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Abstract— The research community presented significant ad-
vances in many different Visual-Inertial Navigation System
(VINS) algorithms to localize mobile robots or hand-held de-
vices in a 3D environment. While authors of the algorithms of-
ten do compare to, at that time, existing competing approaches,
their comparison methods, rigor, depth, and repeatability at
later points in time have a large spread. Further, with existing
simulators and photo-realistic frameworks, the user is not able
to easily test the sensitivity of the algorithm under examination
with respect to specific environmental conditions and sensor
specifications. Rather, tests often include unwillingly many
polluting effects falsifying the analysis and interpretations. In
addition, edge cases and corresponding failure modes often
remain undiscovered due to the limited breadth of the test
sequences. Our unified evaluation framework allows, in a fully
automated fashion, a reproducible analysis of different VINS
methods with respect to specific environmental and sensor
parameters. The analyses per parameter are done over a
multitude of test sets to obtain both statistically valid results
and an average over other, potentially polluting effects with
respect to the one parameter under test to mitigate biased
interpretations. The automated performance results per method
over all tested parameters are then summarized in unified radar
charts for a fair comparison across authors and institutions.

SOFTWARE & VIDEO

The open-sourced VINSEval framework is made avail-
able via https://github.com/aau-cns/vins eval. A demon-
stration video of VINSEval is made available on
https://youtu.be/KuA3nibxWok.

I. INTRODUCTION

Data-driven algorithms for autonomous robotics gained
significant attention over the last years, enabling a paradigm
shift in state estimation for mobile robotic applications. This
trend allowed the robotic research community to design
and develop Visual-Inertial SLAM (VI-SLAM), Visual-Inertial
Odometry (VIO) algorithms, or, in general, Visual-Inertial
Navigation System (VINS) algorithms able to reach high per-
formance in terms of accuracy and efficiency. To do so, sim-
ulation and synthetic data have been one of the fundamental
tools for engineers and researchers during the design and
development of such algorithms. They allow fast prototyping,
safe, and inexpensive testing without dealing with real-world
experiments and hardware issues in the early development
stages. Further, simulations provide high repeatability of data
and the precise control of various parameters. Despite the
progress made to let state-of-the-art estimation algorithms
reach high performance in terms of accuracy with respect
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Fig. 1. Views of different rendered scenes. Top row, left to right: a scene
with a grass ground texture and stones providing informative visual features,
with no camera distortion and with fisheye lens distortion. Bottom row, left
to right: a scene with a cement self-similar ground texture and no informative
visual features, with low illumination, and with optimal illumination.

to commonly used error metrics (i.e., Absolute Trajectory
Error (ATE), and Relative Trajectory Error (RTE)), current
VINS solutions still lack in robustness and consistency. In
addition, as more and more such methods are presented
by the community, the lack of a unified comparison and
benchmarking tool starts to become an important issue.

Motivated by the shortcomings in robustness and consis-
tency in VINS methods, and in particular the upcoming era
of research dubbed robust-perception-age [1], in this paper,
we present VINSEval: a fully automated photo-realistic vi-
sual and inertial data generation, simulation, and estimator
evaluation framework for fast VINS development, improve-
ment, and unified comparison. VINSEval has two core ca-
pabilities: (i) For researchers to speed up the prototyping
and development of consistent and robust VINS algorithms
through the capability of generating setups and data with very
specific parameters and parameter changes, and (ii) for both
researchers and end-user engineers to evaluate and compare
the performance of VINS algorithms in terms of consistency
and robustness in a unified, fully automated fashion over a
large set of parameter sweeps. VINSEval is not only general
in that sense, but it also allows the generation of very specific
edge-case scenarios where VINS can be tested in. Each
scenario has unique visual characteristics and requirements,
and we believe providing a framework for understanding the
constraints therein is critical when assessing performance
and guiding subsequent development. State-of-the-art VINS
benchmarking approaches tend to ignore differences between
individual scenarios leading to solutions that only partially

https://github.com/aau-cns/vins_eval
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Fig. 2. Robustness overall score and Breaking Point (BP) of the VINS algorithms under examination with increasing difficulty levels for each of the
considered environmental and/or sensor parameters. The BP per parameter is visually defined as the level next to the the corner of the polygon.

address end-user needs. They rather focus on system-level
performance and accuracy but overlook that none of these
error metrics, when uncontextualized, indicate how well a
VINS algorithm could perform on a given specific scenario.

The multiple key contributions of the presented work are:
Unified statistical evaluation framework: To the best of our
knowledge, VINSEval is the first work that provides a frame-
work to evaluate with statistical relevance the consistency
and robustness of VINS algorithms in a fully automated
fashion over a multitude of parameters and parameter ranges.
Sample evaluation: We demonstrate how VINSEval can
statistically compare the consistency and robustness of four
state-of-the-art algorithms when applying parameter sweeps
over (i) amount of features seen, (ii) illumination conditions,
(iii) IMU noise values, and (iv) sensor time delay. The results
are automatically summarized in radar-charts in Fig. 2 for
quick information access with minimal user effort.
Extensibility: VINSEval is an easily extendable framework.
This is true for the photo-realistic scene, different parameter
sweeps, and different evaluation parameters that can further
be included. All such extensions are directly included in the
fully automated evaluation process enabling VINSEval as a
useful tool for VINS evaluation in various different scenarios.
Flexibility and modularity: All the modules of VINSEval
are modular and flexible. Indeed the data provided as input
to the core of VINSEval can be either synthetically generated
or recorded from a real platform. The rendering module then
allows automated changes of the rendered scene and flexi-
bility to manipulate rendering parameters, UAV parameters,
and sensors noise specifications online.

II. RELATED WORK

With particular regard to UAVs, Hector Quadrotor [2] and
RotorS [3] are Gazebo simulators that allow the user to
simulate different types of multi-rotor UAVs with specific
sensors such as IMU, LIDAR and camera. These environ-
ments do not provide photo-realistically rendered camera
images – an issue addressed by AirSim [4]. This work pro-
poses a software-in-the-loop simulation with popular flight
controllers such as PX4 and ArduPilot and hardware-in-
loop for physically and visually realistic simulations. Re-
cently [5] and [6] published their work FlightGoggles and
Flightmare, respectively, which are both ROS-based open-
source photo-realistic simulation framework for MAVs. They
mainly differ from AirSim by having fewer rigid structures
and an integrated physics engine for dynamics simulation.

InteriorNet [7] proposes an end-to-end pipeline for an RGB-
D-inertial benchmark in large-scale interior scene under-
standing and mapping. The trajectories, the scenes, and
rendering parameters have a high level of customizability.
However, the simulator lacks flexibility as it is limited to
a fixed set of indoor scenes and CAD models of indoor
furniture. The authors in [8], [9], [10] presented SlamBench
(currently at version 3) which is a dataset- and sensor-
agnostic framework for qualitative, quantitative, and easily
reproducible evaluation for accuracy and computation time
of SLAM systems with plug-and-play algorithm support.
SlamBench incorporates a wide range of error metrics,
datasets, and evaluation tools for different SLAM algorithms.
However, its flexibility is limited since it does not provide
a way to generate individual data for a specific scenario.
Its focus is on the evaluation of computational complexity
and estimation accuracy, not on robustness and consistency.
Regarding robustness, the authors in [11] proposed a charac-
terization of state-of-the-art SLAM benchmarks and methods
by comparisons of the performance of different SLAM algo-
rithms. They use publicly available datasets, at both real-time
speed and slo-mo playback, clustering the results into four
classes denoted fail, low, medium, and high. Furthermore,
the authors in [12] proposed firstly new datasets for wheeled
robots, including different locations, day-night shifts, moving
objects, and poor illumination, and second a new metric for
robustness evaluation based on a judgment of ”correctness”
through an empirically chosen threshold on the ATE. Like the
previously cited SlamBench, the last works’ main weakness
is the limited flexibility, controllability, and scalability of
the data without automated procedures, limiting the possible
usage for statistically relevant large scale tests on robustness
and consistency.

III. FRAMEWORK ARCHITECTURE

The core of the VINSEval framework architecture, shown
in Fig. 3, is organized as a Robot Operating System (ROS)
package and is composed by two fundamental software
modules: the Data Generation Module (cyan block) and
the Estimators Evaluation Module (red block). The former
takes as an input a given generated trajectory file containing
timestamped ground-truth poses, velocity, and acceleration
measurements that could be either noisy (e.g., recorded
from a real platform equipped with an IMU and a motion
capture system) or noise-free (e.g., synthetically generated).
The input data is then processed and used to produce ROS
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Fig. 3. Framework architecture overview: the full pipeline is composed
by two main blocks, in cyan is the data generation block that allows to
generate unlimited amount of data containing ground-truth, noisy IMU,
and photo-realistic images given a set of trajectories while in red is
the estimator evaluation block, that allows to perform consistency and
robustness evaluation of estimators with the generated data.

bagfiles of sensor data for the other module, whose primary
objective is to run different VINS algorithms and provide a
statistical evaluation of robustness and consistency.

A. Data Generation Module

The data generation module is divided into four sub-
modules. The logic unit directs all the other submodules
by providing them with control signals and parameters.
Upon the logic unit’s start signal, the input data handler
takes the provided trajectory file as input and parses it. If
the data contain noise-free IMU measurements, the input
data handler adds noise and biases, for which statistics
are provided as parameters following the inertial sensor
model described in [13]. This data is then published as
ROS messages to be used by subsequent submodules. The
rendering unit is derived from the photo-realistic simulation
framework FlightGoggles [5] with our extended capabilities
such as the introduction of a fisheye distortion model for
the camera lens, a variable time delay on the image header
timestamp, and rendering parameters that allow changes of
the visual attributes (e.g., illumination, objects distribution,
etc. . . See Sec. V) in the scene. The rendering of photo-
realistic camera images can be set to either asynchronous,
such that the camera images are rendered in real-time at
a frame rate dependent on the machine’s performance, or
synchronous, such that the camera images are synchronized
with the given trajectory poses. Note that this modularization
of the input data handler and the rendering unit allows for
proprioceptive data from real systems (i.e., robot motion)
to be used for a virtual rendering of precisely controlled
exteroceptive measurements (i.e., camera image). The last
submodule of the data generation module is the output data
handler, which manages to start and stop recording the data
into bagfiles when triggered by control signals from the logic
unit. It automatically applies a realignment of the bagfiles
substituting the wall time with the header time.

B. Estimators Evaluation Module

The statistical evaluation toolbox module of VINSEval
consists of different submodules such as (i) the conversion
of estimated trajectories to CSV files, (ii) finding associa-
tions between two trajectories based on their timestamps,
(iii) spatial alignment tools to align the estimated trajectory
with the true trajectory supporting different alignment types
as in [14], (iv) absolute trajectory error evaluation based
on associated and aligned trajectories, and finally (v) the
computation of the Normalized Estimation Error Squared
(NEES) and Average NEES (ANEES). On top of these, the
estimator evaluation module supports an automated evalu-
ation of different scenarios and multiple experiments and
automated report generation.

IV. ERROR METRICS AND ESTIMATORS EVALUATION

Before we detail our approach on defining the different
parameters to test for and their sweeping range, we first
define what we understand under consistency, credibility, and
robustness and explain the associated error metrics.

A. Consistency and Credibility

Estimators such as least-squares and Kalman filters pro-
vide assessments in terms of their error covariance matrix or
Mean Squared Error Matrix (MSE) and the estimated state.
The estimation error εj = x̂j − xj ∈ Rk is the difference
between estimated and actual true value. The NEES is a
commonly used metric that normalizes the scalar magnitudes
of the estimation error εj based on the error covariance Pj

‖εj‖2P−1
j

= εTj P
−1
j εj ∈ [0,∞]. (1)

The NEES is assumed to be χ2 distributed with k degrees
of freedom and a mean of k. Therefore, a chi-square signifi-
cance test can be performed to judge if an estimator violates
a certain credibility threshold [15]. A too low or too high
NEES, depending on k, indicates under- and overconfidence,
respectively. As the ground-truth is needed, the NEES is
typically computed offline using M Monte Carlo simulations
and then averaged over the M runs and normalized with
respect to the state dimension k resulting in the ANEES:

ANEES =
1

kM

M∑
m=1

‖εjm‖2P−1
jm

. (2)

For our evaluation, we propose to compute the NEES, the
mean of the NEES, over the time span of each trajectory
with D time steps, and then the ANEES as follows:

ANEES =
1

kM

M∑
m=1

1

D

D∑
j=0

‖εjm‖2P−1
jm

. (3)

Computing the NEES reduces the significance of sporadic
spikes that occur typically at the initialization phase until
the filter starts to converge. Based on the ANEES and a
credibility threshold, e.g., a probability interval of 99%, we
classify estimators to be credible or not. If the credibility
threshold is reasonably high and violated, we assume the
filter to be inconsistent.



B. Robustness

”Robustness is the ability to withstand or overcome ad-
verse conditions.” – [from online dictionary]. In the context
of VI-SLAM and VIO, we can say that a robust estimator
is resistant to deviations from the assumptions of optimal
conditions. Hence if the assumptions are only approximately
met, the estimator still has a reasonable performance. Con-
trary to estimator credibility, finding a metric to judge
the robustness of a given estimator is particularly difficult.
Here, we adopt a simple metric based on the Root Mean
Square Error (RMSE) to define the so-called Breaking Point
(BP). Consider a given visual attribute (e.g., the illumination
in the scene) that is changed L times from the optimal
condition with an increasing amount of changes towards a
bad condition. The BP is the point along the scale of change
at which a given estimator breaks. Thus, for each attribute
value change, the average RMSE of the ATE is computed.
The RMSE is then compared to an empirical threshold to
distinguish whether the estimator has broken or not.

V. ENVIRONMENT AND PARAMETER SETUP

As mentioned in Sec. III the rendering module inherits
all the capabilities of FlightGoggles [5] and thus the various
other types of exteroceptive sensors (other than camera and
IMU) such as RGB-D cameras, IR beacon sensors and
time-of-flight range sensors for which intrinsic, extrinsic
parameters and noise specification can be easily adjusted.
Moreover we added options for variable sensor time delays
and online parameter adaptations in the scene and the system.
We also extended the default pinhole camera model with
a realistic fisheye lens based on the atan model [16]. To
improve runtime efficiency the undistortion of each output
pixel is calculated at startup and saved in a lookup table,
given the diagonal distortion parameter s as described in
[16]. However, the undistorted pixel values are most likely
non integer values. Therefore the average color value is
calculated at runtime with Eq. (4). C

(
pd(j, i)

)
is the color

value of the distorted integer pixel pd(j, i), pu(j, i) its
corresponding undistorted non-integer pixel value. C

(
p
u

)
is

the lower-left, C
(
pu
)

the upper-left, C
(
pu+1

)
the upper-

right, and C
(
p
u+1

)
the lower-right surrounding undistorted

pixel color values. δx and δy are the differences between the
lower-left (integer) undistorted pixel pu and the calculated
undistorted pixel pu(j, i), in x- and y-axis respectively.

C(pd(j, i)) = δx ·
(
δy · C

(
p
u

)
+
(
1− δy

)
· C
(
pu
))

+
(
1− δx

)
·
(
δy · C

(
p
u+1

)
+
(
1− δy

)
· C
(
pu+1

)) (4)

Further, this framework provides an RGBA color to
grayscale conversion based on the methods described in
[17]. This work showed that the method used to convert
colored images can greatly impact the result. Although all
methods are implemented in VINSEval, we opted to use the
Luminance method in the presented sample evaluation, as it
maps the human eye brightness perception most closely [18].

A. Estimator Parameter Setup

Although highly customizable, we suggest here a spe-
cific set of parameters and environment settings to use in
the proposed VINSEval framework to generate data and
evaluate different open source state-of-the-art VINS algo-
rithms. We generate UAVs feasible trajectories and noise-
free IMU measurements at 200Hz. Trajectories are generated
with a minimum snap trajectory generation approach, as
described by [19]. The considered VINS algorithms are:
LARVIO [20] and OpenVins [21] which are both filter-
based VIO algorithms leveraging the Multi-State Constraint
Kalman Filter (MSCKF) sliding window formulation. Both
filters allow online camera-imu calibration, zero velocity
update, different landmark parametrizations and first estimate
jacobian formulation aiming to improve the filter consistency.
ROVIO [22], [23], a fully robocentric and direct filter based
VIO algorithm which makes use of the pixel intensity errors
of image patches, aiming to achieve high level of robustness.
Vins-Mono [24], an optimization-based sliding window for-
mulation VIO algorithm aiming to provide high accuracy.
All the algorithms used in our experiments have been tuned
to get the best results in a randomly selected subset of the
whole data used. The extrinsic and intrinsic parameters of
the camera, as well as the distortion coefficient, have been
set to the correct value provided by the rendering unit of
VINSEval, and the online calibration of such parameters
was turned off. When there is a time delay between the
camera and the IMU we turn on the online estimation of such
time delay providing the correct value as an initial guess,
on the estimators that allow that. Moreover, we provide all
estimators with the correct IMU noise statistics. Regarding
the feature tracker, we similarly tuned every feature-based
algorithm to achieve best results for all involved algorithms.

B. Experiments Setup

In our experiments we have considered mainly four at-
tributes which are particularly relevant in real-world situa-
tions: (i) Changes in amount of informative visual features
(ii) Changes in illumination (iii) Changes in time delay
between the camera and the IMU (iv) Changes of the IMU
noise and noise statistics. For each of the considered at-
tributes a, we have defined L = 10 different ”difficulty” lev-
els for which increasing levels produce a more complicated
scenario for an estimator. For every single level l ∈ [1, L]
we run M = 20 different simulations where we dynamically
change all the other environmental conditions and sensor
specifications, including the attributes that are not evaluated
and other parameters such as object placement distribution
or UAV trajectory while keeping all of them in the range of
what we defined to be ”optimal”. These parameter swaps
provide randomness to the evaluation and average over-
polluting effects, leaving only the change effects in the
single attribute under consideration. Thus, sweeping over one
attribute generates 200 test runs per VINS algorithm.

For a given attribute a, the following subsections describe
how the level l has been mapped to a change of the
considered attribute, and how ”optimal” values are defined.



C. Changes in amount of informative visual features

For this attribute, we evaluate the former cited algo-
rithms’ performance when the amount of informative features
changes. We introduce an information-density parameter D,
determining the overall amount and placement of recog-
nizable features within the scene compared to either self-
similar or featureless ground. A value of 1 corresponds
to the approximation of the ideal, informative-rich scene,
while 0 will not place any objects. Values in between will
decrease the placement probability of objects linearly, with
a multiplier based on position-dependent Perlin noise. A
value of 0.5 would place half as many objects compared to
the ideal scene, with higher object densities around Perlin-
based clusters. The attribute level l influences the generated
scene twofold: a linear multiplier of the object placement
density between the maximum at the easiest and 5% at the
most challenging level as well as decreasing clustering with
growing difficulty.

D. Changes in illumination

For this attribute, the illumination of the virtual scene
changes over the different values of the level l, reducing the
illumination intensity I for a fixed window of time during the
UAV trajectory, from its optimal value to lower values as the
level l increases. The effect of decreasing the illumination in
a real-world scenario using a camera set with auto-exposure
triggers a chain reaction, which increases the camera’s ex-
posure time with the consequence of increasing the amount
of motion blur that the images will have. However, in these
experiments, we are simulating a camera with fixed exposure
time and without any simulated motion blur being applied.
Thus we aim to evaluate the estimators’ performance against
abrupt changes of the illumination intensity on the scene. We
consider the optimal value to be I = 1, corresponding to the
attribute level l = 1, which emulates a sunlight condition
on a clear day. The mapping between the attribute level l
and the illumination intensity I has been defined through a
second-order function, as follows:

I = α (l − 1)
2
+ β (l − 1) + 1 (5)

With empirical values α = 0.0137 and β = −0.23 to achieve
a fairly dark environment at the most challenging level.

E. Changes in time delay between the camera and the IMU

Let us consider the scenario for which camera images are
captured synchronously with the IMU measurements. For
time delay between the camera and IMU, we consider the
delayed image’s timestamp when the image is available to the
estimator (e.g., USB delay). Thus, in this scenario, we aim
to evaluate how estimators manage such a delay. For a given
attribute level l, the images header timestamp is defined:

tcam = timu + k
(
l (l − 1)

)
(6)

With k = 5
3000 heuristically chosen, leading to a maximum

time delay of 150ms, for l = 10 and to no delay for l = 1.

F. Changes of the IMU noise and noise statistics

The last attributes we considered within this evaluation
are the accelerometer and gyroscope noise densities and
random walk. The value changes range from a simulated high
grade IMU down to a very low-performing MEMS IMU.
For a given attribute level l the IMU noise statistics are thus
changed according to:

σ∗ = ϕ
(
10ψ(l−1)

)
lσ∗opt (7)

Where σ∗ indicates the continuous-time IMU noise densities
and random walks scaled concerning the optimum value
σ∗opt

by a scale factor. The value ϕ = 2 and ψ = 2
9

has been chosen empirically leading to the min. and max.
values reported in Tab. I. In this case, the optimal (or better,
realistic) value has been chosen to correspond to an attribute
level l = 5, in order to have IMU noise statistics in the same
order of magnitude of the majority of the MEMS IMU used
nowadays on UAVs, and to avoid cases of having an accurate
estimation even if all tracked features are lost.

TABLE I
MINIMUM AND MAXIMUM VALUES OF THE ACCELEROMETER AND

GYROSCOPE NOISE DENSITIES AND RANDOM WALKS CONSIDERED

σ∗min σ∗max

σa 1.0e−4 2.0e−1 m/s2
√
Hz

σg 1.0e−5 2.0e−2 rad/s
√
Hz

σba 1.0e−5 2.0e−2 m/s3
√
Hz

σbg 1.0e−6 2.0e−3 rad/s2
√
Hz

VI. SAMPLE EVALUATION PROCESS

For each of the previously described attributes we have
generated L×M = 200 different bagfiles of raw data, each
one containing 40Hz rendered VGA camera images and
200Hz IMU data for a UAV trajectory of 100 s, resulting
in a total of 800 different bagfiles and about 1TB of data.
With the synchronous rendering option, the data can be
generated faster than real-time, meaning more than 22 h of
data has been generated in 8 h1. The generated raw data is
then used in the estimator evaluation module (cf. Sec. III-B),
which feeds the data to the mentioned VINS estimators and
starts a, in our case 3-day long, batch run. Each estimated
trajectory corresponding to a specific attribute a, level l, run
m, and estimator e is first aligned with the corresponding
ground-truth trajectory along the unobservable dimensions
(i.e. position and yaw). Then the ARMSE and the ANEES
over the time span of the trajectory are computed for position
and orientation. This automatically generates a report at very
high detail level. As last step of the estimator evaluation, the
10% of the data, corresponding to the worst runs in terms of
normalized sum of the single error metrics, accounting for
processor-load hick-ups in the OS, have been removed. Then
a final summary report, shown in Fig. 2, 4, 5, is produced
by computing, for each attribute a and level l, the ARMSE
and ANEES over the M runs for each estimator.

1We run VINSEval on a high-performance simulation PC, however, data
generation in synchronous mode results faster than real-time even in a mid-
performance laptop.
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Fig. 4. Performance Comparison: Position and orientation ARMSE. Open-
Vins [21] in red, LARVIO [20] in cyan, Vins-Mono [24] in blue and
ROVIO [22], [23] in light red. We can notice in dashed blue that Vins-
Mono, when tested with increasing IMU noise, is failing at attribute level
l = 1 but not on further levels. Our investigation lead to the conclusion that
very low IMU noise values cause numerical issue and then lead to a failure.
We tackled the problem by tuning Vins-Mono with a falsely increased IMU
noise. A strength of our framework is precisely to reveal such edge cases.

As described in Sec. IV-B, we made use of the position
and orientation ARMSE for which we defined a threshold
to judge the failure of a an estimator. In particular, for a
given attribute a, a level l and an estimator e we define
the following binary score: alFe = True if ARMSE∗ >
TH∗ ; False if ARMSE∗ < TH∗ . Where the symbols ∗
stand either for position or orientation and TH∗ is the chosen
threshold. With about 70m trajectories, TH∗ are heuristically
set to be 0.5m for position and 5◦ for orientation. The first
occurrence of a

lFe = True for increasing values of l, will
define the BP per attribute a, per estimator e.

VII. CONCLUSION

In this paper we presented VINSEval, a unified framework
for statistical relevant evaluation of consistency and robust-
ness of VINS algorithms with fully automated scoreboard
generation over a set of selectable attributes. We showed
the ability of effective evaluation given by the flexibility
on parameter selection, the mitigation of polluting effects
through multiple runs with randomization in dimensions not
under test, and the inherent detection of edge-cases through
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Fig. 5. Performance Comparison: Position and orientation ANEES. Open-
Vins [21] in red, LARVIO [20] in cyan and ROVIO [22], [23] in light red.
Dashed are the confidence bounds. Despite our best tuning efforts, we were
not able to reproduce the ANEES for Open-Vins reported by the authors;
too little details on their method is given in [21]

the wide test span in an automated fashion. We will open-
source VINSEval making it a usable and extendable tool for
the community towards unified estimator evaluation.

As a sample VINSEval demonstration, we let a Breaking
Point score, in Fig. 2, to be generated to show how robust and
consistent current state-of-the-art algortihms are. All tested
algorithms generally exhibit low ARMSE when challenged
with increased imu-camera time delay, decreasing illumina-
tion and amount of informative features showing the ability
to compensate for dark scenes and correctly detect and track
self-similar features on the background. However, all the
algorithms show high sensitivity to IMU noise statistics, with
a tendency to fail with a low-preforming MEMS IMU. Par-
ticularly interesting, Fig. 4 shows the edge-case of numerical
errors encountered in Vins-Mono [24] when having very low
IMU noise values. Regarding credibility/consistency results,
Fig. 5, show that none of the considered algorithms can be
labeled as credible due to its under- or overconfidence and
that still much research is required towards this direction.
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