
Improved State Propagation through AI-based Pre-processing and
Down-sampling of High-Speed Inertial Data

Jan Steinbrener1, Christian Brommer, Thomas Jantos, Alessandro Fornasier and Stephan Weiss

Abstract— We present a novel approach to improve 6 degree-
of-freedom state propagation for unmanned aerial vehicles in
a classical filter through pre-processing of high-speed inertial
data with AI algorithms. We evaluate both an LSTM-based
approach as well as a Transformer encoder architecture. Both
algorithms take as input short sequences of fixed length N
of high-rate inertial data provided by an inertial measurement
unit (IMU) and are trained to predict in turn one pre-processed
IMU sample that minimizes the state propagation error of a
classical filter across M sequences. This setup allows us to
provide sufficient temporal history to the networks for good
performance while maintaining a high propagation rate of pre-
processed IMU samples important for later deployment on
real-world systems. In addition, our network architectures are
formulated to directly accept input data at variable rates thus
minimizing necessary data preprocessing. The results indicate
that the LSTM based architecture outperforms the Transformer
encoder architecture and significantly improves the propagation
error even for long IMU propagation times.

I. INTRODUCTION

Real-time, accurate and robust state estimation is a prereq-
uisite for higher level autonomy in mobile robotic systems
and has been the focus of research efforts for many years.
For unmanned aerial vehicles (UAVs), Kalman filter based
visual-inertial odometry (VIO) frameworks have been shown
to provide accurate state estimation at required rates despite
the low computational resources available [1]. These filter
based approaches rely on inertial measurements provided
by low-cost inertial measurement units (IMUs) to propagate
the state in between lower-rate sensor measurements (e.g.
from an onboard camera or global navigation satellite system
(GNSS)). Due to the inherent noise in the IMU readings,
IMU propagation suffers from significant drift and the re-
sulting position estimate quickly degrades with time. This
is true even if the noise parameters of the IMU have been
accurately determined, a consequence of the random walk
like behavior of the underlying stochastic processes.

While significant advances have been achieved in im-
proving the robustness of the filters with respect to low
quality sensor readings [2][3], enabling mid-air initialization
of filters as well as run-time modularity [4], and automati-
cally assessing filter performance and consistency, extensive
efforts on mitigating the error during IMU propagation have

1All authors are with the Control of Networked Systems group,
Universität Klagenfurt, Lakeside Park B04a, 9020 Klagenfurt,
Austria {jan.steinbrener christian.brommer,
thomas.jantos, alessandro.fornasier,
stephan.weiss}@aau.at

This work was supported by the Federal Ministry for Climate Action,
Environment, Energy, Mobility, Innovation and Technology (BMK) under
the grant agreements 878646 (AIMRobot) and 881082 (MUKISANO).

only recently come into focus. With the advent of deep learn-
ing methods, powerful tools exist nowadays to learn non-
linear behavior from noisy, heterogeneous data provided that
enough (ground-truth labeled) data is available for training
and that the training data reflect the expected variability
of real-world scenarios [5]. Recurrent neural networks, in
particular long short-term memory networks (LSTMs) [6],
have been proven effective in extracting information from
temporal sequences without suffering from vanishing gra-
dients. Recently, Transformers, purely convolutional neural
network (CNN) based architectures employing the concept
of (self-) attention [7], have come into focus for processing
temporal sequences - from applications in natural language
processing [8] to analyzing sequences of images [9].

We present here a novel approach to improve 6 degree-of-
freedom (DoF) state propagation for unmanned aerial vehi-
cles in a classical filter through pre-processing of high-speed
inertial data with state-of-the-art AI algorithms. By "pre-
processing" we understand the processing of raw IMU data
with AI-based models which yield "cleaner" pre-processed
IMU data that are then used subsequently for propagation in
a classical filter. Our contributions are as follows:

• Formulation and training of neural networks for pre-
processing short IMU sequences at variable rates

• Neural network based down-sampling of high-rate IMU
data

• Benchmark of two different neural network models
compared to standard IMU integration

• Improved 6 degree-of-freedom state propagation for
unmanned aerial vehicles

• Formulation of a least squares approach acting on
motion data to refine estimated transformations between
different IMU frames and to estimate their biases.

II. RELATED WORK

Classical, robust approaches for 6-DoF state estimation
combine IMU measurements with additional sensors and
are either based on recursive filters [10], [1], optimization
techniques [11] or a combination thereof. To improve perfor-
mance, most classical methods focus on robust initialization
methods [12], improved sensor processing algorithms [3],
modularity with respect to sensor updates [4]. or efficient
pre-integration methods for IMU data [13]. In almost all ap-
proaches, IMU integration is performed using first or higher
order integration of the underlying equations of motion (dead
reckoning). Recently, AI-based approaches have been applied
successfully to learn from IMU data. Several groups have

… …
Δt1 ΔtN…

LSTM

IMU
Δti

LSTM

1
0

2
4

5
1

2
1

2
8

6

N x 7 N x 128

M x N raw IMU samples M predicted,
pre-processed
IMU samples

𝑝𝑤𝑖
0

𝑞𝑤𝑖
0

𝑣𝑤𝑖
0

𝑝𝑤𝑖
𝑀

𝑞𝑤𝑖
𝑀

IMU propaga�onTF encoder

IMU
TF

enc. 1
0

2
4

5
1

2
2

5
6 6

N x 6 N x 256

2
5

6

+

p(ti)

Fig. 1. Architecture and data handling of the proposed networks during training.

focused on IMU based attitude estimation. In [14], the au-
thors performed denoising of IMU data for open-loop attitude
estimation using a CNN-based architecture while Weber et
al. [15] compared conventional filters with neural network-
based filters for IMU based attitude estimation. In a separate
study [16], the same authors proposed their own framework
for attitude estimation based on recurrent neural networks
with domain specific adaptations. With an extension to
localization, Sun et al. [17] showed that recurrent neural
networks can be applied in combination with classical filter
frameworks to estimate the orientation and subsequently po-
sition of a smartphone to high accuracy. Hu et al. [18] trained
a deep reinforcement learning network to estimate orientation
from inertial data, outperforming traditional methods and
providing an estimate on the error bound of the method.
Liu et al. [19] show in offline experiments that an LSTM-
based architecture trained with data collected from a real
system can outperform classical methods for UAV attitude
estimation.

Other studies focused on predicting noise covariance terms
based on processing IMU data. Brossard et al. [20] used a
neural network approach to adapt the covariance terms for
the velocity state based on IMU readings in an automonous
driving task. In [21], the authors have trained a CNN to im-
plement an adaptive Kalman filter for a GNSS-based inertial
navigation system for UAVs while in [22], a similar paradigm
based on multi-task learning was explored for land based
vehicles. This concept was extended to a magneto-inertial
filter framework for indoor localization in [23] which used
an LSTM to dynamically adapt the process noise covariance
based on inertial data. Using a different learning method of
Gaussian Variational Inference, Wong et al. [24] successfully
learned the covariances for both sensors and motion models
for vehicle trajectory estimation.

A study most closely related to our approach has been
presented recently in [25]. Here the authors also relied
on a recurrent neural network architecture to pre-process
the IMU data for subsequent propagation in classical filter
frameworks. In their study, the neural network also outper-
formed other methods but to our knowledge did not perform
down-sampling of IMU data and was trained for much
longer sequences (up to full trajectories), leaving open the
performance on short IMU sequences required for real-time

applications. In contrast, we have focused on models that
have been trained exclusively with short sequences of IMU
data to optimize the pre-processing for time scales relevant
for real-world applications.

III. NOTATION

In this work we use the following notation: Ax denotes
a vector in frame of reference {A}, and ApAB denotes
the displacement vector between {A} and {B}, expressed
in frame of reference {A}. This can also be expressed as
pAB for short. Further, RAB denotes the rotation matrix
employing the following rotation Ax = RAB Bx. Finally,
Axm denotes a measured physical quantity expressed in
frame of reference {A}.

IV. METHODS

A. Network models

Two different type of network models were trained and
compared to standard IMU propagation: (i) an LSTM-based
model and (ii) a Transformer encoder based model. The
former consisted of a bi-layer, single directional LSTM
model with hidden size of 128. The latter consisted of a
transformer encoder stage with 3 encoder layers, 8 attention
heads and 256 features as encoder inputs. The output of both
models was then decoded by simple feed-forward networks
consisting of four fully-connected layers (see Fig. 1 for
details). Both models accept as input a sequence of N raw
IMU samples and return one pre-processed IMU sample
([ω,a]) after the decoder stage resulting in a down-sampling
of the raw IMU data rate by a factor N . For the transformer
encoder, the input IMU data was mapped into a higher
dimensional space using a fully-connected layer followed by
positional encoding (as suggested by e.g. [7]) before feeding
it to the encoder. To account for the variable IMU rate, the
networks also take information on the time between the raw
IMU samples as input. For the LSTM, the vector of relative
time differences between two subsequent raw IMU samples
(∆t) is concatenated with the raw IMU measurements and
passed directly to the LSTM. For the Transformer encoder,
a vector of relative times (ti starting at t0 = 0 for the first
IMU sample of a given sequence) is used in the positional

encoding such that

pi,d =

{
sin(ti∗f

10000d/D
) if d even

cos(ti∗f
10000d/D

) if d odd
(1)

Here, ti is the relative timestamp of IMU sample i in the
sequence and f is a scaling factor to yield meaningful
differences in the resulting embedding frequencies (in our
experiments f = 10000).

B. IMU propagation

The resulting pre-processed IMU sequence is then in-
tegrated according to the state propagation performed in
classical filter frameworks (see e.g. [26]) with the state
dynamics given as

ṗwi = vwi (2)
v̇wi = Rqwi

(am − ba − na)− g (3)

q̇wi =
1

2
Ω(ωm − bw − nw)qwi (4)

where pwi is the translation from the world to the IMU/body
frame expressed in the world frame, vwi is the corresponding
velocity, qwi is the orientation of the IMU in the world
frame, am is the measured acceleration in the IMU frame, ba

and na are the accelerometer bias and noise parameters, g
is the gravity vector in the world frame, ωm is the measured
angular velocity in the IMU frame, bω and nω are the
gyro bias and noise parameters, and Ω(ω) is the quaternion
multiplication matrix of ω.

In particular, we use the state propagation subroutine of
our modular sensor fusion framework [4] for the integration.
Since we do not perform any updates, the IMU biases bω
and ba are assumed to be constant and set to either the
actual estimated values when propagating raw IMU samples
or to zero when propagating pre-processed IMU data. The
numerical integration of the IMU samples is carried out in
first order approximation.

C. Data recording and alignment

For training of the networks and evaluation of the prop-
agation error, 19 different trajectories were recorded. The
trajectories all included take-off and landing but varied in
their characteristic maneuvers that were flown. Some trajec-
tories included only a certain type of pattern (e.g. circles at
a certain speed or horizontal or vertical squares) while some
were executed more or less randomly at different speeds to
excite all axes of the IMU. The shape of the trajectories
was determined empirically. The completeness of the training
data with respect to possible UAV modes can be analysed
by means of an observability analysis. This is left for future
work. Examples of different trajectories are shown in Fig. 2.

The data was recorded using a TWINs Science Copter
platform with a Pixhawk PX4 autopilot which was flown
manually in our drone hall equipped with a motion capture
(MoCap) system collecting ground-truth position and attitude
at 360 Hz. The high speed inertial measurement unit (IMU)
(LSM9DS1 by ST Microelectronics) was attached to one of
the arms of the copter (see Fig. 3). This IMU is capable

Fig. 2. Examples of recorded training trajectories

of recording inertial measurements at almost 1000 Hz at
variable rates (nominal output data rate 952 Hz). In our
experiments, the IMU rate varied between 800 and 900
Hz. To capture all of the flight dynamics, the range of the
IMU was set to ±16g. The raw counts were converted to
acceleration using the typical sensitivity provided by the
manufacturer. For the angular velocities, the raw counts were
converted to radians per second by multiplying with the
corresponding sensitivity defined as the maximum scale of
the gyro of (±245 degree per second) divided by 216 − 1
and converting to radians. To determine the constant biases
of the IMU, a couple of datasets were recorded with the
platform in both, steady state and in motion with a sufficient
motion excitement. The bias for the angular velocities bω
was determined as the mean of the measured angular veloc-
ities for the steady state dataset, whereas the bias for the
linear accelerations ba was determined by the solution of
the following alignment problem. Let {P} and {L} denote
frames of reference of two IMUs (PX4 and LSM). The trans-
formation between the different IMUs, denoted TPL, were
computed in two ways: firstly, we made use of Kalibr [27]
with the help of an onboard camera. Secondly, we validate
the computed transformation and compute the accelerometer
bias by solving the following least-square problems.

min
RPL

‖RPL (Lωm − Lbω)− (Pωm − P bω)‖2,

where RPL denotes the rotation existing between the IMUs.
Once the rotation has been computed we built a second least-
square problem that allow us to determine the translation
between the two IMUs as well as the accelerometer biases.
In particular, differentiating the laws of motion yields

RPL (Lam − Lba) = (Pam − P ba)

+
(
bPωm − P bωc2× + bPαc×

)
PpPL,

where b·c× represent the skew-symmetric matrix, and
Pα = d

dt Pω represent the angular acceleration, computed
by numeric differentiation of the filtered (with a Sav-
itzky–Golay filter) angular velocity Pω = Pωm − P bω .

Fig. 3. Quadcopter with locations of LSM IMU and PX4.

Therefore we built the following least-square problem

min
x

‖y −Ξ x‖2,

s.t. y = RPL Lam − Pam,

x =
[
PpPL Lba P ba

]T
,

Ξ =
[
bPωm − P bωc2× + bPαc× −RPL I

]
.

The resulting refined transformation is then used to align
the ground-truth data with the LSM IMU for training and
evaluation of the networks. This was necessary as, in our
setup, the position of the copter in the world coordinate
recorded by the MoCap system was aligned with the PX4
on the copter. In addition, the ground-truth pose data was
interpolated to the same time stamps as the raw IMU data.
For the position, a quadratic interpolation was performed
while for the attitude expressed as quaternions, a spherical
linear interpolation (SLERP [28]) was performed based on
the linearized fractional time difference of the IMU sample
at hand and the neighboring (in time) measured ground-truth
attitudes.

D. Network Training and Evaluation

For training the networks, 16 out of the available 19
datasets were used. The training datasets were chosen to
represent a mixture of simple trajectories with excitation
of one or few axes and more or less random trajectories
with aggressive excitation of all axes to capture the range
of possible scenarios. The number of IMU samples per
IMU sequence was set to N = 8 resulting in an 8-fold
downsampling of the raw IMU data rate. This number was
chosen as a trade-off between providing temporal history to
the networks and resulting rate of the pre-processed IMU
data. Waiting for more raw IMU samples to be collected
before pre-processing them with the AI model increases the
downsampling rate but would also slow down the rate of
pre-processed IMU data that is fed to the classical filter for
propagation. The latter should still be high enough to be of
practical consequence when implemented on a real system.
With N = 8, the hypothetical rate of the processed IMU

Fig. 4. Trajectory of the validation dataset.

data is around 100 Hz which is still high enough for real-
time 6-DoF pose estimation for dynamic systems such as
UAVs.

A practical challenge in using short IMU sequences is
that the accumulated pose error over the sequence length
(here about 0.01 s) will be very small. This results in small
loss values and makes training of the networks difficult. To
overcome this problem, we chose to pass M consecutive
sequences of N IMU samples through the networks before
computing the position error and back-propagating the loss.
Thus, the resulting graphs of the operations in the forward
passes included M calls to either the LSTM or Transformer
encoder networks. Likewise, the gradients were propagated
through M instances of the networks during the backprop-
agation of the loss. In practice, we have found that this
setup yielded reasonable loss values and did not suffer from
vanishing gradients as one might assume. In our experiments
we have set M = 20, i.e. the networks were trained with
the position error evaluated after 20 predicted, pre-processed
IMU samples (or 20× 8 processed raw IMU samples). With
this, we obtain in total 148, 667 IMU sequences of length
M ×N for training the networks.

We like to point out that passing multiple IMU sequences
through the networks is only used for training. For testing
or later deployment, the networks only take one sequence
of length N thus keeping the hypothetical inference rate of
1/N -th of the raw IMU data rate.

The loss function was a combination of position loss and
attitude loss

l = lpos + lrot, with (5)

lpos = φL1

(
∆p̂

(M)
wi ,∆p

(M)
wi

)
(6)

lrot = φL1

(
R̂(M)RT,(M), I3

)
(7)

where φL1 is the smooth L1 loss function, ∆p̂
(M)
wi is

the estimated change in position after IMU propagation
through M sequences and ∆p

(M)
wi is the actual position

change, R̂(M) and RT,(M) are the estimated and actual
relative rotation after M sequences, respectively, and I3 is

Fig. 5. Mean (solid line) and standard deviation (shaded area) of position
MSE [m2] as a function of number of processed raw IMU samples. Length
of sequence shown corresponds to about 5 seconds. Inset shows mean of
MSE for the short propagation times of up to 0.5 seconds. The mean error
for the LSTM at this point is about 4 cm.

the identity matrix in three dimensions. The loss function
plays an important part in network training. While we have
achieved good results with this loss function, future research
will focus on more carefully balancing the positional and
rotational loss terms and on improving the bias towards
early rotational errors in the sequence. All networks were
trained with a mini-batch size of 32 for 40 epochs using
the Adam optimizer with a constant learning rate of 10−4.
These hyperparameters were empirically determined to yield
the best results. Contiguous samples of length M ×N were
drawn from random positions within the training datasets.
Before propagating, ground truth information on the position,
the attitude, and the initial velocity were injected into the
state so that only the error after propagation of M sequences
was evaluated. The initial velocity was computed on the fly
from the preceeding segment of N IMU raw data samples
as

v0,wi =
∆p−1,wi

∆t−1
(8)

where ∆p−1,wi is the position change over the preceeding
segment of N IMU raw samples and ∆t−1 the corresponding
time. Although calculation of ground truth velocities can
suffer from position jitter in the MoCap data and resulting
numerical issues when evaluating over a small time window,
we believe that these effects can be neglected here due to the
high rate of actual MoCap data (360 Hz) in combination with
the lower rate of calculated initial velocities (∼ 100 Hz).
In addition, the interpolation of ground truth position data
as described above also smoothed out some of the position
jitter that could otherwise have led to larger errors in the
estimated initial velocities. Nonetheless, to exclude the possi-
bility that systematic errors in calculation of initial velocities
could have been learnt by the networks, thus providing an

Fig. 6. Mean square error of position [m2] as a function of raw IMU
samples processed starting from well defined initial conditions (copter at
rest). Inset shows ground truth trajectory for same segment of IMU samples.
Length of sequence shown corresponds to about 5 seconds.

unfair advantage, we also compared the performance of the
networks to the classical IMU propagation by starting from a
known initial position at zero velocity (see Sec. V). Training
and evaluation of networks was done in Pytorch (1.9.0).

V. RESULTS & DISCUSSION

The performance of the models was compared in terms of
the mean-square error of the position to standard IMU prop-
agation by a classical filter. For the networks, M predicted,
pre-processed IMU samples were integrated to propagate
the initial state. A constant bias of zero was assumed. For
standard IMU propagation, N ×M raw IMU samples were
integrated. Here, a constant bias was taken into account.
The biases were determined as described above to be ba =
[−0.1161,−0.1581,−0.2281] m/s2 for the accelerometer
and bω = [0.0018, 0.0225,−0.0259] rad/s for the gyro.

An important metric to assess the performance of the
IMU propagation is the drift that is accumulated in between
subsequent pose updates. A large drift leads to a correspond-
ingly large correction upon the pose update which can result
in undesirable large control actions and sudden trajectory
changes in closed-loop flight. Depending on the application,
a drift of a few centimeters can already lead to critical
behavior. We assessed the performance of the models on a
validation trajectory, shown in Fig. 4. In order to compare the
different models and the standard IMU propagation, random
segments of length M×N were extracted from the trajectory.
For each segment, the predicted change in position from
the start of the segment to the end of the segment (either
based on integration of raw IMU samples or on integration
of predicted, pre-processed IMU samples) was compared to
the ground-truth information provided by the MoCap system.

The results of the comparison for different numbers of
IMU sequences M is shown in Fig. 5. The mean of the

MSE for different number of sequences M (N was kept
constant at N = 8) is shown as solid line, while the shaded
areas indicate the standard deviations. The inset shows the
mean MSE for the shorter propagation times (= small M).
Note that no update steps are performed in the classical
filter. Only IMU propagation is considered. This is why the
error keeps increasing over time. As can be seen, the LSTM
based architecture outperforms both the Transformer encoder
based architecture and the standard IMU propagation even
for long propagation times. This indicates that an LSTM-
based pre-processing of IMU data could handle lower update
rates when included in a classical filter framework. While the
mean of the MSE of the Transformer encoder architecture is
also lower than that of standard IMU propagation (albeit to a
lesser extent than with the LSTM), their standard deviations
overlap even at long propagation times indicating that the
Transformer encoder architecture is less able to detect the
predictive features in the IMU samples provided. The inferior
performance of the Transformer model is surprising given
that it has outperformed LSTM based models in other tasks.
One possible explanation is that the Transformer model
requires more data for training to be able to reach optimal
predictive capability.

To rule out the possibility that the networks learnt to
include any systematic errors in the computation of the
initial velocities (see Sec.IV-D) which would lead to an
unfair advantage over the standard IMU propagation, we also
evaluated the cumulative position MSE starting from a well
defined position with zero velocities. To that end, the exact
start of the take-off maneuver of the validation trajectory
was determined, and the IMU samples were extracted from
this time onward. The results can be seen in Fig. 6 where
the MSE for a propagation of up to 4000 raw IMU samples
(corresponding to M = 500 pre-processed IMU samples) is
shown. Note that since we are following one trajectory in a
sequential manner, no standard deviation can be computed
and shown in this case.

As can be seen, the behavior is similar to the results
obtained from evaluating random sequences: the LSTM
architecture again outperforms both the Transformer encoder
based architecture as well as the standard IMU propagation,
while the Transfomer encoder network also performs better
than the IMU propagation initially but then its error increases
at a faster rate. Thus, estimating the initial velocities and
injecting them in the state for training and testing does not
seem to lead to bias the results towards the networks.

VI. CONCLUSIONS

We have presented a novel approach to improve 6-DoF
state propagation by pre-processing the IMU data with the
help of neural networks. Contrary to other approaches, we
designed our architectures to working with minimal temporal
history of IMU data while at the same time allowing for more
inference times of the networks and higher state propagation
rates. This is achieved by training the networks to down-
sample sequences of inertial data provided by a high-rate
IMU. The results show that the LSTM based architecture

outperforms both the Transformer encoder based architecture
as well as standard IMU propagation for various propagation
lengths, indicating that this network may be particularly
suited to improve state estimation in the presence of lower
update rates (e.g. caused by transient lack of sensor readings
or failures). Future research will focus on porting these
models to the embedded hardware shown in Fig. 3 for
closed-loop flight and a more detailed performance analysis,
also with respect to carefully balancing the rotational and
positional loss terms.

REFERENCES

[1] S. Weiss, M. W. Achtelik, S. Lynen, M. Chli, and R. Siegwart,
“Real-time onboard visual-inertial state estimation and self-calibration
of MAVs in unknown environments,” in 2012 IEEE International
Conference on Robotics and Automation. IEEE, may 2012.

[2] A. Hardt-Stremayr and S. Weiss, “Monocular visual-inertial odometry
in low-textured environments with smooth gradients: A fully dense
direct filtering approach,” in 2020 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, may 2020.

[3] E. Allak, A. Hardt-Stremayr, and S. Weiss, “Key-frame strategy during
fast image-scale changes and zero motion in VIO without persistent
features,” in 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, oct 2018.

[4] C. Brommer, R. Jung, J. Steinbrener, and S. Weiss, “MaRS: A modular
and robust sensor-fusion framework,” IEEE Robotics and Automation
Letters, vol. 6, no. 2, pp. 359–366, apr 2021.

[5] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. The
MIT Press, 2017.

[6] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, nov 1997.

[7] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” in
Proceedings of the 31st International Conference on Neural Informa-
tion Processing Systems, ser. NIPS’17. Red Hook, NY, USA: Curran
Associates Inc., 2017, p. 6000–6010.

[8] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding.”

[9] F. Giuliari, I. Hasan, M. Cristani, and F. Galasso, “Transformer
networks for trajectory forecasting,” in 2020 25th International Con-
ference on Pattern Recognition (ICPR). IEEE, jan 2021.

[10] A. I. Mourikis and S. I. Roumeliotis, “A multi-state constraint kalman
filter for vision-aided inertial navigation,” in Proceedings 2007 IEEE
International Conference on Robotics and Automation. IEEE, apr
2007.

[11] T. Qin, P. Li, and S. Shen, “VINS-mono: A robust and versatile monoc-
ular visual-inertial state estimator,” IEEE Transactions on Robotics,
vol. 34, no. 4, pp. 1004–1020, aug 2018.

[12] M. Scheiber, J. Delaune, R. Brockers, and S. Weiss, “Visual-inertial
on-board throw-and-go initialization for micro air vehicles,” in 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, nov 2019.

[13] E. Allak, R. Jung, and S. Weiss, “Covariance pre-integration for
delayed measurements in multi sensor fusion,” in 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2019.

[14] M. Brossard, S. Bonnabel, and A. Barrau, “Denoising IMU gyroscopes
with deep learning for open-loop attitude estimation,” IEEE Robotics
and Automation Letters, pp. 1–1, 2020.

[15] D. Weber, C. Guhmann, and T. Seel, “Neural networks versus
conventional filters for inertial-sensor-based attitude estimation,” in
2020 IEEE 23rd International Conference on Information Fusion
(FUSION). IEEE, jul 2020.

[16] D. Weber, C. Gühmann, and T. Seel, “Riann – a robust neural network
outperforms attitude estimation filters.”

[17] S. Sun, D. Melamed, and K. Kitani, “Idol: Inertial deep orientation-
estimation and localization.”

[18] L. Hu, Y. Tang, Z. Zhou, and W. Pan, “Reinforcement learning
for orientation estimation using inertial sensors with performance
guarantee.”

[19] Y. Liu, Y. Zhou, and X. Li, “Attitude estimation of unmanned aerial
vehicle based on LSTM neural network,” in 2018 International Joint
Conference on Neural Networks (IJCNN). IEEE, jul 2018.

[20] M. Brossard, A. Barrau, and S. Bonnabel, “AI-IMU dead-reckoning,”
IEEE Transactions on Intelligent Vehicles, pp. 1–1, 2020.

[21] Z. Zou, T. Huang, L. Ye, and K. Song, “CNN based adaptive kalman
filter in high-dynamic condition for low-cost navigation system on
highspeed UAV,” in 2020 5th Asia-Pacific Conference on Intelligent
Robot Systems (ACIRS). IEEE, jul 2020.

[22] F. Wu, H. Luo, H. Jia, F. Zhao, Y. Xiao, and X. Gao, “Predicting
the noise covariance with a multitask learning model for kalman
filter-based GNSS/INS integrated navigation,” IEEE Transactions on
Instrumentation and Measurement, vol. 70, pp. 1–13, 2021.

[23] M. Zmitri, H. Fourati, and C. Prieur, “Inertial velocity estimation for
indoor navigation through magnetic gradient-based EKF and LSTM
learning model,” in 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, oct 2020.

[24] J. N. Wong, D. J. Yoon, A. P. Schoellig, and T. D. Barfoot, “Varia-
tional inference with parameter learning applied to vehicle trajectory
estimation,” IEEE Robotics and Automation Letters, vol. 5, no. 4, pp.
5291–5298, oct 2020.

[25] M. Zhang, M. Zhang, Y. Chen, and M. Li, “Imu data processing for
inertial aided navigation: A recurrent neural network based approach.”

[26] S. Weiss, D. Scaramuzza, and R. Siegwart, “Monocular-SLAM-based
navigation for autonomous micro helicopters in GPS-denied environ-
ments,” Journal of Field Robotics, vol. 28, no. 6, pp. 854–874, oct
2011.

[27] P. Furgale, J. Rehder, and R. Siegwart, “Unified temporal and spatial
calibration for multi-sensor systems,” in 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2013, pp. 1280–1286.

[28] J. Solà, “Quaternion kinematics for the error-state kalman filter.”

