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Abstract— This work presents the Manifold Invariant Ex-
tended Kalman Filter, a novel approach for better consistency
and accuracy in state estimation on manifolds. The robustness
of this filter allows for techniques with high noise potential
like ultra-wideband localization to be used for a wider variety
of applications like autonomous metal structure inspection.
The filter is derived and its performance is evaluated by
testing it on two different manifolds: a cylindrical one and
a bivariate b-spline representation of a real vessel surface,
showing its flexibility to being used on different types of
surfaces. Its comparison with a standard EKF that uses virtual,
noise-free measurements as manifold constraints proves that it
outperforms standard approaches in consistency and accuracy.
Further, an experiment using a real magnetic crawler robot
on a curved metal surface with ultra-wideband localization
shows that the proposed approach is viable in the real world
application of autonomous metal structure inspection.

I. INTRODUCTION

Routine inspection of large metal structures is of the
utmost importance in avoiding environmental catastrophe
and maintaining safety standards. Small differential-drive
robots with magnetic wheels are being deployed on vessels
and cargo ship hulls to ensure that these standards are met,
but as of yet, the task is being completed via manual op-
eration. Given the expansive dimensions of these structures,
completing this task autonomously would be preferable, but
with such high stakes, having the best localization accuracy
and consistency is paramount. Even though classical methods
for state estimation exist, they do not consider the fact that
the robot is a planar robot moving on a curved surface. Thus,
they tend to estimate the six-dimensional state, enforcing
constraints on all known degrees of freedom, affecting the
consistency of the approach. Therefore, motivated by the
recent development of the consistent Invariant Extended
Kalman Filter (IEKF) [1] [2] [3] [4], in this work, we
propose a Manifold Invariant Extended Kalman Filter, a
novel approach to consistent state estimation on manifolds
with application to ship hull inspection.

A metal structure, e.g. a ship hull, can be thought of as
a smooth surface embedded in three-dimensional Euclidean
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Fig. 1. Simulation of a Magnetic Crawler robot (green circle) on a Ship
Hull with an Ultra-wideband Localization Grid (red circles).

space, which can be viewed as a two-dimensional, differen-
tiable, Riemannian manifold. This allows us to select a chart
from the maximum atlas and hence define a chart map, a con-
tinuous, invertible, bijective map, that maps each point of the
considered manifold to a two-dimensional Euclidean space.
The full state of the planar robot moving on the manifold is
six-dimensional, including position and orientation within a
three-dimensional euclidean space, however, its ”planarity”
gives only three degrees of freedom: a two-dimensional
position and the heading angle. Therefore, by applying a
consistent IEKF on the product space R2 × SO (2), the
localization problem can be solved entirely on the chart.

Being able to evaluate the surface and it’s derivatives at
any point is necessary to create a basis for the tangent space
in order to recover the full orientation of the robot from the
minimal state estimated on the chart. Given that there are no
equations for generic metal structures like a ship hull, and
that the equation of a surface must be known to apply the
proposed methodology, a bivariate b-spline representation of
the surface was recognized as a sufficient substitute. This can
be obtained by extracting the vertices of the surface from its
CAD model for interpolation, or by taking a laser scan of
the structure and interpolating the resulting point cloud.

The propagation model of the magnetic crawler robot is
based on its odometry measurements [5], but even with high
precision wheel encoders, this is only reliable for predicting
the robot’s state within a plane that is tangent to the surface.
The measurement model for state localization is given by
modelling ultra-wideband (UWB) range measurements with
a trilateration framework [6], which in ideal conditions can
accurately update the robot’s position within ±5 cm, but
with high noise potential from wave deflection off the metal



surface, this is not a safe assumption to make [7]. Therefore,
to account for the inherent drifting from the surface that the
robot’s state will experience, classical approaches tend to
solve the localization problem by forcing constraints within
the Extended Kalman Filter (EKF) framework [8]. Imposing
two virtual, zero noise measurements as constraints such
that the first constraint maps the state of the robot to the
surface, and the second one maintains collinearity between
the vertical axis of the robot and the normal to the surface
resulting in a full estimation of the robot’s position and
orientation, but sacrificing the filter’s consistency. With the
loss of consistency, the loss of accuracy and robustness
follows. To validate the benefit and versatility of the proposed
approach compared to classical approaches, simulations were
carried out specifically on cylindrical and curved surfaces,
simulating respectively a cylindrical vessel and a ship hull.
Moreover, An experiment with a real magnetic crawler robot
on a curved metal plate has been performed to show the
feasibility of the methodology in real-world scenarios.

II. RELATED WORK

Strategies for metal structure inspection can take on many
forms, but in every case, fundamental questions must be
investigated, such as: Which sensors should be used for map-
ping and localization? and, Which filtering technique will
produce the best results? For bridge inspection, unmanned
aerial vehicles (UAVs) equipped with lidar for mapping and
visual, inertial odometry systems for localization collect data
from the bridge to be processed for structural analysis [9].
For ship hull inspection, autonomous underwater vehicles
(AUVs) equipped with cameras for mapping and sonar sys-
tems for localization similarly complete the task [10]. How-
ever, it should be noted that the inspection of metal structures
and vessels is not solely confined to airborn inspection or to
below the waterline. In fact, large cargo ships can protrude
up to and exceeding fifty meters above water level espe-
cially when unloaded. Therefore, to complete the inspection
most efficiently and in it’s entirety, utilizing a combination
of UAVs, AUVs, and differential-drive, magnetic-wheeled
crawler robots could be quite advantageous.

The crawlers hold primary responsibility for inspecting
the portion of the ship hull that protrudes from the water,
and high accuracy localization is fundamental to this being
accomplished autonomously. There are various sensors that
come to mind as candidates for correcting the position of
the robot such as RTK-GPS, Wifi, and UWB. RTK-GPS is
too unreliable given that clear line of sight to satellites is
always required, and Wifi is also unreliable because it is too
sensitive to interference. UWB which is based on the time of
flight of wave transmission resulting in a range measurement
is proven to be a reliable method of localizing multiple
moving targets [11]. The major factor which highlights
UWB as a more robust method for this application is that
it has high bandwidth meaning that the waves experience
less interference while reliably transmitting small packets of
data at a distance generally up to 30 meters [12]. Although
UWB is generally used for indoor object tracking, given that
more specialized filters are being developed to enhance its
robustness, it is becoming increasingly feasible to experiment

Fig. 2. Magnetic Crawler Robot (green arrow) on a Curved Metal Surface
with Ultra-wideband Localization (red circles) and laser (yellow arrow) to
track the robot for ground truth.

with outdoor applications like metal structure inspection. It
therefore follows that a grid of UWB beacons for a robot
to localize with respect to could be temporarily installed on
the side of a ship hull. Fig. 1 shows a simulation of a ship
hull with a magnetic crawler robot and four UWB beacons
in place to form a localization grid.

Two main factors to consider when developing a filter
for a problem like this are its accuracy and consistency.
It can be difficult to maintain accuracy when using UWB
for metal structure inspection due to high noise from wave
deflection off the metal surface. This error causes a prolonged
time of flight resulting in over-exaggerated range measure-
ments. Some propose including methods of detecting these
divergences by analysing the noise distribution to decide
if a measurement is usable [13]. Others suggest loosely or
tightly coupled filters to resolve the problem [14]. A loosely
coupled, two step update of orientation correction followed
by position correction can give good results, although it
is said that a tightly coupled measurement model, where
position and orientation are corrected at the same time can
better overcome large positioning errors [15]. Even when
using tightly coupled EKFs to achieve higher accuracy,
there is still the likelihood of inconsistency in this case
due to the aforementioned problem related to the robot’s
planarity being expressed with six degrees of freedom. This
can cause the covariance of the robot’s state to become
disproportionately small resulting in an overconfidence in
the propagation and eventually a divergence to an incorrect
solution [16]. As Manifold filters solve this problem, they
have proven themselves to be more consistent, and more
accurate on average, than other filters [17]. The Invariant
filter formulation [1] [2] [3] is proven to solve the afore-
mentioned problems by ensuring the Log-Linear property of
the error, that is, the independence of the error dynamics
from the state estimate. We employed the Invariant filter
formulation within a manifold-based space showing that our
Manifold Invariant Extended Kalman Filter (M-IEKF) results
in greater consistency and improved accuracy.

III. THEORY

In this section, a general understanding of differential
geometry, manifolds, and bivariate b-spline surface repre-
sentations is introduced.

A. Manifolds
An n-dimensional manifold M is a topological space

(M,Θ) with the property that each point p ∈ M has a



neighborhood that is homeomorphic to the Euclidean space
Rn. Thus, if ∀ p ∈M,∃ U ∈ Θ | σ : U 7→ σ (U) ⊂ Rn for
which the following conditions hold:

σ is invertible, thus ∃ σ−1 : σ (U) 7→ U (1)
σ is continuous (2)

σ−1 is continuous (3)

Then (U , σ) is called a chart at (M,Θ) and
σ : U 7→ σ (U) ⊂ Rn is called a chart map.

Although there are different classifications of manifolds,
differentiable manifolds are of primary focus along this work,
because this type of manifold allows a globally differentiable
tangent space, shown in Fig. 3, to be defined using calculus.
For each point p ∈M, the tangent space TpM is the space
formed by the collection of all tangent vector velocities that
a curve γ (t) passing through p may have. More formal
definitions and a more detailed introduction of the tangent
space can be found in [18].

B. Surfaces

Considered smooth surfaces embedded in R3,
which in practice would cover almost all encountered
vessel surfaces, are 2-Dimensional parallelizable
manifolds M = {(x, y, z) ∈ R3 | φ (x, y, z) = 0}, where
φ : R3 → R is a scalar function that imposes a constraint
that defines the shape of the surface. A manifold is called
parallelizable if there exists a smooth vector field {B1, B2},
such that for every point p ∈ M, the tangent vectors
{B1 (p) , B2 (p)} provide a basis of the tangent space TpM
at p. Within these surfaces being considered are explicit
surfaces, where one of its variables can be solved for given
the constraint imposed by φ (x, y, z) = 0 (e.g. a paraboloid),
and implicit surfaces which are described by an implicit
equation φ (x, y, z), where one of its variables cannot be
solved for (e.g. a cylinder). However, any given surface
embedded in R3 can always be written in its implicit
form φ (x, y, z) = 0, where the zeros of the constraint are
the points p ∈ M of the surface. Therefore, the basis
of the tangent space TpM at p, and thus the manifold
parallelization, can be defined as follows:

V1 (p) =
[
1 0 Dxφ (x, y, z)

]T
(4)

V2 (p) =
[
0 1 Dyφ (x, y, z)

]T
(5)

Although this way of defining the parallelization is per-
fectly valid, it is not the only admissible one, and, as shown
in Fig. 3, one can also choose a parallelization which forms
an orthonormal basis of the tangent space TpM at p:

L1 (p) = Dxφ (x, y, z)V2 (p)−Dyφ (x, y, z)V1 (p) (6)
L2 (p) = Dxφ (x, y, z)V1 (p) + Dyφ (x, y, z)V2 (p) (7)

B1 (p) =
L1 (p)

‖L1 (p)‖
B2 (p) =

L2 (p)

‖L2 (p)‖
(8)

Then, the normal vector to the tangent space TpM can be

Fig. 3. Illustration of a manifold M, the tangent space TpM at p ∈ M
and its basis vectors {B1 (p) , B2 (p) , N (p)}.

computed at p as follows:

L3 (p) =
[
Dxφ (x, y, z) Dyφ (x, y, z) −1

]T
(9)

N (p) =
L3 (p)

‖L3 (p)‖
(10)

Furthermore, for any given surface, or in other words,
for any considered manifold, we can choose a chart and
hence a continuous, differentiable, and invertible chart map
σ : M → R2 which maps points from the manifold to a
euclidean space of a dimension equal to dim (M).

C. Spline Interpolation

Bivariate b-splines, which are piecewise polynomial func-
tions can fit a variety of complex shapes while maintaining
continuity in their derivatives. This surface representation
can be evaluated at any point, and being a polynomial, the
derivatives are easily obtained, making it sufficient to create
a basis for the tangent space so that the manifold properties
and constraints can be applied in the state estimation. The
surface is defined as follows:

f(x, y) =
k∑

i=1

l∑
j=1

BxiByjcij (11)

The coefficients cij are determined from the vertices being
interpolated. The b-splines Bx and By are determined from
their endpoints, known as knots, in each respective dimen-
sion, for each piecewise polynomial. Then, the coefficients
are multiplied by the tensor product of the b-splines resulting
in a surface [19].

IV. METHODOLOGY

In this section, the general problem of state estimation
for a wheeled robot moving on a smooth surface and a
detailed description of the adopted methodology to solve
this problem is introduced, followed by the experimental
procedure that was carried out. This includes the process of
charting the manifold and applying an M-IEKF to a minimal
state represented on the product space between the chosen
chart and SO (2), or directly on SE (2).



Fig. 4. Illustration of stereographic projection leveraged to define a
continuous, differentiable and invertible chart map on the cylinder.

The key to implementing the methodology is to first find
a chart that covers the whole manifold being considered, and
hence find a continuous, differentiable chart map σ (p), and
its inverse σ−1 (u, v).

Let us first consider the easiest case of an explicit, smooth
surface described by an explicit function where one of the
variables involved is solved for. For example, z = f (x, y).
In this case, for every p ∈M, the chart map and its inverse
are simply determined as follows:

σ (p) = σ (x, y, z) =

[
u
v

]
=

[
x
y

]
(12)

σ−1 (u, v) = p =

xy
z

 =

 u
v

f (u, v)

 (13)

In the most difficult case of implicit, smooth surfaces, a
chart, and hence a chart map covering the whole manifold
needs to be defined without having a simple and predefined
recipe to apply. Consider a cylinder of radius R and height
h as a possible manifold to cover with a chart. As a first
solution, mapping every point of the cylinder to a plane by
unwrapping the cylinder seems logical, however, this solution
will result in discontinuities at the border of the map at 2π.
Instead, the stereographic projection can be leveraged to find
a continuous, differentiable chart map, shown in Fig. 4, and
defined as follows:

σ (p) = σ (x, y, z) =

[
u
v

]
=

[
xh

exp(z)
yh

exp(z)

]
(14)

σ−1 (u, v) =

xy
z

 =


Ru√
u2+v2

Rv√
u2+v2

log
(

Rh√
u2+v2

)
 (15)

Once a chart covering the manifold has been found, an
IEKF is applied on a space which is partially defined by
the chosen chart and then lifted back to all the estimated
results on the manifold. In order to do so, first, a mapping
that allows us to map a velocity vector (or displacement
vector) [∆b1 ∆b2]

T on the tangent space TpM at p to a
velocity vector (or displacement vector) [∆x∆y ∆z]

T on R3

must be found. Then, the chosen chart map must be used to
project the robot position to the chart. In general, if a wheeled
robot is moving on a manifold and pk = {xk, yk, zk} ∈ M
is the position of the robot at a given time step k, and
[∆b1k ∆b2k]

T ∈ TpM is the linear displacement vector in

the tangent space, then we can compute:∆xk
∆yk
∆zk

 =
[
B1 (pk) B2 (pk) N (pk)

] ∆b1k
∆b2k

0

 (16)

The robot position projected on the manifold can then be
easily computed through the chosen chart map as follows:[

uk
vk

]
= σ (xk + ∆xk, yk + ∆yk, zk + ∆zk) (17)

It is important to note that if the velocity vector (or
dispacement vector) [∆b1 ∆b2]

T on the tangent space TpM
at p is affected by gaussian noise, the linearity of the mapping
in Eq. (16) will allow its gaussianity to be preserved.

If a minimal state representation given by
X = (t,R (θ)) = (u, v,R (θ)) ∈ R2 × SO (2) on the
product space between the chosen chart and SO (2), where
the rotation defined by SO (2) is the rotation of the robot
about its own vertical axis, thus its heading, then an IEKF
can be designed following algorithm 1.

In the case of the ship hull simulation, the same method-
ology is applied to a bivariate b-spline representation of the
surface. The vertices are extracted from the CAD model of
the ship and interpolated. In the case of the real metal plate
experiment, the vertices are taken from a laser scan of the
surface before the experiment is carried out, and the point
cloud is interpolated. Fig. 2 shows the magnetic crawler robot
attached to the curved metal surface that was used, with a
UWB beacon attached to it (a tag), and another in the corner
(an anchor). Only one anchor is shown, but In total there
were four. The laser was also used during the experiment to
track the robot for ground truth. The robot collects four tag-
to-anchor ranges at a time and uses trilateration to compute
its position as a measurement in the update function of the
M-IEKF algorithm.

V. EXPERIMENTS

A. Evaluation
In this section, the performance of the M-IEKF is eval-

uated first by testing it on a cylindrical manifold to show
its ability to work with any surface that is a parallelizable
manifold and to simulate the case of a cylindrical vessel.
The M-IEKF is then compared to a standard filter (MC-
EKF) that uses two virtual, zero noise measurements to keep
the state constrained on the curved surface. Moreover, as
a proof of concept for metal structure inspection, we have
tested the M-IEKF on a simulated ship hull showing that
the proposed methodology can handle the case of a priori
not-known surface obtained by bivariate b-spline intepolation
from known points on the surface. Finally, the real world vi-
ability of the M-IEKF in metal structure inspection is shown
with an experiement employing a magnetic wheeled crawler
robot on a curved metal surface. In this last experiment, the
triangulated position of the robot was availabe via UWB
measurements.

For the two simulated tests, a Monte-Carlo simulation
of N = 100 trials was run. We computed the Root Mean
Squared Error (RMSE) in position and orientation, further-
more, the Average Normalized Estimation Error Squared



Algorithm 1: IEKF on the product space R2×SO (2)

Input: X̂+

k−1, P̂
+
k−1,∆bk,∆θk,yk

Propagation
// Map estimate onto M
p̂+
k−1 = σ−1

(
t̂+
k−1

)
// Robot rotation Ck−1 in R3

Bk−1 = [B1 (pk−1) B2 (pk−1) N (pk−1)]

Ck−1 = Bk−1

[
R (θk−1) 0

0T 1

]
// Map deltas from TpM to R3

∆pk = Ck−1∆bk

// Projection onto the chart
t̂−k = σ

(
p̂+
k−1 + ∆pk

)
// IEKF rotation propagation

R
(
θ̂−k

)
= R

(
θ̂+
k−1

)
Exp (∆θk)

// Jacobians

Fk =

 ∂σ(σ−1(tk−1))
∂tk−1

∣∣∣∣
t̂+
k−1

1


Gk =

[
∂σ(pk)
∂(pk)

∣∣∣
p̂+
k−1

+∆pk

Ck−1

1

]
// Covariance propagation

P̂−k = FkP̂
+
k−1F

T
k + Gk

[
Σ∆bk

σ2
∆θk

]
GT
k

End
Update

// Residual

rk = h
(
X̂−k
)
− yk

// Jacobian

Hk = ∂h(X)
∂X

∣∣∣
X̂+

k

// Kalman gain

Kk = P̂−k HT
k

(
HkP̂

−
k HT

k + Σyk

)−1

// IEKF Update
t̂+
k = t̂k + δtk

R
(
θ̂+
k

)
= Exp (δθk ) R

(
θ̂k
)

P̂+
k = (I−KkHk) P̂−k

End
Output: X̂k, P̂k

(ANEES) were computed for each time step, averaged over
the N trials, and compared between the two filters. The
aforementioned metrics are defined as follows:

RMSE =

√∑N
i=1 e

2
ik

N
(18)

ANEES =
1

Nm

N∑
i=1

eTikP
−1
ik

eik (19)

where eik and Pik are respectively the estimation error and
the error covariance for the i-th run at a given time step k.

Fig. 5. Ground-truth (in black) and estimated trajectory (in red) of the
M-IEKF on a cylindrical surface. Note the wrong initialization of the filter.

Fig. 6. M-IEKF full state RMSE and ANEES averaged over 100 runs
corresponding to the estimation problem on the cylindrical surface.

The RMSE gives an indication of how far the esti-
mate varies from the ground truth on average, whereas the
ANEES, which is normalized by the covariance of the filter
at each time step, gives a standard for whether a filter is a
credible estimator. The closer to 1 an estimator is within the
probability interval, the more credible it is, and therefore the
more consistency the filter has [20] [21].

B. Results
Fig. 5 and 6 show the trajectory and the error metrics

respectively for the M-IEKF during the cylinder manifold
simulation. The trajectory plot shows that the state estimate
follows closely with the ground truth which is also cor-
roborated by the error metrics. The RMSE for the heading
is mostly below 0.01 rad, and the RMSE for its position
are predominantly below 10 cm in each dimension giving
a good indication that the filter can perform accurately.
Furthermore, the ANEES is almost completely confined to
the probability interval, and it is centered about 1 indicating
that the filter is credible and consistent. To further evaluate



Fig. 7. Ground-truth (in black) and estimated trajectory of the M-IEKF
and the MC-EKF (respectively in red and blue) on a b-spline interpolated
surface corresponding to the curved surface of a ship hull.

the filter, Fig. 7 and 9 show the trajectory and the error
metrics respectively for the M-IEKF and the MC-EKF during
the ship hull simulation. The trajectory plot shows that the
state estimate of the M-IEKF follows closely with the ground
truth like it did in the cylinder experiment, whereas the MC-
EKF clearly starts diverging. The error metrics show that
the M-IEKF still performs consistently and accurately, but
with a little bit more error in comparison with the error in
the cylinder simulation which was expected considering that
its state is being estimated on an interpolated surface this
time. By contrast, the MC-EKF shows significantly higher
error in the RMSE for its position up to 50 cm in some
instances in the x direction, and the ANEES plot clearly
shows that it goes outside of the probability interval and is
therefore not consistent. Fig. 8 shows the trajectory from
the real experiment on the curved metal plate for each filter
along with the UWB measurements, and Fig. 10 shows
the position RMSE for each filter. The M-IEKF follows
quite closely to the ground truth, only having noticeable
error when there is a high concentration of erroneous UWB
measurements due to the metal surface deflection which can
be seen near time step 625. The MC-EKF does not follow
closely to the ground truth as expected with errors up to
80 cm. The results back up the fact that the M-IEKF is
consistent and more accurate than standard approaches like
the MC-EKF, allowing further extensions like the inclusion
of a measurement update rejection test, making it a viable
option for consistent and robust metal structure inspection
with ultra-wideband localization.

VI. CONCLUSION

The Manifold Invariant Extended Kalman Filter is a novel
approach for consistent state estimation on manifolds. It
combines manifold state representation and invariance to
achieve greater consistency and accuracy. We proved that the
proposed M-IEKF is applicable to a wide range of vessel
surfaces encountered in real world applications. Further,
we showed results validating that the M-IEKF outperforms
classical approaches when using real robot wheel odometry
and UWB measurements. Therefore, the M-IEKF makes
metal structure inspection with ultra-wideband localization
viable.

Fig. 8. Ground-truth of the magnetic crawler robot (in black) and estimated
trajectory of the M-IEKF and the MC-EKF (respectively in red and blue).
Dots (in green) correspond to the position measurements from the UWB
trilateration. Note the cyan circle showing the failure of the MC-EKF on
providing an estimate that is not attached to the surface.

Fig. 9. Comparison between MC-EKF and M-IEK in terms of position
RMSE and ANEES corresponding to the case of b-spline interpolated
surface.

Fig. 10. Position RMSE of the M-IEKF and MC-EKF (in red and blue
respectively) corresponding to the real magnetic crawler robot experiment.
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