Scalable and Modular Ultra-Wideband Aided Inertial Navigation

Roland Jung! and Stephan Weiss!

Abstract— Navigating accurately in potentially GPS-denied
environments is a perquisite of autonomous systems. Relative
localization based on ultra-wideband (UWB) is — especially
indoors — a promising technology.

In this paper, we present a probabilistic filter based Modular
Multi-Sensor Fusion (MMSF) approach with the capability
of using efficiently all information in a fully meshed UWB
ranging network. This allows an accurate mobile agent state
estimation and the calibration of the ranging network’s spatial
constellation. We advocate a new paradigm that includes
elements from Collaborative State Estimation (CSE) and allows
us considering all stationary UWB anchors and the mobile
agent as a decentralized set of estimtors/filters. With this,
our method can include all meshed (inter-)sensor observations
tightly coupled in a modular estimator. We show that the ap-
plication of our CSE-inspired method in such a context breaks
the computational barrier. Otherwise, it would, for the sakeof
complexity-reduction, prohibit the use of all available informa-
tion or would lead to significant estimator inconsistencies due
to coarse approximations. We compare the proposed approach
against different MMSF strategies in terms of execution time,
accuracy, and filter credibility on both synthetic data and on a
dataset from real Unmanned Aerial Vehicles (UAVs).

I. INTRODUCTION AND RELATED WORK

Accurate localization is a crucial component of au-
tonomous robotic systems, e.g., service robots, warehouse
pallet robots, etc., to control and navigate accurately in
unknown and Global Positioning System (GPS)-denied envi-
ronments. Especially indoors, the demand for a cost friendly,
scalable and accurate positioning infrastructure is growing.
Typically, range-based localization systems use time of ar-
rival (TOA), time difference of arrival (TDOA), return time
of flight (RTOF) [1] or received signal strength (RSS) met-
rics/lateration techniques to estimate the distance between
the antennas [2]. A promising technology for both data
transmission and localization is based on ultra-wideband
(UWB) radio frequency (RF) signals [2]. It has desirable
features for estimating distances between two transceivers,
as its large bandwidths allow the UWB receiver to accurately
estimate the arrival time of the first signal path [2].

For obtaining a unique 3-degrees of freedom (DoF) posi-
tion estimate of a moving UWB device/node (tag), a clas-
sical mulitlateration approach requires simultaneous range
measurements of at least four known stationary UWB nodes
(anchors). The precision of the mulitlateration is strongly
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Fig. 1: Spatial frame constellation of the proposed UWB inertial
aided navigation framework.

dependent on (i) the relative pose between the ranging mod-
ules’ antennas [3], (ii) the placement of stationary modules
(anchors) as it influences the positional dilution of precision
(PDOP) of the mobile modules, and (iii) multipath effects
and non-line-of-sight (NLOS) condition may lead to wrong
distance estimates [4]. Therefore, it is reasonable to combine
these range measurements of mobile modules with other
complementary sensors, e.g, an Inertial Measurement Unit
(IMU) and a barometer, as depicted in Figure 1, to increase
the robustness against dropouts, precision, and accuracy [5]—
[10].

Hol et al. show in [4], that tightly fusing range measure-
ments with inertial measurements obtained by an IMU in
a probabilistic fusion algorithm allows (i) to recover a 6-
DoF pose, (ii) to bridge periods with limited UWB range
measurements, and (iii) to successfully detect and reject
outliers. They assumed known and static anchor locations,
which may cause unmodeled errors if the anchor positions
were not accurately measured initially. However, calibration
routines to estimate the position of deployed anchors have
been presented in, e.g, [5], [6], [8], [11]-[14].

In [12], Hausman et al. proposed a multi-sensor fusion
approach combining inertial sensor data with loosely coupled
vision-based pose measurements, GPS measurements, and
tightly coupled UWB range measurements for precision
landing. They proposed a Linear Least Squares (LLS) initial-
ization scheme for anchors, based on estimated tag positions,
that provides the estimator with an initial belief for three
estimated anchor positions.

In recent years, relative state estimation approaches to
eliminate the need for stationary anchors in GPS-denied
environment have been presented in [15]-[19]. For instance,
Guo et al. present in [15], [17] an infrastructure-free co-
operative approach to estimate the positions of neighboring
Unmanned Aerial Vehicles (UAVs). Similarly, Xu et al.
presented in [16] an optimization-based, fully decentral-
ized visual-inertial-UWB fusion framework for relative state
estimation in a swarm of UAVs. Nguyen et al. extended



in [9] a state-of-the-art optimization-based Visual-Inertial
Odometry (VIO) algorithm to fuse camera, IMU and UWB
range measurements from a single anchor to reduce the drift.
Having only a single anchor in this configuration allows
rendering the relative position with respect to the navigation
frame observable, but the orientation about the gravity vector
is still unobservable. Therefore, at least two anchors need
to be known to achieve a fully observable system. Song
et al. fused in [7], Light Detection and Ranging (LiDAR),
UWB, and inertial measurements in an EKF-Simultaneous
Localization and Mapping (SLAM) algorithm, while the
UWB ranging measurement reduced accumulated errors in
the proposed LiDAR-based SLAM algorithm.

Shi et al. investigated recently in [8] on the anchor
self-calibration in a tightly-coupled UWB-ranging and IMU
fusion algorithm in simulations with five anchors and varying
ranging noise. In the first step of this algorithm, a coarse
anchor position initialization, minimizing the residual be-
tween predicted tag positions and unknown anchor position
in a least-squares problem. In the second step, these initial
guesses are used for estimating the full state in a regular
Error-State Extended Kalman Filter (ESEKF) [20] heavily
limiting the scalability of the approach to more anchors.
Also, the previously mentioned approaches suffer either from
poor scalability or coarse approximations, affecting estimator
consistency [21].

Therefore, we revisit the infrastructure-based UWB iner-
tial localization and continuous/online anchor self-calibration
for large UWB networks using on our recently proposed
Modular Multi-Sensor Fusion Decoupled Approximated His-
tory (MMSF-DAH) approach [22]. It is based on EKF
decoupling strategies originating from Collaborative State
Estimation (CSE) [23] and has promising attributes that
can be extended to render real-time tightly coupled and
scalable UWB aided inertial navigation. From that work,
we borrow the idea to treat any inter-sensor observation in
an isolated fashion, requiring only the participating sensor
estimates. For our present approach, by associating each
UWB device to a single sensor estimator in the MMSF
framework, measurements between any UWB device can
be processed efficiently. This step allows combining the
modular inclusion of states of external sensors with a regular
MMSF with onboard sensors. Our main contributions can be
summarized as:

« We propose a modular and scalable UWB-inertial based
ESEKF, merging aspects from CSE and MMSF in order
to estimate an agent’s 6-DoF motion and sensor cali-
bration states, and simultaneously estimate in a SLAM-
like fashion geometry-states of very large UWB sensor
networks in real-time.

e We perform extensive Monte Carlo simulations on
synthetic and on real data from a UAVs dataset to
verify both consistency and accuracy of the proposed
approach.

o We evaluate the self-calibration of simulated anchor po-
sitions using different sensor configurations and against
different state-of-the-art fusion strategies, showing im-

proved performance by incorporating meshed range
measurements between stationary UWB anchors.

A. Notation

Throughout this paper, the following notation is used. A
normally distributed multivariate variable is defined as X; ~
N(x;,3;;), with a mean %; and covariance (uncertainty)
3, which is called the belief of i. The time indices of
state variables are indicated by the right superscript. E.g.
Xk denotes the state at the time t*. Names of reference
frames are capitalized and calligraphic, e.g. Z for IMU. A
pose between the refefnce frﬁmes A and B is defined as
AT, € SE(3) = { [ (?3 All)B} R € SO(3),p € R?’}
(read as 7"%""x ). The operators & and & should emphasize
that state vector elements need to treated differently. The
error of translational estimates are additive, e.g. 9p; =
9p, + 9p,, while rotational errors are right-multiplicative,
eg IRy = IR, (I3 + [géz} ) € SO®. () specifies an

X

estimate, (@) an error, and (®) an average. The z-axis of
the global navigation reference frame is gravity aligned.
(T){sy.2.p.ry a0d (P)(, , .y refers to the corresponding
element.

II. MODULAR ULTRA-WIDEBAND INERTIAL AIDED
NAVIGATION

In the proposed sensor constellation, an IMU is used as a
proprioceptive state propagation sensor, a barometer is used
for a tightly coupled height estimation (both sensors are
typically available on Micro Aerial Vehicle (MAV)) and a
single UWB tag that performs ranging measurements with
the UWB anchors in communication range. Also, UWB
anchors perform measurements among them if in range.

We assume commercial UWB modules to work with
the double-sided two-way-ranging protocol (High Precision
Ranging (HiPR)) proposed by Neuhold et al. [1] allowing
fast ranging acquisitions at a rate of 40 Hz by performing a
Round-Robin scheduling to avoid network congestion, and
measurement broadcasting to close-by sensor nodes. The
UWRB tag acquires/sniffs range measurement to and between
nearby stationary UWB anchor upon fly-by in communica-
tion range and fuses them locally in a probabilistic modular
filter framework, while, in contrast to other work, consis-
tently accounting for correlations between individual sensor
estimates. For simplicity, other than Gaussian noise, we do
not assume any biases on the signals, nor extrinsic calibration
between tag and IMU. We refer to [14] on how to include
these elements into an UWB-inertial estimator and how to
perform a priori a coarse anchor position initialization.

Each sensor has a unique identifier and belongs to a
known class of sensor types. Measurements are processed
in a ESEKF-based MMSF framework [22], which associates
each measurement to a sensor estimator instance that per-
forms the information fusion with potentially other sensors
of the sensor suite. Each sensor estimator handles sensor
specific states, such as calibration parameters needed for
self-calibration. Further, each sensor estimator performs a



statistical Normalized Innovation Squared (NIS) [21] hypoth-
esis check to detect and reject outliers, and is capable of
processing delayed (out-of-order) measurements (see [22]).

Applying joint observations, incorporating different es-
timates, results in cross-covariance terms between them
and at some point, all estimators might be correlated. Our
formulation allows treating different subsets of these state
variables from a CSE perspective of separate estimators (i.e.,
entities).

Classical centralized filters such as [12] are typically not
truly modular, as they operate on the predefined full state as
one entity (including the full joint covariance matrix) making
individual sensor filter step very costly in large networks.

We integrate our approach in three different MMSF strate-
gies (cf. [22] for details on the general concepts of these
approaches) and compare the resulting performance: MMSF-
C is a centralized-equivalent EKF filter implementation
performing all filter steps on the entire full state vector.
MMSF-DP is a centralized-equivalent EKF filter implemen-
tation, performing the state propagation of individual sensor-
estimators independently, while update steps are performed
on the full state vector. MMSF-DAH performs all filter steps
isolated, requiring only sensor-estimators that are directly
involved (so-called participants) in the filter update steps,
while correlations to non-participants are conservatively ap-
proximated. We show in Section III that this last MMSF
strategy is best suited for our real-time UWB-inertial aided
navigation and mesh self-calibration approach.

A. Sensor Suite

The sensor suite consists of a varying number of stationary
UWB anchors, an UWB tag, a barometer, and an IMU. In
the following, we describe the corresponding measurement
models and state definitions.

Due to indirect error estimation [20], observations have to
be expressed by their error z = z & z. This measurement
error needs to be linearized with respect to the error state at
the current estimate z = Hx with the measurement Jacobian
H= %% ; for the measurement function z = h(x). Due
to space constraints, we omit the details of the measurement
Jacobians and the error-state definition.

1) Inertial Measurement Unit: We use the IMU as state
propagation sensor in an indirect filter formulation [24]

T
X7z = [gpz,gvz,gqubw,zba] (1)

with gpz,gvz, and ng as the position, velocity, and
orientation of the IMU Z w.r.t. to the global navigation
frame §. ;b,, and ;b, are the estimated gyroscope and
accelerometer biases to correct the related IMU readings.
Bp; and Bq, are the constant (and thus not included in the
state vector) values for position and orientation of the IMU Z
referring to the body frame B. The nominal-state kinematics

are described by

gpI — gVI?
9V =Ry (za# —bg — na) +38;

X )

ba = nbaabw = Np,,,

where ;a?# and ;w7 are the accelerometer and gyroscope
measurements of the IMU with a white measurement noise
n, and n,. Np, ~ ./\/(0, Eba) and np, ~ ./\/(0, Ebw)
are assumed to be white Gaussian noise to model the bias
change over time as a random process. The gravity vector
is assumed to be aligned with the z-axis of the navigation
frame ;g = [O,O,9.81}T.

The IMU provides noisy and biased linear acceleration
and angular velocity samples in the sensor frame 7.

Z, = Ia# = 7za + (gRI)ng + Iba + 7Ng, (3)

z, = ;w¥ = 7w + ;b + 70y, (4)

with a Gaussian accelerometer ;n, ~ A (0,3X,) and gyro-
scope 7n,, ~ N (0,X,) noise.

2) Pressure sensor: We include a barometric pressure
sensor to show-case the versatility of our approach, not being
limited to IMU and UWB measurement inclusion but also
able to treat additional sensors as separate estimators in
the CSE spirit. The barometer measures the local absolute
pressure. Its position gpp with respect to the body reference
frame is assumed to be fixed and known, and is not included
in the estimation process.

For the relative height estimation based on the barometric
formula of the isotherm atmosphere model [25], a reference
pressure P and temperature ;7' at the global reference
frame G needs to be known (e.g., by a sensor on the ground).
The barometric pressure P measured by the on-board

sensor is then:
1 2h “
1gltp
7,P:gP<1— QT ) . (5)

g

The standard atmosphere at sea-level on the equator spec-
ifies a constant temperature lapse rate of ¢; = 0.0065 K/m
valid up to 11km and the constant co = 5.257 for dry air.
The estimated height of the barometer expressed by the states
is

Ghp = (9Tp), = (gTIBTI_lBTP)Z~ (6)

Inserting Equation (6) in Equation (5) yields the noisy
pressure reading modeled as

with Gaussian noise np ~ N (07 0723).

3) Range sensor: To model the range measurements be-
tween two UWB nodes, e.g., between tag and anchor or
between anchors, we include the 3D position of each anchor
gp 4 in the state estimation process.

Xa =[P4l (8)



which does not change over time:
{pa=0. ©)

The transformation between the body reference frame B and
the UWB tag Zp- is assumed to be fixed and not included in
the estimation. The range measurement between two anchors
(A2A), or between a tag and an anchor (T2A) is modelled
as

ATy = ATy +nowe,(10)
with Gaussian noise nywg ~ N (O,U%WB) and
T
da=||¢pa—Eprll, (1n
Yy, = Gpa, — Gpally (12)

4) Estimator Summary: Summarized and as depict in Fig-
ure 1, our modular ESEKF formulation is based on the IMU
navigation states and their dynamics in Equation (2). The
filter obtains corrections from the barometer (Equation (5)
and Equation (7)), the measurements between UWB tag
and anchors in range (Equation (11)) as well as the inter-
anchor measurements observed from anchors in range (Equa-
tion (12)). The inclusion of the inter-anchor measurements as
an extension to our CSE inspired MMSF framework ( [22]) is
key to enable consistent and scalable inclusion of the UWB
mesh geometry in the estimation process in real-time. This
renders our approach a real-time capable consistent UWB-
inertial SLAM-like estimator.

III. EVALUATIONS

The experiments are done in our MATLAB framework,
that allows to load real data from the EuRoC [26] dataset
or to generate smooth trajectories and noisy, biased IMU
samples. Exteroceptive measurements are generated based on
the ground truth trajectory and are modified by the sensors’
calibration states and noise parameters. Furthermore, a delay
and dropout rate can be applied to these measurements.
The noisy and biased real-world IMU samples provided
by the datasets are used without modifications. Finally, in
multiple Monte Carlo simulation runs, all measurements
are processed in a multi-sensor estimator handler as depict
in Figure 2. It maintains multiple sensor estimator instances
and communication between them is handled locally. The
estimates and ground truth values from the dataset are used
for deterministic and reproducible evaluation of the estimator
credibility, which is described in the following section.

The simulated UWB range measurements are modeled
based on the HiPR protocol [1], with a ranging standard
deviation of 0.1 m. Further, we assume to have coarse initial
beliefs about each anchor’s locations, e.g., by performing
a calibration procedure described by Blueml et al. [14] or
manual measurements.

The evaluations are performed single-threaded in MAT-
LAB on an AMD Ryzen 7 3700X CPU with a 32 GB DDR4
RAM.
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Fig. 2: Shows the block diagram of the simulation framework.

A. Estimator Consistency Metrics

To assess the filters’ credibility, we compute the Root
Mean Square Error (RMSE) ek qr = Hi’“HZ with the error
defined as X* = ox* @ x* (e.g, R = R'R) and the
single run Normalized Estimation Error Squared (NEES)
eRpps = (ik)T 3% (x*) of each state x at each discrete time
step t* of the datasets. The avera;;e of a single run NEES, is
denoted as NEES exgrs = & D10 ExEns- Despite providing
useful insights, a single run NEES does not adequately
measure the filter consistency and a thorough examination is
needed by evaluating the single run NEES over (multiple) M
Monte Carlo simulation runs, leading to an average NEES,
the ANEES at the time instance t*

M
1
k k
CANEES = 77 Z €NEES, i (13)
i—1

The average RMSE, the ARMSE, of a single run is defined
_ 1 vK g
a8 EARMSE = F Zk:o CRMSE*

Assuming a zero mean estimation error X ~ N(0,X)
with x¥ = x* © %*, the esngges should have a chi-squared
distribution x2 of dimension n = dim(X). Therefore, the
NEES should be on average n. This allows to assess the
credibility by defining a lower and upper boundary, r1, 2,
for the observed eanggs. In general, lower values indicate
pessimism (under-confidence), while higher ones optimism.
The boundaries of a commonly used two-sided 95 % confi-
dence regions (o = 0.05) is computed, defined as

Xoar(0:50) X2, (1= 0.50)

M ’ M ’
with the state dimension n, M Monte Carlo runs, and the chi-
squared distribution }2 [21]. For M = 10 and n = 3, e.g.,
the IMU position, the lower and upper credibility bounds for
the ANEES in the 95 % region are [1.68,4.7].

[r1,72] = (14)

B. Scenario S1

In the first scenario, S;, we study the tightly coupled
anchor self-calibration in our modular aided inertial es-
timation framework. Therefore, 20 anchors are randomly
distributed on a sphere with a radius of 7m. Five anchor
positions are assumed to be known and set to be fixed in
the estimation framework, meaning that the corresponding
sensor estimators are excluded from sensor fusion. According
to a nonlinear observability analysis, only 2 anchors need be
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Fig. 3: Scenario S1: Shows the estimated trajectory at t = 17's, the
15 estimated and 5 fixed anchor positions, randomly placed on a
sphere with a radius of 7m, and the estimate IMU pose with the
exteroceptive sensor positions of the barometer and the fixed UWB
tag. The problem is described in Section III-B.
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GPa Bpirpy | Sovis Yaz zPa 7Pw
ot 30cm 10cm 1{m, m/s} 5deg 0.05m/s? 0.05rad/s
Ax% | +£30cm | +10em +1{m,m/s} | £5deg | £0.05m/s? | +0.05rad/s

TABLE I: Scenario Sp: Initial uncertainty and initial state offsets
Ax for the UWB anchor positions, IMU states, and exteroceptive
sensor states. = emphasis that a positive or negative values is
assigned randomly per element.

known in order to render the non-linear estimation problem
fully observable. Since the system suffers from approximated
models, linearization errors, multi-rate measurements, and a
low signal-to-noise ratios, we found 5 fixed anchors to render
a good compromise in terms of convergence behavior.

The agent moves along a smooth and randomly generated
trajectory within the sphere for a duration of D = 150s as
shown in Figure 3. All states are initialized with a randomly
assigned £1o offset from the true value, as described in
Table I. The IMU sample rate is 100 Hz and all UWB
ranging devices are in communication range (leading to
maximum complexity), while 10% of measurements are
randomly dropped. In total, three experiments regarding the
anchor self-calibration are conducted. The first studies the
anchor self-calibration by just obtaining tag to anchor (T2A)
range measurements. In the second experiment, additionally
range measurements between anchors (A2A) are used. In
the third experiment, tag to anchor and readings from the
barometer are used. Three different modular multi-sensor
fusion strategies, MMSF-C, MMSF-DP, and MMSF-DAH
are applied as already described in Section II.

1) T2A ranging: In this experiment, IMU and T2A mea-
surements are fused in the modular estimator framework
using three different fusion strategies. The effective T2A
measurement rate for each anchor is 2 Hz due to the Round
Robin scheduling performed. As shown in Table II, MMSF-
DAH is the fastest approach that allows to significantly
reduce the total filter execution time by a factor of 22.3

and a factor of 15.6 over MMSF-C and MMSF-DP, re-
spectively. MMSF-DAH seems to be slightly more confident
than the other two approaches and the ANEES converges
slower to the desired mean value. Nonetheless, the ANEES
plots of the weakly observable accelerometer bias b, the
IMU orientation ng, and the position of the sixth (as a
representative and also random choice for space reasons)
anchor 9p A, for all strategies shown in Figure 4, behave
similarly. Summarized, the ARMSE of anchor positions
reduced from an initial RMSE of 30 cm (see Table I) below
to approximately 12 cm on average over the entire trajectory
using either fusion strategy in Table II.

2) T2A and A2A ranging: In this experiment, IMU, T2A
and A2A range measurements were fused using MMSF-
DP and MMSF-DAH. MMSF-C was excluded due to the
huge single run computation time. The effective T2A and
A2A measurement rate for each device is 1 Hz due to the
time scheduling performed to avoid network congestion. As
shown in Table II, MMSF-DAH is 21.8 times faster as
MMSF-DP. It can be clearly seen in the same table, A2A
range measurements significantly reduce the estimation error
of the anchor positions down to 1.6 cm. The inclusion of
these measurements comes at the cost of higher complexity,
leading to 5.6 times higher computation time in the case of
MMSF-DAH. This could motivate to perform a two-stage
approach: first perform an accurate anchor localization, then
once the system is calibrated, only highly efficient T2A
measurements are performed. In Figure 5, the ANEES of the
accelerometer bias, the 17th anchor position and the 19th an-
chor position is shown. Interestingly, the A2A measurements
have a positive impact on the ANEES of the accelerometer
bias, and it also seems to converge faster, compared to the
T2A-only experiment. The ANEES of the 17th and 19th
anchor are chosen as they show both under-confidence and
over-confidence, which is independent of the selected fusion
strategy. This might be a position-dependent issue due to
PDOP and needs further investigations. Nonetheless, the state
plots in Figure 6 of the first Monte Carlo simulation run using
MMSF-DAH, show an exemplary and satisfying estimation
behavior of the proposed estimator.

3) T2A and pressure: In this experiment, we evaluate
the impact of fusing pressure readings of a rigidly attached
barometer tightly in the modular estimation framework using
MMSF-DP and MMSF-DAH. The calibration state between
the barometer and the body reference frame are assumed to
be known a priory and fixed. Pressure readings are processed
at a rate of 20 Hz with measurement standard deviation of
op = 1Pa, translating to approximately 8.4cm standard
deviation at sea-level and is slightly beyond commercially
integrated pressure sensors. Again, 10 % of pressure readings
are dropped randomly. As shown in Table II, MMSF-DAH
is again 21.8 times faster as MMSF-DP and fusing pressure
reading tightly leads to more accurate IMU estimate in case
of MMSF-DP than fusing A2A measurements. Interestingly,
the pressure readings are not improving the anchor position
estimates across approaches and is subject to future investi-
gations. In Figure 5, the ANEES of the accelerometer bias,
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Fig. 6: Scenario Si: T2A and A2A ranging estimation results of the first Monte Carlo run using MMSF-DAH. The top row shows the
true (dashed) and estimated values (solid), the second row the single run NEES with the double-sided 99.7 % confidence region (dotted
lines), the third row show the estimation error and the 30 boundaries, and the last row the estimate’s standard deviation. The first three
columns are the estimated IMU position, velocity, and orientation. The last column is the estimated position of the 19th UWB anchor. In
yellow, blue, red are for the x, y, z position, and for the roll, pitch, yaw angle, respectively. The experiment is described in Section III-B.2.
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Fig. 7: Scenario S1: T2A ranging and pressure readings. Shows the ANEES, the double-sided 95 % confidence region (dotted lines), and
expected ANEES value (dashed line) over 10 Monte Carlo simulation runs of the accelerometer bias b,, the 7th and 18th UWB anchor
position using MMSF-DP (blue) and MMSF-DAH (green). The experiment is described in Section III-B.3.



10 Monte Carlo runs [s] [s] [s] [em] [em/s] [deg] [m/s?] [rad/s] [em]

MMSF | A2A | Baro | fprop | Gjoint | tror p, 99, 9q, b be, 9p 4
AR AN | AR | AN AR AN AR AN AR AN AR AN
C 0 0 0.089 0.096 1774 | 451 | 281 | 74 | 359 | 092 | 526 | 0.015 | 6.02 | 0.0066 | 3.016 | 11.1 | 2.88
DP 0 0 0.0063 0.253 1237 | 469 | 270 | 7.8 | 3.73 | 1.01 | 6.14 | 0.016 | 7.12 | 0.0068 2.89 11.3 | 246
DAH 0 0 0.0039 | 0.0045 79.4 53 449 | 79 3.8 098 | 6.04 | 0.018 | 9.82 | 0.0067 3.56 11.6 | 3.45
DP i 0 [ 00073 [ 0113 | 9741 | 43 [ 253 | 69 | 3.14 | 091 | 343 | 0.015 | 454 | 00079 | 46 | 15 | 339
DAH 1 0 0.0052 | 0.0044 | 446.7 | 4.4 252 | 7.1 | 298 | 091 | 3.18 | 0.015 | 4.04 | 0.0079 3.95 1.6 | 482
DP 0 1 0.0066 0.274 2075 | 3.85 | 3.76 | 6.1 | 436 | 0.81 | 6.17 | 0.012 6.1 0.0062 3.56 12.1 | 2.96
DAH 0 1 0.0041 | 0.0047 | 952 | 4.52 6.6 6.2 4.7 0.83 | 6.94 | 0.012 | 6.44 | 0.0066 | 4.22 13 5.04

TABLE II: Scenario Si: Shows the average ARMSE (AR) and ANEES (AN) of the estimated states as well as the average over the
estimates UWB anchor positions for different fusion strategies and different sensor configurations averaged over 10 Monte Carlo simulation
runs. Please note the total execution time ¢ is the average over a single run, while Z,,0, and %;0:n¢ are the average values for a single
filter propagation or update step. Since the ARMSE calculation includes the entire trajectory, including the initialization and the state
convergence phase, it is on average higher than the error after convergence. Best values in bold and problem is described in Section III-B.

the 7th and 18th UWB anchor are depicted, indicating again
that MMSF-DAH is more optimistic than MMSF-DP and
that the ANEES converges slower, while all estimates tend
to converge towards the defined confidence region.

C. Scenario So

For evaluating the estimator credibility and the compu-
tation time of individual sensor estimators in a realistic
scenario, we use two Machine Hall sequences (MH_04 and
MH_05) of the EuRoC dataset [26]. The simulation runs
for 78s and 92s, which is the flight time of the Machine
Hall sequences between take-off and landing. Each UAV is
equipped with an IMU, barometer, and an UWB transceiver
(tag), for both communication and pair-wise ranging between
other UWB modules in communication range. Figure 1
depicts the spatial frame constellation. Twenty-five stationary
UWRB transceiver (anchors) are assumed to be deployed to
cover the area of interest as shown in Figure 8 with a
communication range of 4 m. The communication range is on
purpose short, to justify the deployment of 25 anchors and
to challenge the estimation problem: anchors are revisited
again, meaning that they are correlated and need to be
considered properly, and some anchors have no direct link to
(fixed) reference anchors. Five anchors close to the take-off
position of the UAV are fixed (constant) to define the global
coordinate reference frame.

The same initial values and parameters as in Section III-
B are used, with the difference that the initial uncertainty
of the anchor position was lowered to o¢p, , = 0.1m and
the effective UWB ranging rate between devices in range
is 8 Hz (due to the sparse configuration, fewer devices are
in communication range, which allows a higher net rate
for individuals) and the IMU rate in the dataset is 200 Hz.
All UWB nodes are inserted artificially into the real-world
dataset.

Figure 8 shows the estimation performance using MMSF-
DP and MMSF-DAH. As confirmed in Table III, hardly any
difference in the estimated IMU states are noticeable, while
operating on the full state vector (with 75 elements) in case
of MMSEF-DP in the filter update steps causes tremendous
computation efforts over treating them isolated in case of

UWB communication
range

12+

0k A

initial position AN
estimates 25

1 1 I 1 L )
-10 -5 0 5 10 15
X

Fig. 8: Scenario S,: Top view on the anchor placement (bullets)
and the Machine Hall 4 and 5 trajectories of the Machine Hall
sequences of the EuRoC dataset [26] in dashed dark red and dashed
dark blue, respectively. In red and blue are the estimated position
using MMSF-DAH, while in mageneta and cyan using MMSEF-DP.
The filled orange circles show the communication range of 4 m per
UWB anchor. Fixed anchors at the starting position are assumed to
be constant and known, to define the navigation reference frame.

MMSF-DAH. This processing speedup of almost 26.5 comes
at the cost of a slightly degraded and slower converging
anchor self-calibration, as discussed in Section III-B.

IV. CONCLUSION AND FUTURE WORK

Considering inter-sensor observations not involving the
core navigation states in a Modular Multi-Sensor Fusion
(MMSF) framework is a new paradigm originating from
Collaborative State Estimation (CSE). In our evaluations,
we have shown that considering these as tightly coupled
range observations between ultra-wideband (UWB) anchors
can significantly improve the estimates of both, the nav-
igation states and estimated anchor positions. In such a
formulation, the computational effort increases significantly
using centralized-equivalent estimators. With the presented
sensor extensions to our recently proposed Modular Multi-



10 Monte Carlo runs [s] [s] [s] [em)] [em/s] [deg] [m/s?] [rad/s] [em]
MMSF EuRoC tprop | tjoint ttot gflz g‘_/g Ya, zPa zbw Pa
AR AN AR AN AR AN AR AN AR AN AR AN
DP MH_04 0.0071 0.209 2337.8 9.82 3.28 9.6 397 | 1.52 | 2.96 0.03 291 0.003 2.1 59 4.717
DAH MH_04 0.0036 | 0.0029 88.7 10.7 3.81 9.8 392 | 1.58 | 2.87 0.03 272 0.003 2 6.6 4.7
DP MHO5 | 00072 | 0204 | 30879 | 10.8 | 386 | 93 | 463 | 172 | 338 | 0029 | 22 | 0.0028 | 2.62 | 5.65 | 578
DAH MH_05 0.0038 | 0.0032 116.6 12.56 4.3 9.77 | 487 | 1.73 | 3.77 0.03 3.37 | 0.0029 | 443 | 6.55 | 5.66

TABLE III: Scenario So: Shows the average ARMSE (AR) and ANEES (AN) of the estimated states as well as the average over the
estimates UWB anchor positions for different fusion strategies and different sensor configurations averaged over 10 Monte Carlo simulation
runs. Please note the total execution time t¢o¢ is the average over a single run, while Z,r0p and Z;0in: are the average values for a single
filter propagation or update step. Best values in bold and problem is described in Section III-C.

Sensor Fusion Decoupled Approximated History (MMSF-
DAH) approach, we show the feasibility of processing inter-
sensor observation as isolated joint updates between sensor
estimators without requiring estimates of other sensors and,
thus, resulting in a significant speedup. This breaks the
computational barrier such that meshed (and generally ill
scaling) inter-sensor observations can be fused to aided
inertial navigation estimators while maintaining consistency
in the navigation states.

UWB aided inertial motion estimation with simultaneous
online UWB anchor position initialization (and extension by
fly-by), and continuous self-calibration remains a challenging
task. In future work, we will also investigate in increasing
the robustness in case of NLOS conditions (that lead to
unmodeled offsets in range measurements), which requires
consistent estimates for a statistical outlier rejection.
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