solution for the overall force distribution
as a function of the first cable forces is a novel aspect for
kinematics solvers.

1) The Structure matrix: The cable forces at the end-
effector are given as f¢c ; = — fr ;- ec,i+ fv,i-€, where e, is
the unit vector in z direction. Also the x-y-plane directions
of the cables are given as ec ;. Based on the force (E[) and
moment (4) equilibrium conditions, the structure matrix A”
may be defined which is the transposed Jacobian of the robot.

The wrench vector w.. contains the gravitational force
vector and the moment induced by the offset of the center
of gravity with respect to the geometrical center. All vectors
are expressed in G, therefore it should be noted that b, and

£beog are transformed into the G frame first.

4
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2) Parametric Solution to Force Distribution: We have
eight unknown cable forces and only six equations from
the force and moment equilibrium constraints. To address
this problem, we parametrically define six of the eight cable
force variables based on the other remaining two. With this,
we effectively reduce the number of unknown forces from
eight to two. An advantage of this novel approach is that the
parametric solution will always satisfy the static equilibrium
conditions, and the solver does not need to consider static
equilibrium in its cost function.

fc1
weo= (AT AL [ (10
=AT o1+ AL, foou (11)
fC,2:4 = (A£4)_1 (Wee - A{ . fC,l) (12)

In Eq. we split the structure matrix A7 in two parts. AT
is a 6-by-2 matrix of the first two columns and the remaining
six columns form a 6-by-6 matrix AZ,. f¢ 1 is build from
the first two entries of f¢ being fr, 1 and f, 1. Now all other
cable forces are described by the horizontal and vertical force
components of the first cable as described in Eq. (I2).

C. Catenary Computations Block

To compute the catenary variables we need the force
distribution and the global poses of the anchors and pul-
leys. The catenary constants C; and Cy for each cable C;
(note, calligraphic C) are found by applying the boundary
conditions z'(L) = _{”, i.e. total force direction along
cable direction, and height of the pulley z(0) = (pa)s.
respectively. The length on the x-y-plane is again found as
L = ||(Pb)ay — (Pa)zyl|- The cable lengths lc; as needed
by the cost function blocks and are also derived here.

Cri= Jhi asinh (_f”> —L; (13)
e .fh,i
9e 9e
Oy =cosh [ Cy ;- — = (Pa): 14
24708 ( b fh,i) fhi (Pa) 14
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= 2. h -(L; + C15) ) — sinh -Ch
o sin s (Li + C1,) sin s 1,
(16)

D. Inverse Kinematics Cost Computations Block

For the case of inverses kinematics, the inverse cost is
activated in the optimization loop shown in figure Fig.
Given a position p., approximate forces of the first cable
{fn1,init, fo1,mit} and an approximate orientation qe ini, 1K
aims to find the cable length, the force distribution and
the catenary variables. While the position can be fixed,
the orientation needs to be optimized. We chose to leave
the orientation as an optimization variable due to the fact
that in an underactuated configuration like ours, not every
combination of position and orientation is feasible.

The cost term Z(L;) penalizes the difference between the
height (py,;) ., of the anchor ¢ computed from the end-effector
pose and calibration parameters and the expected height of
the catenary at that point z(L;) and starting from pulley 1.
The smaller Z(L;) is, the more consistent the end-effector
pose estimate is with the cables attached to the mobile
platform. The cost term l; penalizes the difference between
the sagging cable length and the straight line distance to
emphasize the maximal possible tension of all cables, but
still being in static equilibrium. The shorter the length of the
sagging cable the higher the tension on it and the closer it
is to the straight line. The last term exp(—f ;) forces the
unconstrained solver to only consider positive forces in the
horizontal direction. In theory, this term could bias the solver
to find high magnitudes for the horizontal forces. But, the
cost reduction decreases exponentially fast towards zero such
that we do not see an effect in practice. We only observed
that the solver can try to find negative horizontal forces in
the case of IK while this is not the case for FK. As weights
we report A; = 500 and A5 = 10.

2(Lz) = (pb,i)z — fh’i . (cosh < e (Li =+ Clyi)> — Cz}i>
Je fhi
(17
li =lci —||Pa,i — Po.il| (18)
4 4 4
Kk =Xt - ZE(Li)2 + A2 - ZE + Zexp(_fh,i) (19)
i—1 i—1 i=1

E. Forward Kinematics Cost Computations Block

For the case of forward kinematics, only the forward cost
is activated in the optimization loop shown in Fig. 2] Given
an initial approximate pose {De init, Qe,init} and approximate
forces of the first cable {f11 init, fo1,imit}» FK optimizes for
both the orientation q. and the position of the end-effector
Pe given the measured cable lengths lg‘)i.

The cost function is constructed similar to the IK problem.
In fact, the first term Z(L;) is defined as in Eq. (17). On
the other hand, l~l is defined as the difference between the
cable lengths from the solver ,l¢c;, and the measured g‘l

counterparts. The smaller l;— is, the more consistent are the
cable length measurements with the expected cable lengths
computed from the optimized variables. As weights we report
)\3 = 10 and )\4 = 10.

li=lc;— 18, (20)
4 4 ~
Kex = X3+ > 2(Li)* + M- Y 17 1)
i=1 i=1

V. KINEMATICS-INERTIAL FUSION

The previous section presented our IK and FK solvers.
In this section, we use both solvers together to compute an
end-effector pose from cable lengths and fuse it with the
IMU to provide real-time pose estimates. As shown in [I]
our solvers collectively function as a pose sensor providing
updates in a multi-sensor fusion framework [20] based on
Extended Kalman Filtering (EKF), while the IMU is used as
a propagation sensor. In the beginning, the solvers are initial-
ized once with a good initial guess (in our experiments with
a ground truth pose). After this, the solver’s output is fed to
the estimator framework as a pose update. The measurement
model for pose updates with error quaternions, the correction
step, and the Jacobians for the EKF are outlined in [21]. With
this pose update, the estimator corrects the previous pose
estimate and propagates the pose with new IMU readings,
i.e., integrates the acceleration and the rotational velocity
to get new poses, as described in the following. These
propagated poses enable us to track the dynamic motion of
the end-effector, but pure IMU integration quickly diverges
due to miss-alignment towards gravity and sensor noise. Thus
the integration needs to be corrected frequently. Once new
cable length measurements are available to the solver, the
latest propagated pose of the estimator is used as an initial
pose for the solver (shown with a dashed arrow in Fig. [I).
The solvers then compute a pose given the cable lengths and
the whole update and propagation cycle repeats.

The measurement noise must account for errors between
the measured pose, i.e. static equilibrium pose, and the pose
during oscillations. Although this error distribution is non-
gaussian, we achieved accurate tracking using a fixed noise
covariance.We chose the values big enough to allow the
tracking with the propagated estimate but also small enough
to prevent drifting estimates.

In theory, we would only need to use the FK solver, but it
requires a good initial guess of the force distribution, which
we do not measure. On the other hand, our IK solver robustly
finds good force distributions given a naive guess of the
forces of the first cable and a 3D position. We assume for our
naive guess f,1 = 1/4m,g and f, 1 = fy,1/tan(c), where
« is the angle between the straight line connecting anchor
and pulley and the ground plane.

Another aspect to consider is the numerical stability of the
solvers. Since we have the first cable forces fj, 1 and f, 1
as optimization variables, the choice which cable is the first
cable has an impact. Choosing the cable over the longest



distance as the first leads to improved numerical stability of
the solvers.

We are working with a recursive filtering framework
named MaRS [20] that allows run-time self-calibration and is
computationally efficient. Assuming an IMU for propagation,
the core-states are: Position expressed in the global frame
Pgz, velocity w.r.t. the global frame vgz, orientation of the
robot w.r.t. the global frame qgz as well as IMU biases for
the gyroscope b,, and accelerometer b,. The core state and
dynamics as in [21] are described as follows:

Pgr = Vor (22)

Vgr = R(qgr)(am —b,—n,)—g (23)
. 1

Agz = iﬂ(wm — by — nw)qQI 24)
b, =np,, b, =ny, (25)

The IMU can also be disabled and the FK solver can
run in standalone mode. This mode uses the last FK pose
to initialize the current optimization to find a pose for new
cable length measurements. With our current configuration,
as described in the next section, we can run our FK solver
at a rate of up to 300Hz, but based on our experiments and
for our data with moderate end-effector speeds, even when
running at 10 Hz, it still provides accurate pose estimates as
shown in V1l

VI. EXPERIMENTS
A. Setup

We work with a commercial cable robot actuated by four
cables in a suspended configuration with a noticeable cable
sag. The cables go out of winches fixed on the floor upwards
to pulleys attached to the walls, that are considered as the
static anchor locations. The cables then connect the pulleys
to the rigid anchor points on the end-effector. The rectangular
configuration of pulleys attached at the height of 8.5 m span
a field of 4.5 m in = and 12.5 m in y direction. Since the y
dimension of the field is almost three times larger than the x
direction, the robot is very stiff in y direction and as a result,
we encounter more significant oscillations in the x direction
during the operation, that necessitate proper tracking of the
pose and accounting for dynamic motions.

The task-space of the robot is constrained to a smaller
region of 1m x 4m x 4m for safety reasons. As shown in Fig.
[ the end-effector is structured as a truncated pyramid. The
IMU is attached on the smaller bottom and the anchors are
located on the bigger top side with edge lengths of 0.21 m.
The whole end-effector weighs 4.4 kg in total, and the mass
per length for the used aramid cables is 10.55 g/m. We use
an X-Sense MTi-100 MEMS?] IMU running at 400 Hz and
the winch encoders used for relative length measurements
provide readings at a rate of 125 Hz. A motion tracking
system that we use for ground truth poses measures the
movement of the robot platform and the pulleys with tracked
markers up to 1 mm accuracy.

2Micro Electro Mechanical Systems

We have implemented our solver based on the Google
Ceres optimization library [13]. We exploit the automatic
differentiation capability of this library to avoid the com-
putation of analytical Jacobian matrices without sacrificing
the performance and numerical stability associated with
numerical differentiation. Based on this implementation,
the back-to-back execution of our solvers take on average
2.3ms per inference on a computer equipped with a Core-
17 7700HQ CPU and 32GB or RAM. Furthermore, we have
implemented our fusion framework by wrapping our solver
as a ROS node and have used the MARS EKF framework
for the fusion engine. For the benefit of the community,
our implementations will be made available as open-source
packages.

The procedure of our experiments is to move to 40 random
points, with random waiting times of a few seconds on
each point. During sudden acceleration and decelerations, the
robot starts to oscillate around its equilibrium point. As we
show in this section, we can track these dynamic oscillations
by fusing the IMU with our FK solutions.

B. Pose Estimation with Oscillations

We conducted a series of experiments with random point
trajectories, where at each point, the robot stops for two to
three seconds. These sudden velocity changes after traveling
at a speed of 0.6 to 1.0 m/s lead to oscillations of the
end-effector. We observed maximal oscillation amplitudes
of 20 cm, 5 cm, and less than 1 cm in the z, y, and 2
direction, respectively. The maximally observed amplitudes
in the orientation are 2.5°, 10° and 2° in roll, pitch, and yaw,
respectively. The reason for the strong oscillations in the x
direction and pitch (rotation around x) can be explained by
the stretched pulley configuration exerting strong stabilizing
forces along y, but not x. In Fig. 3] and Fig. ] we show
that the pose is tracked even out-of-equilibrium conditions
with the fusion of the IMU for a sample trajectory. Although
we can track transient motion with IMU propagation, pose
estimation purely based on IMU is subject to quick accumu-
lation of errors and a constraining modality is essential to
prevent that. For this purpose, we employ our FK solver and
estimate the pose achieving accurate estimates during motion
and equilibrium.

The estimation error, as seen in Fig. 3] and Fig. ] bottom
plots, seems to scale with the amount of motion, especially
during strong oscillations. As expected, stronger oscillations
are farther away from equilibrium conditions and rely more
on the noisy IMU. Nevertheless, we also observe that the es-
timate gets more accurate as oscillations fade out. Regarding
the orientation, we can see in the sample trajectory that the
initial wrong yaw is corrected as soon as the robot starts
moving since the FK orientation and the global position
render the heading of the robot observable. Our global
position updates are an advantage that we have over SLAM.
As seen in the plots, our yaw and position errors remain
bounded throughout the trajectory, as a result of this globally
consistent modality.



In Fig. [5] we analyze two cases of motion in more detail:
the strongest and the weakest oscillations of the sample
trajectory are shown in[3 in the top two plots and the bottom
two plots, respectively. Only the x direction is shown for
clarity since the oscillations are about ten times stronger
in z than in y and z. While our estimator, i.e., the fusion
of IMU and FK solver, can accurately track the dynamic
trajectory, the output of the FK solver in standalone mode
follows the center of the oscillations since the equilibrium
point is expected to be there.
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Fig. 3. We show the estimated positions compared to the ground truth
(black) and the corresponding errors. While the strongest oscillations have
a magnitude of 20 cm, our RMSE error is around 3 cm.

C. Forward Kinematics with and without Cable Sag

Our FK solver can find equilibrium points throughout the
trajectory when cable measurements are given. The output of
our solver in standalone mode and the ground truth is shown
in Fig. [f]alongside commercial software that assumes straight
lines. Since the robot is swinging most of the time, the exact
equilibrium point is unknown. However, assuming that the
equilibrium lies precisely between the amplitude peaks, we
demonstrate that our solver finds the equilibrium in Fig. [6]
The commercial software is off by a considerable margin
with roughly 10 cm at max in  and 2-5 cm in y. The errors
in z are about 1 cm for both. The zoomed plot in Fig. [f]
visualizes the errors in .

Another essential feature of the proposed FK solver is
that based on our practical observations, even feeding initial
poses far from the equilibrium as initial values to the solver,
we still converge to the same equilibrium points. There
is transient motion most of the time, and therefore, the
estimator pose is far from the equilibrium state. Feeding
the estimator pose during oscillations in the solver and still
getting the same equilibrium poses as output shows the
robustness of our solver and that it is applicable during
dynamic motion.
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Fig. 4. We show the estimated orientation compared to the ground truth

(black) and the corresponding errors. Since our solver also provides a
rotation estimate the estimated orientation does not drift, as it would be
the case for IMU fused with only global position.

Sample Random Trajectory - High Dynamic vs. Low Dynamic Position Error
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Fig. 5. A section of the trajectory where the end-effector undergoes
dynamic osculations that are unobservable from solver alone. The fusion of
IMU data leads to the reduction of errors and observing those oscillations.

TABLE I
THE QUANTITATIVE RESULTS OF OUR FRAMEWORK COMPARED TO
VARIOUS BASELINES

[ Experiment [ RMSE [m] |
SL Solver 0.0693
FK Solver 0.0436
FK Solver + IMU 0.0313
FK Solver (high dynamic) 0.0610
FK Solver + IMU (high dynamic) 0.0369
FK Solver (low dynamic) 0.0270
FK Solver + IMU (low dynamic) 0.0217
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Fig. 6. Estimated poses by the solver compared to the ground-truth and the
output of a naive forward kinematics algorithm based on straight line cables
attached to a single point on the end-effector (SL Solver). As expected,
considering cable sag in the solver (FK solver) improves the pose estimates.

VII. CONCLUSIONS

We presented a modular solver to compute the
equilibrium-state pose of the end-effector in underactuated
suspended cable robots with four sagging cables. We formu-
late our solver using a minimal and singularity-free repre-
sentation of the pose and present a novel reparametrization
approach for the cable forces that automatically ensure the
static equilibrium constraints during the optimization.

Implemented in C++ and with automatic differentiation,
our efficient solver works alongside a high-rate IMU within
an EKF-based fusion backend to allow the tracking of out-
of-equilibrium dynamic motions. This bi-lateral approach
of considering cable sag and fusing with an IMU is the
novel aspect of our work, and our practical evaluations
based on a real-world system and accurate ground truth pose
measurements verify the applicability of our method in real-
world scenarios. We demonstrated that our algorithm can
successfully track the swinging motions of the cable robot,
which otherwise would have been unobservable based on a
forward kinematics modality alone. This opens the possibility
for a range of new applications since accurate localization,
even in dynamic conditions and on a large-scale robot, is an
elemental step for autonomous operation of SCDPRs.
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