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Abstract— This paper emphasis the role of Collaborative
State Estimation (CSE) for reliable navigation and sensing in
heterogeneous swarms of communicating robots. By using a
state-of-the-art CSE algorithm, communication and mainte-
nance of interdependencies is mainly needed for the moment
of joint observations, while the credibility and performance
of the distributed estimators remain closely to the statistically
optimal centralized solution. In simulation we demonstrate the
concept of sensor sharing to improve the localization accuracy
and sensor relaying in case of sensor failure in an exploration
scenario, rendering CSE as a key for reliable sensing in swarms
of communicating robots.

I. INTRODUCTION

Estimating states collaboratively among a group of com-
municating agents is a key to achieve precise and robust
localization in challenging situations. Properties such as
Sensor Sharing or indirect Sensor Relaying can be inherently
established by processing joint observation between mem-
bers of a group.

For the purpose of localization, common joint observations
are local relative pose, position, range, bearing, or range and
bearing measurements between two agents. Theoretically,
any measurement that directly or indirectly observes any
estimated state can be fused, meaning that observations
do not have to be pair-wise and do not have to contain
localization information.

This allows for a redundancy in a global scale as local
sensor failures might be compensated by joint observation
with other robots. Further, robots equipped with less accurate
sensors can benefit from robots with more accurate sensors as
shown e.g. by Roumeliotis and Rekleitis in [1]. In [2], Jung
et al. have shown that agents receiving just joint relative
position measurement with respect to other agents, (i) can
navigate with respect to a common coordinate reference
frame and (ii) those equipped with an Inertial Measurement
Unit (IMU) can restore their 6-DoF pose.

On a local scale, complementary and different sensor
modalities are typically used for precise and autonomous
navigation of robots [3], [4]. Fusing inertial and camera
information has proven well in so called Visual-Inertial
Navigation System (VINS) (e.g. Geneva et al. [5]). In [6],
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Fig. 1: Estimated trajectories of agents fusing joint relative position
measurements using DAH-CSE (red) or not (cyan). Agent/robot A;
is flying above the agents on the ground Ay, . 6. The agents
receive IMU and absolute position measurements. The ground
robots are suffering from sensor outages and dropped absolute
position measurements leading to drifting estimates in case of not
performing CSE (cyan). The problem is described in Section IV.

Brommer et al. open-sourced the Modular and Robust
Sensor-Fusion (MaRS) framework allowing for efficiently
fusing such sensors with a core state propagated by IMU
measurements.

In this paper, we demonstrate that Collaborative State
Estimation (CSE) can play an important role for reliable
sensing in the mobile robotics sector. In a simplified ex-
ploration scenario, where ground robots are equipped with
less accurate positioning sensors, that suffer from dropped
sensor reading, and sensors failure, an additional robot (e.g.
an Unmanned Aerial Vehicle (UAV)) equipped with a more
accurate positioning is circulating above them and performs
joint relative position updates with each of them.

CSE has been addressed in the past decades with the main
ambitions to decouple the individual agents, while reducing
communication and compute complexity [2], [7]-[14].

Rendering Collaborative State Estimation (CSE) dis-
tributed and scalable with number of agents in a team was
a subject in the recent work of Jung and Weiss [14]. In
simulation on a swarm of 20 communicating agents it was
shown that processing relative position update allows each
individual agent to estimate all 6-DoF while hidden states
could converge and only six agents had access to absolute
position information.

In this paper, we use this Distributed Approximated
History (DAH) CSE approach to evaluate the impact of
processing relative position measurements in case of faulty
and unreliable sensors on ground agents. The simulation
results show, that these agents can significantly improve the



estimation accuracy at the cost of a slightly higher processing
overhead, rendering CSE as novel approach to ensure reliable
autonomous navigation in swarms.

II. NOTATION

The mean and covariance of multivariate random variable
are defined as X; ~ N (%X;,X;;). A right subscript specifies
the agent’s identifier {A;,4 € 1,..., N}. The time indices
of state variables are indicated by the right superscript,
e.g. X*, denoting the state at the time #(k) = t*. Names
of reference frames are capitalized and calligraphic, e.g. Z
for IMU. A coordinate vector $pp, is read as oM o
The operators @ and © should emphasize that rotational in
SO? and translational components in R? have to be treated
differently. Positions, velocities and biases are additive, e.g.
gpI = gf)z+gf)z. Rotational errors are right-multiplicative,
eg. YR, = IR, (I + [géz} ) € SO,

X

III. PROBLEM FORMULATION

A swarm of N communicating agents equipped with an
IMU as proprioceptive sensor and an exteroceptive sensor
providing absolute position information (e.g. a Global Nav-
igation Satellite System (GNSS) sensor), is navigating in
space. Only one agent is able to measure the local relative
position of other agents, e.g. by sensing the range and
bearing angles or by a camera-based visual tag detection.
Using the IMU as a strapped down propagation sensor
makes the estimator independent on the underling kinematic
motion model of the agent. Note, that CSE is not restricted
to the aided-inertial estimation case, as theoretically any
state propagation model can be used e.g. different odometry
models for ground robots.

Each agent estimates it’s IMU navigation state X; using
a Quaternion-based Error-State Extended Kalman Filter (Q-
ESEKF) (e.g. [5])

Xi: [gpI7ngangaIbw7Iba]i7iE1)"'7N7 (])

with 9pz, vz, and 9q; as the position, velocity and orien-
tation of the IMU Z w.r.t. the global frame G (or navigation
frame). ;b,, and ;b, are the estimated gyroscope and
accelerometer biases to correct the related IMU readings.

Initially, the agents’ states can be seen as decoupled mul-
tivariate variables of a global swarm state X* ~ N (x*, 2F),
with % = [x¥; ...; %] the estimated values and, X% =
(=551, <ijey € S% the uncertainties. In the beginning,
agents are uncorrelated {3; ; =0:4,j € 1,...,N,i # j},
while joint observation between agents, e.g. ¢ and j, leads
to cross-covariances 3; ; 7# 0.

In a centralized CSE formulation, the entire swarm state
is estimated leading to statistically optimal estimates, at the
cost of compute and communication effort. To render CSE
distributed among agents various exact and approximated
approaches have been proposed e.g. [7], [11], [14], [15].
In this paper, we use DAH-CSE proposed by Jung and
Weiss in [14] as it (i) requires communication just at the
moment of joint observations, and (ii) maintenance effort
for propagation and private observation is constant O(1).

Note, in CSE three different filter steps can be performed:
(i) state propagation, (ii) private observation correcting and
requiring just one agent’s state, and (iii) joint observation
referring to an arbitrary number of states.

A. State Propagation

Each inertial navigation state X; is propagated forward
using agent A;’s IMU samples containing noisy and biased
linear acceleration ; a,,* = YR, "ot raf+ b+ n,
and angular velocity 7 w,,* = 7 w* + 7 b," + 7 n,, mea-
surements, with n denoting the zero-mean white Gaussian
noise. The nonlinear error-state IMU kinematic propagation
function for from t*~! to ¢t* is modeled as [3]

Xf = f(Xf_l’Ziamk‘?Lywmk) + Il%i, (2)

with the measurement noise ny = A (0, R% ). This result
after linearization and time discretization in the state transi-
tion matrix @f‘k_l and process noise matrix Qflk_l [3] to
propagate the state covariance matrix

kE_ gklk—1gk—1 klk—1\T klk—1
i =9, (2 ) +Q; . 3

K3

For details, we would like to refer interested readers to the
online documentation of OpenVINS [5].

Note that for DAH-CSE, ‘bflk*l has to be inserted into
the history buffer B;.

B. Private Absolute Position Observation

Absolute position measurements can be described by a
nonlinear function

k k k k
Zops = habs (Xz) + Nops = gpI + Dobs) (4)
with the measurement noise n%, = N (0,R%,.). In order

to update the Q-ESEKF, the measurement function has to be
linearized with respect to the error state X = x & X to obtain
the measurement Jacobian

Ah(xF)

K3

H = —2
oxk

(&)

x*(-)

Now, we can perform the standard EKF update as follows

=)
Kic — Eii(_)(Hk)T (HkEZ(—)(Hk)T + Rk) (6)

5 =5 o K (2 o nx])) )
Y= (I-K/H") (8)
=0 = ket )

Note that for DAH-CSE, Y* has to be inserted into the
history buffer B;.

C. Joint Relative Position Observation

Private and joint observations are technically the same,
while the later requires, in addition to the local state estimate,
estimates from one or multiple other agents. In DAH-CSE,
joint observations are processed on an interim master, which
receives all required information from the other participating
agents and sends them the corrected information back. The



relative position measurements between two agents A; and
A; can be described by a nonlinear function

k koxck k
zrel{i,j} = hT’Gl(Xi 7Xj) + . (10)
T k
= gRI,L <_gpI1 + gij) + nrel?
with the measurement noise n¥,, = A" (0, RF,)).

The joint belief of participants, e.g. constituting of A;’s
and A;’s belief is XZT) = [X] X]T] The joint a priori
O _ [Za D" ko

EvTJ 5 , wWhere 3
restored using correction factors inserted into the history
buffers By; ;3 and the previously factorized cross-covariance
terms [14].

As in Section III-B, the measurement function has to be
linearized with respect to the joint error state

HE — 8h(§<’;)
P oxk

covariance is X, is

= [H} HY]. (11)

Now, we can again perform the standard EKF update on
the stacked/joint state. In case of DAH-CSE, the stacked
state needs to be split again after the update and the
corrected belief including a correction term has to be sent
to the participating agents. The correction terlms for joint
observations is A’{"i)j} = EI{CZ(L)]} 221{2(”)]}) and has to
be inserted into the history buffers By; ;1, respectively. Note
that in DAH-CSE, non-participating agents are not directly
benefiting from joint observations as it would be the case in
centralized equivalent filter.

IV. EXPERIMENTS

The experiments are simulated in a MATLAB framework,
that allows to load existing datasets or to generate ran-
dom trajectories. The exteroceptive measurements (private or
joint observations) are generated based on the ground truth
trajectory, the sensors calibration states and noise parame-
ters. Finally, all measurements from all agents are sorted
chronologically and are locally processed in a multi-instance
manager. It is maintaining multiple filter instances, while
communication between filter instances is handled locally.
The following simplifications are made:

o system clocks, IMUs and exteroceptive sensors are
synchronized across the team,

« extrinsic calibrations between exteroceptive sensors and
the IMU on an agent are known and static,

« the exteroceptive measurement (observation) noise and
the process noise are independent,

o cach agent has a unique identifier,

« no physical interaction between agents (i.e. the motion
of an agent does not affect the motion of other agents),

« the period of exteroceptive sensors is an integer multiple
of the IMU period,

« communication range is larger than the sensing distance,

o and exchanged information between agents and sensor
measurements arrive without delay.

Note that, sensor and communication delay can be com-
pensated by introducing time sorted buffers for sensor mea-
surements and estimates as proposed in [4].

A. Scenario Sq

This scenario demonstrates that CSE can play an im-
portant role for reliable autonomous navigation in swarms
by performing joint observation between an agent that is
circulating in the air and agents (e.g. legged robots) on the
ground that are randomly exploring the environment on the
ground. For a direct comparison we performed the simulation
with and without these relative position updates. To render a
challenging exploration scenario, agents on the ground expe-
rience random message drops and temporary sensor outages.
Further, the absolute position measurements of ground robots
suffers from higher noise and lower rates, while the agent in
the air obtains highly accurate absolute position information
at higher rates. As described in III, all agents use noisy and
biased IMU samples for the state propagation. An overview
about the used simulation parameter can be found in Table L.

Further, the states were initialized wrongly to demon-
strate the self-calibration capabilities and emphasize the state
convergence. Table II summarize both, the Average Root
Mean Square Error (ARMSE) and the total filter execu-
tion times for the individual filter steps with and without
using joint relative position updates. As joint observations
require a CSE fusion approach a computational overhead is
expected. These relative observations are fused using DAH-
CSE [14], requiring communication only for those observa-
tions and maintenance cost for interdependencies between
agents. Processing joint observation reduces the ARMSE of
all agents, while ground robots Ay ) are suffering from
inaccurate and unreliable absolute position measurements,
can drastically improve their absolute position estimate from
average ARMSE of 0.53m to 0.1 m by an increased total
filter execution time from 8.14s to 9.22s. Using DAH-CSE,
the interim master is mainly processing the joint update. In
Figure 2a, measurements processed by A; (interim master)
are shown. Relative position measurements are processed
between t = 5s and ¢ = 60s at a rate of 5Hz with the
agents Ao ¢y and cause approximately 32 % of the total
execution time of A;. One remarkable feature of DAH-CSE
is that it barely increasing the processing time of other filter
steps (propagation and private observations) on all agents.
For private update the increase is barely visible and should
not exist theoretically. Note that the same holds for the
propagation step, if the used correction history buffer is
sufficiently large. In our experiments we set it to 250 ms. As
the the joint observations ended at ¢ = 60s, the agents had
to forward propagate their factorized cross-covariances that
causes an computational overhead. In Figure 2b the measure-
ments processed by agent Az are shown, which suffers from
sporadically dropped absolute position measurements and a
sensor outage between ¢ = 35s and ¢t = 45s. In Figure 3b
it can seen that those missing measurements drastically
decrease the estimation accuracy, leading to an position
estimation error of approximately 8 m on the x-axis. On the



Parameter Value Parameter Value

Num. ground robots 5 abs. pos. rate (Air, Ground) 10[H z], 2[H 2]
Duration 65]s] Noise abs. pos. (Air, Ground) 0.1[m],0.5[m]
IMU rate 200[H z] abs. pos drop rate (Air, Ground) | 0[%)],20[%)]
accelerometer noise 0.01[m/s?] abs. pos. off-time (Air, Ground) | 0[s], 10[s]
gyroscope noise 0.001[rad/s] relative pos. rate 5[Hz]

acc. rate random walk | 0.005[(m/s)/s/+/s] | relative pos. noise 0.1[m]

gyr. rate random walk | 0.0005[rad/s/+/s] rel. pos drop rate 0[%)]

TABLE I: Simulation parameters of scenario S;.
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(b) Measurements processed by agent As.

Fig. 2: Scenario S;: Shows the measurements processed on agent
A1 and A3, while A3’s absolute position measurements (POSITION-
GI) suffer from sporadic drop messages and a sensor outage
between ¢ = 35 and ¢t = 45. As depict in Table II, joint relative
observations with A; can compensate those outages and allows for
accurate navigation.

other hand, as depict in Figure 3a, by processing relative
position observations with A;, As is able to keep bounded
position estimates. It is noticeable that the uncertainty is
increased when no joint observations are obtained between
t=0sandt =5s,t =35sand t = 45s, and t = 60s
and ¢ = 65s. Summarized, the most important finding is
that the ground agents can drastically improve their pose
estimate by processing joint relative observation, while the
filter execution time slightly increases.

(a) Estimated position error of A3 receiving joint relative position
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Reliable and robust state estimation is a key to achieve
precise localization in challenging situations. Typically, com-
plementary and different sensor modalities are used. In this
paper, we show that it can be achieved requiring communi-
cation between distributed estimators. Our simulation results
show, that fusing joint observations using Collaborative State
Estimation (CSE) reduces significantly the estimation error
in case of faulty sensors at the cost of a slightly higher
processing overhead. This renders CSE as novel approach
to ensure reliable autonomous navigation in swarms.

(b) Estimated position error of A3 not receiving joint updates.

Fig. 3: Scenario Si: Shows the RMSE of agent As’s estimated
position (top) and uncertainty (bottom) with and without obtaining
joint relative position observations. The graphs are held in blue, red
and yellow for position X, y, z. As shown in Figure 2b, between
t = 35 and t = 45, no private absolute position measurement
are obtained. In case of joint observations, this leads to a slightly
increased estimation error and increased uncertainty (the error
remains bounded). Not obtaining them, causes the IMU state to drift
unbounded until private observations are available again leading to
an ARMSE of 0.723 m compared to 0.1 m.



Pgi [m] vgi [m/s] | qgi [deg] | ba [m/s"2] | by [ rad/s] execution time [s]
ID | REL TYPE | ARMSE ARMSE ARMSE ARMSE ARMSE tprop | tpriv | tjoint | ttotal
1 Rel. pos 0.045 0.06 0.21 0.0002 0.004 8.58 0.83 4.4 13.82
2 Rel. pos 0.11 0.12 1.6 0.0001 0.007 8.22 0.1 0.006 8.32
3 Rel. pos 0.09 0.11 2.34 0.0001 0.01 8.25 0.09 0.006 8.35
4 Rel. pos 0.1 0.12 2.93 0.0002 0.01 8.19 0.09 0.006 8.29
5 Rel. pos 0.1 0.12 1.6 0.0002 0.007 8.18 0.09 0.006 8.27
6 Rel. pos 0.1 0.12 33 0.0002 0.011 8.18 0.088 0.006 8.27
1 None 0.05 0.07 0.28 0.0004 0.005 7.93 0.81 0 8.75
2 None 0.36 0.17 1.67 0.0001 0.007 7.93 0.09 0 8.02
3 None 0.75 0.23 2.49 0.0001 0.01 7.93 0.09 0 8.02
4 None 0.32 0.16 3.44 0.0002 0.01 7.93 0.09 0 8.02
5 None 0.64 0.2 1.97 0.0002 0.007 7.93 0.09 0 8.02
6 None 0.58 0.2 3.36 0.0002 0.011 7.93 0.09 0 8.02

TABLE 1II: Scenario S1: ARMSE of the agents’ navigation states defined in Equation (1) and total execution time of different filter
steps (propagation, private updates and joint updates), processing relative position measurements between agent A; and the other agents
Aja,...6} Or not.
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