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Abstract—Localization filters for underwater vehicles are
mostly tailored for specific sensor suites, environments, or mis-
sions. It is also well known that the underwater environment
can evolve over time and throughout the mission, affecting the
vehicle’s sensors, e.g., tide, currents, and vehicle proximity to
structures, especially in harbor areas. In this paper, the Modular
and Robust Sensor-Fusion Framework (MaRS) is extended to
work with underwater vehicles and their environment. It enables
efficient use of asynchronous sensors and handles measurement
outliers and outages. Sensor-frame initialization and online ex-
trinsic calibration methods are also explored. Tests are performed
in real harbor-like environments using a small remotely operated
vehicle (ROV) and show improved handling of sensors and state
estimation results.

Index Terms—ROV Navigation, State-Estimation, EKF,
Sensor-Fusion

I. INTRODUCTION

Usage of remotely operated vehicless (ROVs) in underwa-

ter operations has increased over the last decade. They are

quickly deployed and minimize the risks for humans. With

the growing demand for complex missions such as exploration

or inspection tasks relying on higher-level autonomy, accurate

and robust localization of such vehicles becomes essential.

Underwater navigation is a difficult task, and many challenges

exist affecting different sensor modalities. These challenges

range from visual disturbances for cameras due to the water

quality and light conditions, acoustic reflections and shadow

zones for sonars and Doppler sensors or other acoustic-based

sensors such as acoustic positioning systems, to magnetic

distortions caused by metal structures for magnetometers.

Therefore, there is a need for a reliable combination of

sensors leveraging the strength of each sensor type while

This work was supported in part by the BugWright2 EU H2020-Project
under the Grant agreement No. 871260 and in part by the Army Research
Office under Cooperative Agreement Number W911NF-21-2-0245.

The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies,
either expressed or implied, of the Army Research Office or the U.S.
Government. The U.S. Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copyright notation
herein.

Pre-print version, accepted Jul./2022 at OCEANS22,

DOI: 10.1109/OCEANS47191.2022.9977298 ©IEEE.

detecting outliers and failures in other sensors currently ad-

versely affected by the surroundings. Especially in harbor-

like environments, where signal reflections and obstructions

are present, robust and reliable state estimation is necessary.

Past work mainly considered disturbance effects in simulations

[1] with multiple sensing modalities. However, the environ-

mental effects causing the sensors to fail are challenging to

simulate realistically. Thus, as presented in this work with a

modular fusion method, real-world tests are crucial to evaluate

a multi-sensor fusion approach for underwater sensor suites

thoroughly.

Kalman Filters (KF) and their various variants, such as

the extended Kalman filter (EKF), the Unscented Kalman

Filter (UKF), and the Error-State Kalman filter (ESKF), which

are commonly used in underwater multi-sensor fusion appli-

cations for localization [2], [3]. However, they are usually

pre-compiled and fixed for a specific sensor configuration

prior to the mission. [1] proposed a scalable and modular

framework for ROV localization as an adaptation of the local-

ization framework called Vind [4] by modifying a 2D mobile

robot localization to 3D ROV localization. It is EKF-based

and designed to meet four main requirements: modularity,

scalability, reconfigurability, and performance. However, tests

were performed for simulated effects, and verification with

real data is very limited. The authors also show that their

approach is sensitive to a loss or disturbed position signal,

even in simulation.

[5] presented a non-EKF framework that fuses body-

velocity and position measurements in a cascaded, comple-

mentary filter and tests it in a shallow environment. While

this work fuses noisy measurements from these sensors, an

additional outlier rejection scheme is needed to account for

disturbed measurements. Further, compared to EKF-based

approaches, no (un-)certainty of the state estimate can be given

with this approach, and unreliable sensors, i.e., loss-of-signal,

are not sufficiently handled.

In this work, we leverage a recently developed framework

for unmanned aerial vehicles (UAVs), the Modular and Robust

Sensor-Fusion (MaRS) [6] framework, and extend it to sensors

commonly used on real underwater ROVs. These extensions

within MaRS allow us to focus on real-world data with its



Fig. 1. Blueye X3 ROV used for the experiments.

inherent polluting elements like asynchronous sensor measure-

ments, multi-rate readings, and out-of-sequence measurements

as we design our algorithm to run onboard a real ROV in a

harbor-like environment for usage in ship-hull inspections. We

further include methods for sensor frame initialization and on-

line extrinsic calibration, given the information provided by the

currently available sensors. Further, we include and show the

capability of handling unreliable sensors and measurements

during mission time and compare our method to industrial

underwater position sensors (outdoor in the fjord or harbor

environments) or image-based ground truth (indoor test basin).

II. SETUP AND METHOD

While we design the following framework for our Blueye

X3 small ROV1 as shown in Fig. 1, please note, that MaRS’

modularity would allow it to run with any number of different

sensors and setups as shown in [6]. The X3 features two

sets of instruments: internal sensors and external sensors that

were manually added. The drone itself contains two inertial

measurement units (IMUs) with an integrated inclinometer.

Both IMUs provide 3 degrees of freedom (DoF) gyroscope,

accelerometer, and magnetometer readings. A pressure sensor

is used to measure the depth and a forward-looking camera

so that the ROV is vision-enabled. It has a manually fixed tilt

and is located behind a glass dome. As for the external sensor

payload, a Doppler velocity log (DVL) sensor is mounted and

provides 3 DoF body velocity and the distance to the ground.

The sensor also features its own IMU with an inclinometer.

The manufacturer provides a processed 6 DoF pose relative

to a start position through a proprietary method. A standard

global navigation satellite system (GNSS) receiver mounted

on a stick is also employed. This allows a fix positioning

correction every time the ROV goes back to the surface and

also to be aligned with a global GNSS frame. Finally, the

underwater drone is also equipped with a multi-beam forward-

looking sonar which is not used in this work.

1Blueye: https://www.blueyerobotics.com
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Fig. 2. Sensors and their reference frames used within MaRS for state
estimation of our X3 ROV, as viewed from the left and back.

A. State-Estimation

The presented state-estimation module extends our previous

work, the Modular and Robust Sensor-Fusion (MaRS) [6]

framework, to account for the aforementioned underwater

sensors, namely the DVL and pressure sensor. MaRS is

an error-state EKF that provides modularity for adding and

removing sensors at run-time while being computationally

highly efficient.

Our goal is to estimate the vehicle’s IMU position
N
r
NI

,

orientation q
NI

, and velocity
N
v

NI
within our gravitationally-

aligned navigation frame N . Additionally, we estimate the

biases of the EKF’s main propagation sensor, the IMU, repre-

sented by
I
b

a
and

I
b

ω
for acceleration and angular velocity,

respectively. Thus the vehicle’s core state can be summarized

to

x
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=
[
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N
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bT

a
,
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ω

]

T

∈ R
16×1. (1)

In general, the core state and covariance can be propagated

using the Newton-Euler dynamics model for a vehicle in 3D

(2-6) and the IMU measurements. Ω(ω) is the right side

quaternion multiplication matrix (c.f. [7]),
I
ω̆

NI
and

I
ă
NI

the

measured angular velocity and linear acceleration, respectively.

N
g is the gravity vector expressed in the navigation frame,

which due to the definition of the navigation frame is generally

N
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[

0, 0, 99.81
]

T

m/s2.
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ḃ

ω
=

I
n

bω

(6)

Further, upon receiving a sensor measurement, the core

states are corrected using the following sensor measurement

https://www.blueyerobotics.com


equations.
I
r
ID

,
I
r
IP

and
I
r
IG

are calibration states that

describe the translation between the vehicle’s IMU and the

sensors DVL, pressure, and position, respectively. Similarly

R
ID

and R
IA

describe the orientation offsets between the IMU

and DVL or attitude sensor.

zDVL = RT

ID
RT

NIN
v

NI
+ RT

ID
⌊
I
ω̆

NI
−

I
b

ω
⌋
×I

r
ID

(7)

zPressure = ∥
N
g∥ · ρwater ·

[

0, 0, 1
]

(
N
r
NI

+ R
NII

r
IP
) (8)

zPos = G0
r
G0N

+ R
G0N

(
N
r
NI

+ R
NII

r
IG
) (9)

zAtt = R
A0N

R
NI
R

IA
(10)

⌊•⌋
×

is the skew-symmetric matrix (as defined in [7]) and

represents the cross-product, ∥
N
g∥ = 9.81m/s2 is the norm

of the gravitational acceleration, and ρwater = 997 kg/m3 is

the density of water. Additionally, the reference frame of

the position sensor (G0) and attitude sensor (A0) might be

different than the navigation frame (N ) used. Therefore, the

calibration states
G0

r
G0N

, R
G0N

, and R
A0N

are added to

account for a transformation between these frames (e.g., east-

aligned East-North-Up (ENU) GNSS frame and north-aligned

North-East-Down (NED) navigation frame).

B. State-Initialization

Initially, all initial extrinsic calibration states, i.e.,
I
r
ID

,

I
r
IP

,
I
r
IG

, R
ID

, and R
IA

, are calibrated by measuring the

individual sensor translation and rotation offset manually or

through software tools [8], [9].

We then assume the ROV to be static on startup such

that we can initialize the navigation frame N gravitation-

ally aligned using the direction of gravity from the past n
accelerometer measurements. Further, as an initial guess, we

initialize the yaw using the magnetometer. It should be noted

that due to metallic structures in harbors, this initial guess

might be significantly different from our global yaw. However,

if another global sensor such as GNSS is used, the state

R
G0N

is updated to correct for the yaw-misalignment. In an

ideal scenario R
G0N

= I3, otherwise magnetic interference

detection methods can be explored [10]. The initial attitude

can then be used to provide an initial guess for R
A0N

upon

receiving the first attitude measurement zAtt.

Furthermore, the navigation frame’s origin is set to the

startup position, i.e.,
N
r
NI

= 0, and the initial state covariance

is associated. Due to the static assumption on startup, also the

velocity is set to 0. The biases are initialized using the mean

values provided by the manufacturer (given in Tab. I). Finally,

upon receiving the first position measurement, we can then

derive the position sensor reference frame
G0

r
G0N

.

C. Measurement Rejection

In the real world, sensor measurements are rarely perfect

and highly accurate but rather noisy due to environmental

impacts. Reflections and distortions caused by structures tend

to influence the accuracy, especially of the DVL and GNSS

sensors. The GNSS sensor, for example, is influenced heavily

by the water, as we will show below. As the low-power signal

cannot penetrate water (easily) and is reflected by it, the GNSS

Fig. 3. Test site for the experiments: outdoor pool located at the Trondheim
NTNU’s Biological Station.

measurements are noisy if the receiver is close or just covered

by water. Also, as can be expected, upon diving, the signal

can be lost completely. Similarly, the DVL sensor expects a

flat seafloor, and structures present (e.g., ship hulls and harbor

walls) can reflect the signal and thus distort the measurement.

Therefore, there is a need to detect and reject faulty and

noisy measurements properly. In our framework we achieve

this by performing a likelyhood test on every measurement

received, in this case a χ2-test using the prior sensor states

and covariance.

χ2-tests are a useful addition to EKFs but they have a

drawback: If a sensor measurement is not received and the

core state not corrected for some time, e.g., GNSS while

performing a dive, the core state might drift from the true

value. In that case, the χ2-test can trigger for every new

measurement, rejecting it and thus not correcting the core

states. To circumvent this, our framework performs a complete

sensor re-initialization (c.f. Sec. II-B) if ten consecutive χ2-

tests have failed, taking advantage of MaRS’ ability to add

and remove sensors dynamically.

III. EXPERIMENTS AND RESULTS

We perform various experiments in our main testing site,

which is located at the Trondheim NTNU’s Biological Station

in Norway2 in a 7x10 meter outdoor pool as shown in Fig. 3.

We chose this pool as it emulates the space available at a har-

bor when inspecting ship hulls3 well. The platform presented

in Sec. II equipped with a WaterLinked A50 DVL sensor, a

water-proof GNSS sensor, a TE connectivity MS5837-30BA

pressure sensor, and an InvenSense MPU-9250 IMU is used.

Additionally, the attitude provided by the proprietary comple-

mentary filter of the DVL driver is added as a measurement in

MaRS. The sensor measurement rates and their measurement

uncertainty, as provided by the manufacturer, are given in

2TBS: https://www.ntnu.edu/biology/research/tbs
3See project BugWright2: https://www.bugwright2.eu
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TABLE I
SENSOR RATES AND MEASUREMENT UNCERTAINTY

Sensor Observed Rate Measurement Uncertainty

accelerometer 100.0 Hz 0.041 62 m/s2

gyroscope 100.0 Hz 0.002 46 rad/s
DVL 5.5 Hz 0.04 m/s

pressure 43.0 Hz 7.5 kPa

GNSS 1.0 Hz 0.5 m

attitude 4.5 Hz 2.0 °

Tab. I. Further, MaRS and the sensor drivers run onboard the

platform on a Raspberry-Pi3-equivalent board.

a) Rectangular Motion: In our first experiment, we per-

form several low-speed rectangular motions in the pool and

compare our position estimates with the measurements and

positions obtained from the GNSS sensor and DVL software

(c.f. Fig. 4). The position measurements of the DVL are

aligned with the MaRS estimate using the first pair of poses.

Please note that the GNSS measurements are not required

to be aligned due to our initialization method using the

magnetometer (c.f. Sec. II-B).

At low speed, the low-rate GNSS measurements are a good

reference to compare with our state estimates. As can be

clearly seen in Fig. 4a, our state estimation is able to follow

the low-rate GNSS closely for the North and East coordinates.

In comparison, the DVL positioning software accumulates a

North-drift within the first motion (seconds 0-10), which it can

never correct again afterward.

An additional advantage of our sensor fusion is the im-

proved depth estimation. Compared to the DVL and GNSS

sensors whose signals are disturbed, MaRS is able to provide a

good depth estimate by relying mostly on the pressure sensor

as shown in detail in Fig. 4b. Minor differences (< 10 cm)

are present due to the offset and online calibration estimation

between the IMU and pressure sensor, i.e. state
I
r
IP

.

Furthermore, while we do stay close to the surface for most

of the trajectory to acquire good GNSS measurements, we

also perform a dive between seconds 190 and 225. Within

this time, no GNSS measurements are received. Yet, MaRS

is able to continue to estimate the position correctly fusing

the other sensor measurements. Because they are inaccurate,

upon regaining GNSS, the first couple of measurements are

rejected through the χ2-test. After successfully passing the

test at approximately second 230, the position is corrected

accordingly. This shows that our framework is able to handle

measurement outages and reuse them upon regaining reliable

measurements.

b) Pattern Motion: In another test, we pilot a “MaRS”

pattern with fast motions. As a result, the low-rate GNSS

measurements tend to be less accurate and are sparser dis-

tributed. Fig. 5 shows the 2D position comparison between

MaRS, GNSS, and the DVL position estimate. Again the DVL

estimate is aligned with the MaRS estimate using the first pair

of corresponding poses within the sequence.

Similar to the previous experiment, our estimation frame-

work MaRS is able to follow the shape of the pattern. How-

(a) North-East-Down comparison for position estimates

(b) Depth comparison when diving

Fig. 4. Aligned comparison between MaRS (orange), GNSS measurements
(green), and the position obtained through the proprietary method of the DVL
software (blue) for a rectangular trajectory with slow motion. MaRS is able to
follow the GNSS measurements for the North and East axis correctly, while
the DVL estimator accumulates a minor drift in the beginning (a). Neither the
GNSS nor the DVL provide good depth estimates. Thus MaRS follows the
measurements of the more accurate pressure sensor as shown when a dive is
performed between seconds 190 - 225 (b).

ever, due to the faster motion with this trajectory, the GNSS

is less accurate and the distance between two consecutive

measurements increased. Compared to the previous experiment

where most GNSS measurements are used, in this experiment,

these less-accurate GNSS measurements can result in failed

χ2-tests, prohibiting the state update. Therefore, a position

difference between our estimates and the raw measurements

(noticeably for the “M” and “R” of the pattern). Further,

as seen previously, the DVL position estimate accumulates

a minor yaw and position drift at the start of the trajectory,

which it can never correct for, thus showing the need for fusing

multiple sensor measurements.

MaRS’ trajectory is provided at the combined rate of all

sensors, i.e., at approximately 150Hz (c.f. Tab. I). While the

higher rate compared to the positional output from either

GNSS or DVL position is useful for control, this implies

that also the intermediate propagation estimates between two



Fig. 5. Estimation comparison between MaRS, GNSS, and the DVL-provided positions when swimming a fast-motion “MaRS” pattern. The DVL positions
are aligned using the first pair of corresponding poses while the GNSS measurements are presented “raw”. GNSS is less accurate in this experiment due to
the faster motions, which can result in the receiver being closer to (or under) the water. MaRS is able to detect some of these faulty measurements through
its χ2-tests and rejects them. In comparison, the DVL-provided position accumulates some drift in the beginning, which cannot be corrected for.

consecutive and corrective position updates are provided.

Therefore, in faster motions MaRS’ trajectory tends to be more

jittery as seen in Fig. 5. If desired in ROV or autonomous

applications, the estimates’ publication rate could be lowered,

and hence the trajectory smoothed.

IV. CONCLUSION

With this work, we improved and presented a modular state

estimation framework for ROVs using common sensors such

as a DVL, an IMU, a pressure sensor, and a GNSS sensor

(when above the water surface). We compared our estimation

technique with the estimates provided by the integrated DVL

sensor and saw that through our modular estimation MaRS is

able to handle sensor outages as well as measurement outliers

due to environmental disturbances.

Overall we presented and extended a state-of-the-art esti-

mation framework usable for reliable ROV navigation within

limited environments such as harbors by taking advantage of

multiple different sensors.
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