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Abstract—In this research, we aim to answer the question:
How to combine Closed-Loop State and Input Sensitivity-based
with Observability-aware trajectory planning? These possibly op-
posite optimization objectives can be used to improve trajectory
control tracking and, at the same time, estimation performance.

Our proposed novel Control & Observability-aware Planning
(COP) framework is the first that uses these possibly opposing
objectives in a Single-Objective Optimization Problem (SOOP)
based on the Augmented Weighted Tchebycheff method to
perform the balancing of them and generation of Bézier
curve-based trajectories. Statistically relevant simulations for
a 3D quadrotor unmanned aerial vehicle (UAV) case study
produce results that support our claims and show the negative
correlation between both objectives. We were able to reduce the
positional mean integral error norm as well as the estimation
uncertainty with the same trajectory to comparable levels of
the trajectories optimized with individual objectives.

I. INTRODUCTION
A. Motivation & Related Work

Motion planning algorithms are a crucial component of
autonomous task execution for an UAV or robots in general.

1) Trajectory Generation: A common approach is to
generate a series of way-points in discrete time intervals -
a so-called trajectory. These trajectories are often 4D flat
outputs (3D position and yaw orientation) of the UAV with
their subsequent derivatives. These generation methods often
let the UAV move from point A to point B with additional
goals and constraints, e.g., reducing flight time or energy
consumption. Examples of such generation methods based
on continuous-space models can be found in [1]-[4], acting
on different levels of abstraction and even taking probabilities
into account. [5]-[8] create a discrete map of the task-
space, a so-called sampling-based method, to apply search
algorithms to find a path from A to B. With the increase
of computational power, learning-based approaches attracted
attention in recent years. [9]-[11] use machine learning for
trajectory generation with reduced calculation times.

All previously mentioned approaches do not consider
model and state uncertainties to ensure robust trajectory
tracking or accurate state/parameter estimation.
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Fig. 1. Graphic overview of the multi-step Single-Objective Optimization

Problem (SOOP) solved with Control & Observability-aware Planning
(COP), a; being the resulting trajectory coefficients after each operation.

2) Estimation-aware Trajectories: State estimation with
proper system modeling [12] relies on the design of suffi-
ciently informative system input for accurate and fast esti-
mate convergence. The works in [13]-[19] show that taking
the estimation or parametric uncertainty into account drasti-
cally improves system parameter estimation results while al-
lowing task execution. In this work we will use the Expanded
Empirical Local Observability Gramian (E?LOG) [14]. These
informative trajectories might show poor robustness against
uncertainties in the robot model for the tracking controller
that executes them [20], [21].

3) Control-aware Trajectories: To address this issue, the
notion of Closed-Loop State and Input Sensitivities (S/I-S)
has been recently introduced in [22], [23] as a suitable metric
to be optimized. Minimizing the norm of the S/I-S generates
a trajectory whose tracking results are minimally sensitive
to model uncertainties of the robot states and inputs. This
is important as it increases the robustness and accuracy of
the trajectory tracking and improves the repeatability of the
control inputs when the model parameters vary. The S/I-S,
however, needs knowledge of the actual robot state and
nominal values of the model parameters, which may not be
directly available but can be provided by state estimation.

4) Link & Combination: Therefore, a link between
observability-related metrics and S/I-S metrics exists, since
the evaluation of S/I-S needs a good knowledge of states and



parameters, and the tracking of maximally observable tra-
jectories benefits from increased robustness in the trajectory
execution. That fact motivates our study on how to combine
both methods in a unified trajectory optimization problem
taking into account that these two objectives can conflict
among themselves, as seen in Sec. IV.

B. Contributions

This paper proposes Control & Observability-aware Plan-
ning (COP) as a way to balance two possibly contradicting
optimization problems, namely (i) generating trajectories
whose execution is minimally sensitive to model uncertainties
and (i7) generating trajectories that can be sufficiently infor-
mative for accurate state estimation. We present a method to
address these problems by leveraging previous contributions
to the topics of observability-aware and minimally-sensitive
trajectory planning, combining them in the formulation
and resolution of a Single-Objective Optimization Problem
(SOOP) based on the Augmented Weighted Tchebycheff
method. In a case study, considering the state estimation and
robust trajectory tracking for a 3D quadrotor UAV, we dis-
cuss the statistical results of a realistic simulation campaign
that shows the potential of the proposed contribution.

II. PRELIMINARIES
A. Quadrotor model

Let us consider a frame M as the quadrotor body frame,
attached to its center of mass (CoM), with its z-axis z,,
aligned with the thrust of the four rotors. The state vector x
of this system consists of its linear position r = (z, y, z) and
velocity v = (v,, v, v,), both expressed in the world frame
W. Tt also includes the body orientation expressed through
the unit length quaternion ¢ = (qu, ¢z, ¢y, ¢.) (Tait-Bryan
angle definition with yaw first (312-sequence)) as well as its
angular velocity w = (w,, w,, w,), expressed in the body
frame M, therefore x = [r7,v",q",w'|" € R'3.

As the quadrotor’s orientation is expressed by the Hamil-
tonian quaternion g, we recall that z,;, = R(q)zy =
q' ® zy ® q, where ® is the quaternion product. R(q)
is the rotation matrix as a function of the quaternion q.

It is possible to link the squared rotor speeds of the
quadrotor (control inputs) u = [w? w? w? w?]" to [f, T7]",
the total effective thrust and torque. These are related by
the allocation matrix S, [f, 77| = Su (e.g., [24] Eq. (8)),
which includes the rotor thrust force coefficient ky, the drag
moment coefficient k,,, and the arm length ¢ from the center
of mass to each motor/rotor group.

With these definitions, compared to [22], the quadrotor
dynamical model is

'f'W:'UW
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where m and J are the quadrotor’s mass and its inertia
matrix, respectively. g is the Earth’s gravitational pull. The

allocation matrix S implies that the dynamics are also
effected by the parameters k;, k,, and ¢. The quantities
k; and k,, are aerodynamic parameters that depend on the
rotors characteristics and the aerodynamic interaction with
the environment (e.g., presence of wind, ground effects).
Therefore, an accurate value for these parameters can be
hard to obtain, and we thus consider p = [k; k,,]" € R?
as the uncertain parameters of the dynamical model.

B. Tracking controller

With the dynamic model detailed in the previous subsec-
tion, we can now present the controller that has been used
in this work. The chosen control task is to let the system
output y(x) = [z y 2 ¢]" € R* track a desired motion
ry(a, t) € R*, where ¢ is the yaw (or heading) angle of
the quadrotor. The DFL (Dynamic Feedback Linearization)
controller with an integral term used in previous works [22],
[23] is not robust against parameter uncertainties and is
not capable of considering input constraints. Therefore, we
chose to use a different controller, namely the so-called Lee
controller [20], which performs slightly worse in an ideal
case compared to the DFL, but it is much less complex to
implement and tune.

Although we implemented the same structure of the con-
troller as in [20], we added some minor changes in order to
match the dynamics of the quadrotor in 3D (especially the
use of the quaternion q). In particular we consider attitude
and angular velocity errors defined as

€q = % (RIR(q) — R(q)"R,)” and e, =w. (2)

The resulting control inputs are then
f=(-k.e, —k,e, — k& +m(gz, + 7)) R(q)zu, 3)
T=—-k,e,—k,e,, 4)

where e, and e, are the position and velocity errors, and
E=10 &, £Z]T is the position integrator, and k,, k., k., k.
k. are suitable control gains. We then compute u via the
inverse of the allocation matrix, u = S~'[f, 77|".

C. Curve representation

The controller is designed to let the quadrotor follow a
reference trajectory r,4(a, t), where a is the parameter vector
for the chosen class of curve. In [23] ‘plain polynomials’
were used, with the drawback of introducing possible numer-
ical instability during the optimization. Due to this reason,
we switched in [22] to the use of Bézier curve representation,
as they are more stable from a numerical point of view.

This work goes one step further by implementing piece-
wise Beziér curves for the trajectory representation to avoid
the use of a single high degree Beziér curve as in [22].
An aditional abstraction happens on the parameter vector a,
which now contains way-points (with velocity, acceleration,
and even higher order constraints) instead of the control
points themselves. These way-points define the curve at the
start, end, and in between curve pieces.



Let Bicpi, nj» With m > 1 number of pieces, be the Bézier
curve of degree d > 2 shaping the trajectory (C¢~! continu-
ity). In total, there are n + 1 way-points (¢;, P;), where ¢;
is the time associated to the point P; € R™im*"e  with ngy,
the number of dimensions of the trajectory (e.g., x, y, 2, and
yaw angle), and 7. the number of joining conditions (e.g.,
n;, = 1 for position only, which means every Bézier curve
piece is a straight line segment). The degree d of the Bézier
curve, the number of joining conditions n;. and the number
of control points n. are linked by d = 2n;, — 1 = n. — 1.
With these conditions and the way-points as constraints, one
can formulate a linear system of equations that solves for the
control points of each Beziér curve piece.

III. CONTROL & OBSERVABILITY-AWARE PLANNING
A. Objectives for Trajectory Optimization

A trajectory r,(a,t) parameterized by the coefficient
vector a, Sec. II-C, can be optimized for different goals by
changing its shape. We represent this goal by the so-called
utility function U(a) which, in our case, is a scalar cost to
be minimized subject to constraints

minimize U(a),
a

subject to @ € A, (5)
equ. & inequ. constraints,

with A as the feasible set for the parameter vector.

1) State Sensitivity Metric: The state sensitivity metric as
minimization objective was introduced in [25] and is based
on a generic robot model x = f(x, u, p), where x € R™»
is the state vector, u € R+ is the control input vector, and
p € R"» the vector of system parameters (which are assumed
uncertain). This is combined with a tracking control law
€ = g(& x, ra(a, t), pc) and u = c(§, x, ry(a, 1), p.),
where £ € R™¢ are the internal controller states (e.g., an
integrator), p. a nominal value for the parameters p, and
ry(a, t) a desired trajectory. The state sensitivity matrix for
the closed-loop system (i.e., considering both the robot and
chosen control) is defined as

II(t) = 8;7(15) € Rrexme (6)
P=Pc
representing the variation of the states x in relation to vari-
ations in the parameter vector p, evaluated on the nominal
value p.. We refer the reader to [25] for further details.

The integral of the matrix norm of the state sensitivity
over the whole trajectory (duration 7") can be used to reduce
the influence of parameter uncertainty on the states.

Ula) = Fy(a) = / (Tt d )

2) Input Sensitivity Metric: As natural evolution, [22]
added to the state sensitivity metric the so-called input
sensitivity metric which is defined as

_Ou(t)

o) = =5 € R xme (8)

P=Pc

and, similarly to Eq. (6), maps how variations of the pa-
rameter vector p result in variations of the control inputs.
The integral of its matrix norm, again, gives us the objective
function Eq. (9) which can be used to reshape the trajectory
to be less sensitive in its control inputs against parameter
uncertainties. Details on the derivations can be found in [22].

Ua) = Fola) = / e[t ©)

Note that it is not possible to compute II(¢) in closed-
form. However, it is possible to obtain a closed-form expres-
sion of its dynamics, and other quantities, e.g., ©(t), can be
derived from it. The evolution of II(t) (consequently ©(t)
too) over a time interval 7' of interest then can be obtained
by numerically integrating over time [22], [25]. One of the
main hypotheses/key aspects in [22], [25] is to consider that
the whole state of the system is known during the tracking
of the desired trajectory.

3) Observability Metric: Online state estimation is one
way of making the state x and parameters p available at
run-time [12], [26], [27].

How well such estimates perform depends on the accuracy
of the system model and sensors used, but control inputs
given to the robot are equally important. The E*LOG [13],
[14] works on the idea of the quality of observability,
proposed in [28], [29], which evaluates it over a whole
trajectory 74(a, t) with a duration 7. It uses a n-th order
Taylor expansion to approximate the Jacobian matrix which
models the sensitivity of the measurements with respect to
the control inLuts, the state and its changes on a small time
horizon H (W, y(a) in [14]). Summing all these quality
measure segments along the trajectory r4(a, t) gives us

N
Wo(a) =Y Wi a(a) € R™* (10)
k=0

with At = % and N the number of trajectory segments.

The objective is to improve the least sensitive state (or
combination of states) through the smallest eigenvalue of
Wy (a). Adding a minus to the smallest eigenvalue makes
it usable in a minimization problem as objective function

Ua) = F (@) = —0min(Wo(a)). (11)

The result is a trajectory with optimum observability
properties, improving the states’ convergence by lowering
the uncertainty and increasing the overall accuracy.

The estimator in [12] is the base for the derivation of the
observability-aware trajectory optimization in our quadrotor
UAV case study, Sec. IV.

B. Multi-Objective Optimization Problem

The problem presented in this work is an example of
a Multi-Objective Optimization Problem (MOOP) trying to
optimize for different objectives with constraints.



1) Pareto Optimality: Ideally, one would try to find the
non-dominated set in the entire feasible set A for the
parameter vector a, a so-called Pareto optimal set or Pareto
front [30]-[35]. The term non-dominated or optimal means
that the current set does not improve one objective while
worsening another. We compute only one point in the Pareto
optimal set due to the complexity of the objective functions
and the resulting computation times, see Sec. I[V-B.4.

In [22], Linear Scalarization Problem (LSP) was chosen as
a method because it achieved good results in balancing the
S/I-S of a 2D quadrotor. LSP combines objective functions
to a single cost through a linear weighting of each objective.
This is only a feasible option if the Pareto front is convex.
To be more specific, in the case of concave Pareto fronts,
LSP tends to converge towards extrema solutions, an optimal
solution for only one of the objectives. Evenly distributed
weights do not produce an evenly distributed representation
of the Pareto optimal set. The addition of the observability-
awareness through the E?LOG as a third objective is the
natural evolution of the approach, however, non-convexity
(concavity) is possible with this addition.

2) Augmented Weighted Tchebycheff Method: To solve
this issue, we balance the objectives through their distance
between the objective value F,(a) and an aspiration point
FP, compared to [22]. This aspiration point F° is the
individual objective’s minimal value from Eq. (5) - called
utopia point. Another important point in the Pareto set is the
so-called nadir point FN = max {F,(a9)}. It is the largest

cost of all objectives with respect to the j-th utopia point.
k
U(a) = mlax{)\AFi(a) - Fio‘} + PZ ‘Fj(a) - Fjo| (12)
j=1

The utility function in Eq. (12) includes F(a) =
{Fu(a), Fs(a), 5 ,.(a)}, and the scale of each objective

;= \FwaFo\ Every point on a Pareto front is a minimum
of the Tchebycheff function for some A, (convex or non-
convex) and achieves Pareto optimality of the solution. The
weight w, is the user defined preference of one objective,
which selects one solution from the possible set of Pareto
optimal solutions (bias), Y&, w, = 1. |FN — F°| in the
denominator of A, normalizes the Tchebycheff function to
the interval [0,1]. According to [30], p values should be
selected between 0.0001 and 0.01. We refer the reader to
[31], [32], [34] for further reading. As can be seen, this
method reduces the MOOP into a SOOP. We will discuss
how to use Eq. (12) in Sec. III-C.3 and Sec. III-C.4.

C. Implementation

COP uses a multi-step approach to the trajectory optimiza-
tion, see Fig. 1, as the utopia point F° and nadir point F}¥
of each objective F; need to be known before combining
objectives. The framework is implemented in Python and
uses a local derivative-free optimization, namely Constrained
Optimization BY Linear Approximations (COBYLA) of the
open-source library for nonlinear optimization (NLOPT).
The numerical integration method dopri5 of SciPy enables

us to calculate the individual costs (Eq. (7), Eq. (9), and
Eq. (11)) during each iteration of the optimization.

1) Preconditioning: This important step ensures that the
initial trajectories are dynamically feasible and let the system
reach the final target accurately. The preconditioning starts
with a random trajectory with initial way-point P, (for
a 3D quadrotor UAV position and yaw orientation), target
way-point P, duration 7', and n number of Bézier curve
pieces supplied. All way-points between the initial and target
represent the decision variables a; of the optimization, and
can be chosen freely within the admissible set .A. Then,
dynamical constraints are applied to the trajectory through a
short optimization (e.g., min. and max. rotor speeds). After-
wards, we precondition the trajectory to take the controller
tracking imperfections into account, ensuring that the system
reaches the final target accurately with the nominal value
P = P., thus, without uncertainties in the model. The vector
annr parameterizes the shape of the initial trajectory.

2) Optimizing Individual Objectives: As mentioned be-
fore, to allow the combination of multiple objectives, one
needs to compute F° and FN of each objective first. We
do the minimization of each objective F};, F, and FEzLOG,
defined in Eq. (7), Eq. (9), and Eq. (11) respectively, along
with Eq. (5) to get those needed extrema points. The results
are the utopia point and coefficient vector of each objective,
FRla8, F§la$, and FEOQLOG/aEOQLOG, respectively. These co-
efficient vectors are used to calculate the nadir points of the
objectives FY, FJ, and FEJZLOG.

3) State and Input Sensitivities Optimization: A first
example for Eq. (12) is the computation of the S/I-S. The
balancing of state and input sensitivities similar to [22] is
possible by setting wg, s = [£, 1, 0] and using the utopia and
nadir points of F; and Fg for normalization. The rationale
behind wq, ¢ is as follows: (i) Eq. (7) aims at minimizing
the state sensitivity over the trajectory, so that the tracking
accuracy of r4(a, t) is made most insensitive to uncertainties
in the model parameters; (i) Eq. (9) aims to minimize
the input sensitivity during the whole trajectory, in order
to obtain control inputs that are most insensitive against
variations of the robot parameters. For this optimization we
chose p = 0.0001 in Eq. (12) and the results of this step
are FG ¢/a$) . Both these objectives provide the ability to
generate control-aware trajectories.

4) Control & Observability-aware Optimization: The pos-
sible antagonistic nature of the S/I-S and E?LOG needs
utility functions like Eq. (12) to be balanced successfully.
We weight all three objectives equally, weop = [£, 3, 1], in
Eq. (12) with p = 0.0001. This makes the combination of
State and Input Sensitivity-based with Observability-aware
trajectory planning possible and results in FQp/aSp.

The even distribution of weights might not result in equally
improved objectives in practice, due to the possible skewed
normalization from the approximation of nadir and utopia
points. To ensure we get proper trajectories that reduce both,
we apply filtering based on the costs history available from
each optimization run - a posterior preference Fy,((aSp) <

FS/I-S (alN[T) and FEQLOG(a’gOP) < FEQLog(aINIT)‘
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Fig. 2. Overview of the cost function evolution during the optimization
depicted by averages and 1o standard deviations over 20 optimization runs
with different initial trajectories. All cost values are normalized with the
initial cost prior to the mean calculation. S/I-S cost (blue), E2LOG cost
(orange), COP cost (green). All optimizations minimize their respective cost
function, therefore, a decrease below 1 (dotted line) is an improvement of
the respective objective. Note that the inverse of the E2LOG is used.

IV. RESULTS

To show the use of our proposed approach, we conduct
a case study focusing on a 3D quadrotor UAV’s rotors
thrust force and drag moment coefficients k; and k,, (p =
(ks km]T). These coefficients have a significant impact on the
tracking performance of the control and are hard to estimate.

A. Setup & Evaluation Method

The system model of Sec. II-A, control law of Sec. II-B,
and optimization of Sec. III are implemented in Python. All
system parameters are based on the quadrotor Hummingbird
model of [12]. This previous work shows that it is possible
to estimate the thrust force and drag moment coefficients, k/
and k,,. The method of using simulations allows for better
repeatability of experiments and avoids the introduction of
other artifacts due to uncertainties of the real system.

In this empirical evaluation we look at four types of
trajectories: (¢) the initial preconditioned trajectory (INIT);
(i4) the S/I-S objective optimized one; (7ii) the E*LOG
objective optimized trajectory; (iv) the new COP objective
optimized trajectory. The initial one serves as baseline for all
other trajectories. Each trajectory has a duration of 7" = 20s,
5 Bézier curve pieces, and a random target way-point Pr in
3D space with (U(2,5), U(2,5), U(—0.5,1)) in meters.

In total, optimizations have been completed for 20 tar-
gets, each for the S/I-S, E?’LOG, and COP objective. The
individual cost functions evolutions, positional mean integral
error norms, and estimation uncertainties are evaluated from
this set of trajectories. For the positional mean integral
error norm evaluation, we chose to randomly perturb the
coefficients k; and k,, in the ranges of +1% and +5%
and fulfill 30 closed-loop flights, changing them for every
trajectory. Greater perturbations are not considered as such a
deviation from the nominal value might hint at problems
at the parameter identification/estimation. The estimation
uncertainty results are based on 10 runs of each trajectory
with different randomly wrong initial guesses (+30 %) from
ground truth (k; = 3.375 x 107*N/s72 and k,,, = 0.016 m).

Perturbation +1% Perturbation +5%

0.8 1.2
2061 091
% 0.4 1 £ % 0.6 1 o
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= =
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INIT  S/I-S E’LOG COP INIT S/I-S E?LOG COP
Fig. 3. Quartile box plots showing the positional mean integral error

norm over the whole trajectory, average over 20 trajectories each with 30
simulated closed-loop flights. The two plots show the influence of different
perturbation amplitudes on the parameters ky and km. As expected, the
S/1-S optimized one performs best followed by the COP. The E?LOG based
trajectories perform worse as they just improve estimation performance.
COP as well as S/I-S are most effective with small perturbations, because
the sensitivity is evaluated at p = pe.

B. Discussion

1) Cost Function Behavior: We recorded each objective
function’s cost value (Fiyr, Fgpss Fiop o6 Feop) at all it-
eration steps during each optimization run to evaluate the
behavior of the costs by averaging all runs.

As E2LOG and S/I-S have different orders of magnitudes,
a normalization with the initial cost value was performed. In
addition, we chose to use the inverted values of E?LOG as
they can grow unbound and allows for better comparisons.
A decrease (<1) means an improvement, while an increase
(>1) indicates a decline in the performance of the respective
objective. As the optimization uses a gradient-free method,
the average shows some spikes.

Fig. 2 presents the results of the 20 individual COP
runs. The top left plot shows the average and 1o standard
deviation of the S/I-S-based optimization, Sec. III-C.3, with
its cost in blue and the E2LOG’s cost in orange. One can
see the decrease in the sensitivity cost, meaning that the
state and input sensitivities are minimized (as expected).
This comes, however, at the expense of the overall quality of
observability, indicated by the increase of the inverse E2LOG
cost. Therefore, these results seem to indicate that S/I-S and
E?LOG can be two conflicting objectives. On the top right are
both costs, again blue S/I-S and orange E*LOG, depicted for
the quality of observability optimization, Sec. III-C.2. As we
chose the inverse here, a decrease is equal to an improvement
of the E2LOG. Once again, we see the behavior of the left
plot reflected in this optimization as well. From those two
plots one can infer that if one improves the other might get
worse. The two plots at the bottom of Fig. 2 are the results of
the optimization runs based on the COP objective, Sec. III-
C.4. We can see that even distributed weights, as described
in Sec. III-C.4, can still result in slightly skewed solutions
caused by the approximation of the individual utopia and
nadir points F;° and F}". The solutions themselves are Pareto
optimal, and the straightforward filtering ensures an overall
decrease of all considered objectives. This indicates that COP
can balance and decrease all objectives.

2) Control Tracking Error: The evaluation of the tracking
performance of the system with its controller is based on the
aforementioned set of trajectories, and is done by considering
the positional mean integral error norm of position 7(t) with
respect to the desired position r4(t).



The results can be seen in Fig. 3 where we depict the
quartile box plots from the statistical data. As mentioned
before, each trajectory is flown in simulation 30 times with a
changed set of k; and k,, for each flight, normally distributed
around +1% and £5% of their nominal values (which is
used to evaluate the various sensitivity quantities).

The quartile boxplots of Fig. 3 show the average tracking
performance of each trajectory with different amplitudes of
perturbation represented by the mean of the integral of the
error norm at each point on the trajectory. The median of
the S/I-S optimized trajectory performs the best and the
E?LOG one the worst, with COP performing between those
two, which confirms Fig. 2 and our expectations. COP can
not reach the same performance level as S/I-S because
of the balancing in Eq. (12), however, we can improve
estimation performance at the same time, Fig. 4. Looking at
the evolution of those boxplots, one can see that the farther
away p gets from p. the less difference is between each
objective. This is also expected as the optimization evaluates
the trajectories at nominal value. Therefor, one might start
with estimation-aware trajectories to get p as close to p,. and
then switches to control-aware ones for improved tracking.

3) Estimation Error: We used the IEKF implementation
in Matlab of [12] to evaluate the influence of the trajectories
on the estimation of k; and k,,, which has proven to be good
at estimating those parameters. The trajectory optimization is
used to generate artificial position sensor and IMU measure-
ments together with rotor speed input for each trajectory.
Each of these recordings has been tested using the IEKF
with initial guesses of nominal values k; and k,, perturbed
randomly by +30% 10 times. Note that both parameters
are poorly observable. To visualize the influence, we once
again use quartile boxplots for each individual optimization
objective. Fig. 4 shows on the left plot the quartile boxplot
of k; and on the right for k,,. The estimation performance
is evaluated by the reduction of uncertainty (represented by
the standard deviation) at the end of the trajectory at 7.

One can see that the S/I-S optimized trajectories perform
slightly better than the initial ones. This is because we al-
ready gain more motion and excitation from the optimization
objective. As expected, based on the optimization data, the
E?LOG optimized trajectories perform best with the new
COP optimized one in between. Note that this is expected,

»10-5 Uncertainty of k; «10-3 Uncertainty of &y,
2.0 4
T, 151 = 31
= a
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0.0 +— T T T T T T T
INIT S/I-S E’LOG COP INIT  S/LS E2LOG COP
Fig. 4. Quartile box plots showing the IEKF’s uncertainty based on the

state’s standard deviation at the end of the trajectory, average over 20 trajec-
tories (initial, S/I-S optimized, E2LOG optimized, and E2LOG optimized
each) closed-loop flights. Each trajectory is tested with 10 different initial
guesses +30 % uniformly distributed around ground truth. (left) is the thrust
force coefficient ky and (right) the drag moment coefficient k., depicted. As
expected, the initial trajectory has the worst estimation performance and the
E2LOG ones are the best with COP generated motions being comparable.

due to the balancing of two objectives we are not able to
perform as well as a single objective optimized trajectory.
These comparable results were already indicated in Fig. 2.
All the presented results support our claim that our proposed
COP objective can balance two possibly opposing objectives
and maintain good performance.

4) Computation Times: All trajectory optimizations were
done on a PC with an AMD Ryzen 5 3600 CPU (6 cores/12
threads), 16GB Ram, and NVidia RTX 2070 (Super) GPU.
Note that one instance of the COP implementation only uses
one CPU thread, and therefore, parallelization is possible
by starting multiple instances of COP. The duration of each
optimization run and each objective were logged. The initial
trajectory generation is done in under 120s. Minimizing
the state and input sensitivity metrics (Fi;(a) and Fg(a))
takes on average 38 min and 15 min, respectively. Improving
the observability through the E’LOG (F. . (a)) needs
on average 26 min. The trajectory optimization with S/I-S
(Fy,5(a)) finishes in 36 min on average. The last objective
of the COP approach, minimizing both E2LOG and S/I-S,
runs for 27 min on average. One complete optimization run
needs in total around 2.4 hours which is due to the numerical
integration of the complex metrics over the whole trajectory
during each iteration of the optimization.

V. CONCLUSION

This paper wanted to answer the question: How fto
combine Closed-Loop State and Input Sensitivity-based
with Observability-aware trajectory planning? Our proposed
Control & Observability-aware Planning (COP) framework
and its statistical evaluation provide an answer to it.

Intuitively, taking state and input sensitivities into ac-
count during the trajectory generation might result in non-
informative trajectories for state/parameter estimation. How-
ever, informative motions for the estimation process are often
difficult to control and likely cause higher tracking errors.
Our statistical case study of a 3D quadrotor UAV, focused on
system parameters that have a significant impact on the track-
ing error and are poorly observable (thrust force coefficient
k; and drag moment coefficient k,,), provided insights into
the negative correlation between closed-loop state and input
sensitivity-based and observability-aware trajectory planning.
We were able to show that both objectives work against each
other, meaning that while one can improve, the other will
get worse. Applying the Augmented Weighted Tchebycheff
Method in a multi-step approach to such Multi-objective
Optimization Problem (MOOP) allows to balance both in a
Single-Objective Optimization Problem (SOOP), improving
trajectory tracking and, at the same time, state estimation.

To summarize, we have successfully shown that it is
important to consider both objectives as they correlate with
each other. The insights and results in this paper give a
motivation to go forward with more sophisticated MOOP
approaches. Further research should be conducted towards
a real-world closed-loop flight using the estimation in the
optimization as feedback.
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