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Abstract—For Ultra-Wide-Band (UWB) based navigation,
an accurate initialization of the anchors in a reference coor-
dinate system is crucial for precise subsequent UWB-inertial
based pose estimation. This paper presents a strategy based
on information theory to initialize such UWB anchors using
raw distance measurements from tag to anchor(s) and aerial
vehicle poses. We include a linear distance-dependent bias
term and an offset in our estimation process in order to
achieve unprecedented accuracy in the 3D position estimates
of the anchors (error reduction by a factor of about 3.5
compared to current approaches) without the need of prior
knowledge. After an initial coarse position triangulation of the
anchors using random vehicle positions, a bounding volume
is created in the vicinity of the roughly estimated anchor
position. In this volume, we calculate points which provide
the maximal triangulation related information based on the
Fisher Information Theory. Using these information theoretic
optimal points, a fine triangulation is done including bias
term estimation. We evaluate our approach in simulations with
realistic sensor noise as well as with real world experiments.
We also fly an aerial vehicle with UWB-inertial based closed
loop control demonstrating that precise anchor initialization
does improve navigation precision. Our initialization approach
is compared to state-of-the-art as well as to an initialization
without the simultaneous bias estimation.

I. INTRODUCTION

For UAV localization, often a Global Navigation Satellite
System (GNSS) is used. But in areas where there is no
GNSS signal available, e.g. forest or indoor locations, some
other form of localization provider needs to be available.
This localization provider can for example be a set of
UWB modules. UWB is a communication technique which
operates in the RF (radio frequency) spectrum and as the
name implies, it operates on a large band of frequency. This
results in much more precise and less error prone distance
measurement than other e.g. ultrasonic based systems. The
position of a mobile robot can be calculated in a similar
fashion as it is done in GNSS systems. The position can
be computed through trilateration using at least three UWB
modules which are configured to be senders (also called
anchors). Similarly to the GNSS satellites for an accurate
estimation of the mobile robot, the positions of these anchors
have to be known as accurately as possible. Often, this is
measured manually but this can be very time consuming
and inaccurate, especially in wide areas and with low-quality
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Fig. 1: UAV used for real world experiments with computa-
tion board and UWB node.

beacons, in buildings with a large number of rooms, or in
areas where the anchors are hard to reach. Even though the
location measurement is accurate, biases in the signals may
introduce inaccuracies in the trilateration process.

Thus, the here presented approach not only focuses on
the precise anchor initialization without prior knowledge,
but also on the estimation of bias terms in the raw signal.
The goal is to place the anchors randomly in a room and
the mobile robot, in our case a UAV, initializes the anchor
positions automatically. In addition it calculates a linear bias
model with a constant offset term for the distance dependent
error of the UWB modules. The proposed initialization is a
two stage process. First, the UAV navigates to some random
points in space and records at each point a measurement
to the UWB anchor which’s position should be initialized.
After sufficient points have been reached an initial guess
of the position is performed. We leverage and extend the
approach presented in [1] with a modified least squares
approach to include the bias terms. The calculated position
and corresponding covariance matrix is used to calculate
an appropriate boundary volume which is used to construct
optimal points using the Fisher Information Matrix (FIM).
At these optimal points, the available information of the
range-related UWB measurements is maximised to archive
best trilateration results. With the information obtained by
the mobile robot at these optimal points a final estimation
of the position of the UWB anchor including the linear
distance dependend bias and constant offset is calculated
using the same modified least squares algorithm used for
the trilateration from the random points.



II. RELATED WORK

In GPS denied environments e.g. inside buildings, range
sensors are a popular choice for localization tasks. In [2]
several different indoor positioning systems and their algo-
rithms are examined. They found out that systems using
infrared, ultrasonic sound or UWB signals have the best
accuracy but infrared and ultrasonic sound suffer in non
line of sight situations. With these signals the error increases
while with UWB signals the accuracy stays approximately
the same even in non line of sight conditions. The authors
of [3] propose a UWB-IMU pose estimation system. The
system assumes known, fix UWB anchor positions and
is reliable under multipath effects and non line of sight
conditions. Ledergerber et al. [4] presented a localization
system using UWB transceivers with known positions for
robot localization. The system is also able to handle multiple
robots simultaneously.

There is a large body of work in the area of calibrating
(or initializing) positioning systems. The position of the
anchors have to be known as exact as possible to reduce
the localization error. Usually calibration is done manually
by measuring the exact position of the UWB anchors but
since this is an error prone and time-consuming procedure
and also not suitable in some scenarios we want to avoid
it whenever possible. Hol et al. [5] proposed a calibration
method for UWB receivers for indoor positioning. First
multiple UWB receivers are placed to stationary places.
The same number of transmitters are placed near to the
receivers. They acquire a dataset for this configuration. On
this dataset a nonlinear optimization is performed. Then a
transmitter is moved around the receivers and another dataset
was recorded. A second nonlinear optimization was done on
the second dataset with the positions obtained from the first
optimization as initial values.

Another approach to perform anchor initialization is de-
scribed in [6]. The goal of this paper is to provide a
initialization method for dynamic anchor setups. Range only
measurements are performed between mobile tag and fied
anchors. The proposed approach is apparently very robust
against multipath propagation because a RANSAC based
outlier rejection is used before the position candidate is
further refined by an Unscented Kalman Filter (UKF).

Another way to auto calibrate UWB anchors is to use
range information from a receiver and estimate the position
of the anchors. Therefore, the range-related information of
the anchors is maximized. For maximizing information a
popular tool is the FIM or its inverse which corresponds
to the Cramer-Rao Lower Bound (CRLB). Cardinali et al.
[7] used the Cramer-Rao Lower Bound on different UWB
signals to obtain the ranging accuracy of these signals. The
authors of [8] proposed an algorithm for optimal sensor
placement in 2D. By maximizing the FIM the optimal sensor
positions can be obtained in order to get the position of the
signal transmitters.

In our work, we extend the approach of [8] to 3D and
flip the problem set to determine the optimal positions

of the moving module to gather most information for the
triangulation of the fixed module(s).

In [6], the authors provide an initialization method for
dynamic anchor setups using only the range measurements
from the UWB modules. The authors apply a cascade con-
taining an outlier removal step through RANSAC with a
subsequent filtering process based on an Unscented Kalman
Filter (UKF). The double use of the same information in
the RANSAC and UKF step may lead to inconsistencies.
In addition, the selected positions for triangulation are on a
fix grid pattern and not chosen based on their information
content.

With respect to the state of the art, we improve the
initialization of the anchors’ position in 3D and include
signal bias terms to additionally improve subsequent state
estimators on mobile systems using the UWB anchors as
positioning system. In particular our contributions are as
follows:

o the extension from 2D to 3D space and flipping of
FIM/CRLB based optimal sensor placement methods
[8] for range sensing modules .

« FIM/CRLB definition for the problem set with extended
covariance models including distance dependency, bias
terms, and correlation between measurement positions.

« the extension to initialize several UWB anchors in real-
time with low computational complexity and improved
models including distance dependent bias and offset
terms without any prior knowledge.

o a detailed evaluation based on verified simulations and
realistic real experiments including a comparison (and
improvement) to a state of the art approach.

« an evaluation of the effect of the anchor initialization-
precision on the navigation precision when three UWB
anchors are used for on-board real-time UWB-inertial
positioning control of a UAV.

III. UWB ANCHOR INITIALIZATION PROCESS

A. Coarse initial position computation

Over the entire initialization process to compute the UWB
anchor positions in a 3D reference frame, we assume the
mobile robot, in our case a UAV, can estimate its own pose
in the 3D reference frame through other sensor modalities
(e.g. vision based, with GNSS signals, laser, etc). In our real
world examples, we use an Optitrack motion capture system.

To calculate the information content of a UAV position for
best UWB anchor initialization based on the FIM, at least a
rough estimate of the UWB anchor needs to be available. For
this coarse initialization, we fly the UAV to random positions
while gathering range measurements from the UWB node on
the vehicle to the anchor we want to initialize. We extend
the approach presented in [1] such that we can formulate a
linear least squares as shown in the following even with our
additional states including the distance dependent bias and
constant offset. The distance from the node on the UAV to



the anchor can be expressed as:
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where p = [ps, py. p-]7 describes the node position in the
global frame, ¢ = [¢., gy» q.]7 describe the position of the
anchor, d, the distance from the anchor to the origin of the
global frame. z is the distance between node and anchor
and d,, the distance from the node position to the origin of
the world frame. Assuming known node (i.e. UAV) positions
and no biases as done in [1], for each distance measurement
between node and anchor we can then formulate a modified
least squares problem as
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which is a set of linear equations in the form of Az = b
where the rows of A are a measurement at time ¢;. This
can be solved for the anchor position ¢g. Although UWB
sensors are said to be fairly robust against multi-path issues,
they show in practice a non-negligible distance dependent
bias and constant offset depending on the manufacturer. To
increase the accuracy of the triangulation results, we extend
the above distance model of Eq.(T)) with a distance dependent
bias $ and a constant offset v to better reflect the actually
measured distance z,,

Zm = Bz +7 “4)

Following the idea in [1], we design two additional auxiliary
elements 3% and v, and modify the previous distance term
d3 in Eq. to include the new bias terms
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solving this linear set of equation in the form of Az = b
allows then to solve for the anchor position ¢ and the
two bias terms 3 and +. The entries of Eq.(5) are based
on the randomly chosen UAV positions. In practice, this
system of equations is usually not well posed yielding poor
solutions. Nevertheless, the coarse direction and distance
can be inferred as an initial guess to apply our information
theoretic approach for optimal UAV position selection in a
refinement step as detailed below.

B. FIM based optimal points calculation

The goal is to find the optimal positions where the UAV
(i.e. the UWB node) has to be placed in a limited volume to
best triangulate a fix UWB anchor in the global coordinate
frame. Until this anchor is triangulated, we assume the UAV
position is known within a bounded volume (e.g. through
fusion of IMU and a visual fiducial in the volume where the
fiducial is in the field of view, a traking system, an area

where GNSS signals are available, etc). In order to find
the optimal sensor placement, the corresponding Cramer-
Rao Lower Bound (CRLB) or FIM is considered [9]. The
CRLB expresses a lower bound on the variance of estimators
of a deterministic parameter. By achieving this bound the
unbiased estimator is said to be (fully) efficient. The FIM
on the other hand captures the amount of information from
the obtained measured data of an unknown parameter which
gets estimated. Under the regularity conditions the variance
of any unbiased estimator is at least as high as the inverse
of the FIM and the following inequality holds:

Cov{f} > FIM(0)~* = CRLB(0) (6)

where 6 is the variable of the estimation problem and where
Cov{f} = E {(é —0)(6 - a)T} )

Cov{é} corresponds to the covariance matrix of the esti-
mated parameters. In the following, F'IM () (abbreviated
as FIM) is defined as

FIM(0) = E {(Volog pe(2))(Valog ps(2))"}  (8)

where Vglog pg(z) denotes the gradient of the log-likelihood
function with respect to the unknown parameter . By
selecting a proper estimator the minimization of the CRLB
or the maximization of the FIM leads to a decrease of the
uncertainty when estimating the parameter.

1) Fisher Information Matrix for UWB anchor initial-
ization: Let 7 denote the global reference frame and let
q = [z, qy, -7 be the position of the UWB anchor which’s
position needs to be refined in Z. Furthermore, let the
position of the UWB node mounted on the UAV, assuming
no or known offset between IMU and mounted UWB node,
in Z be pi = [Pix, Piy, Piz]” with i =1,2,...,n the i — th
position of the UAV where a measurment was taken. The
distance between the UWB anchor and the ¢ — th position of
the UWB node on the UAV is then given by d; = ||q¢ — pil|,
where || - || denotes the euclidean norm. The, now noisy,
measurement model from Eq. @) is then given by

zm; = B(|lg—pill+wi)+y = B(di+wi)+y,i=1...n (9)

where z,,, is the i — th distance measurement and w; as
distance dependent additive noise. Usually it is assumed that
the measurement noise is additive zero mean white Gaussian
noise with w; ~ N(0,C;(d;)) and C; = o*(I+d;)?, where [
is the identity matrix (i.e. all noise sources are independent).
In vector notation we have zZ,, = [Zm,Zmay---» zmn]T
which corresponds to the vector containing the distance
measurements, the vector of the actual ranges is d =
[d1,ds,...,d,])T and the corresponding measurement noise
vector is w = [wy,ws, - . .,wy,]T. In order to obtain the Fisher
Information Matrix we have to calculate

FIM0)=E {(Vqlog Pq(2m))(V4log pq(zm))T} (10)



where p,(z) is the likelihood function for the target posi-
tioning problem which is given by
Pq(2m)) =

1 1
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For general Gaussian noise there is also a general expression
of the Fisher Information Matrix [10]. For the estimation of
the UWB module this expression is given by Eq. (12).

FIM(q)x = ({)zg;,(j) C(q)—ﬁquEQ)
1 1, ,0C(q) 1, OC(q)
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with the indices k and [ representing the three coordinate
axis x, y, z respectively. Note that with our extension to use
a distant dependent bias term, each covariance matrix C; per
measurement is dependent on the anchor position g. Thus,
the second term in Eq. 12| needs to be considered as non-zero
term.

2) Optimality criteria: There are several optimality cri-
teria for the Fisher Information Matrix to maximize the
gathered information. Some of them are described in [11]:

e D-optimum design: the determinant of the FIM gets

maximized: | argmax |FIM(0)] ).
geR™

o A-optimum design: the trace of the inverse of the FIM

gets minimized: | arg min tr (FIM(G)l))
Daen

o E-optimum design: the smallest eigenvalue of the FIM

gets maximized: | arg max gn%n eigv (FIM(9))
ERn

For this paper the D-optimum design is chosen. It mini-
mizes the volume of the multi-dimensional uncertainty ellip-
soid for the parameters to be estimated for a given model.
The A-optimum design minimizes the trace of the CRLB
which results in minimizing the average variance of the
estimates. The E-optimum design maximizes the smallest
eigenvalue of the Fisher Information Matrix which means
that the length of the largest axis of the uncertainty ellipsoid
gets minimized. The main advantage of D-optimum design
is that it is scale invariant in the parameters and it is also
invariant to linear transformations. A-optimum design and
E-optimum design are not invariant to these transformations.
The disadvantage of D-optimum design is that if no global
optimum is found the obtained D-optimum design can be
erroneous. This is due to the fact that the uncertainty ellipsoid
can get minimized in one dimension while in the other
dimension we do not have information at all. In other words,
the uncertainty ellipsoid is very small in on direction while it
is very large in the other direction. Due to the computational
constraints we have on the UAV and the benefit of the D-
optimum of not requiring to compute a matrix inverse, it
is, however, still our favorite choice; the E-optimum design
needs to compute the eigenvalues of the FIM and the A-
optimum design needs to inverse the FIM.

Under certain assumptions, the maximization of the FIM
determinant could be solved analytically. As an example [12]
assumes that the measurement points are only on a circle and
the source is in the middle of the circle. This gives an optimal
sensor placement when the sensors are placed in 27 i/n; i =
1,2,...,n angles around the source on the circle. With this
approach the number of sensors placed around the source can
be arbitrary. In [13] this approach gets extended to 3D. Again
assumptions are made in order to get an analytical solution.
The sensors are now placed on a sphere and the source is
placed in the middle of it. This sphere gets intersected with a
hyperboloid. The sensors are then placed on the intersection
area. Since we do not want to make any assumption on the
position of the range module and the measuring point e.g.
we want to place the measurement point freely in a certain
area and the source can be placed anywhere in a certain
location, we calculate the maximum of the FIM determinant
numerically using the previous coarse initialization of the
anchor as a rough estimate of g. For simulation purposes the
Global Optimization Toolbox of MATLAB is used.

As a toy example to demonstrate the functioning of our
approach, in Fig. 2] we assume that the UAV is only allowed
to move in a volume of 1 x 1 X 1m and we would like
to achieve best UWB anchor-position initialization by only
flying the UAV to five positions. Furthermore, we assume
distance dependent covariance matrix. The true location of
the UWB anchor to be estimated is set to [1.5,1,0]7m. As it
is intuitive, the optimal positions for the UAV to fly to within
the allowed volume are at the corners of the cube closest to
the anchor.
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Fig. 2: Optimal measurement points for 5 measurements
and 1 UWB anchor at [1.5,1,0]7 for a distance dependent
covariance matrix.

This toy example also highlights the low sensitivity of
the selection of the optimal points in the volume with
respect to the UWB anchor position: Already a rough initial
direction and distance of the anchor with respect to the
volume is suffcient to converge to the depicted result in
Fig. 2] Or in other words, to make the optimal points be
placed at different locations than depicted in Fig. 2] the true
anchor position needs to drastically change. Furthermore, on
distance independent covariance matrices, [14] proposed to
transform the FIM to spherical coordinates to emphasize that
the FIM depends on the angle between the range vectors.



Adding the distance dependent element essentially adds the
requirement “closer is better” — again without the need of
very precise initial position information of the anchor. This
low sensitivity of the optimal point placement with respect to
the anchor point is in favor our our coarse initialization still
being sufficiently accurate to generate informative points in
a volume for the subsequent anchor-position refinement.

C. Distance dependent and position correlated covariance

The above toy example included the constraint that no two
positions are allowed to be selected at the same locations.
Consider again the above mentioned distance dependent
covariance matrix C; = o2(I + d;)%. One can see that it
depends explicitly on the distance between the anchor and
the measurement points (i.e. on d; = ||¢ — p;||). When the
determinant of the FIM gets maximized, all positions of the
measurement points tend to collapse over the range module
since the distance dependent measurement error gets reduced
as much as possible. This means that we have to define
constraints for the optimization algorithm. In reality, and
given the requirement of a base-line for later trilateration
of the anchor position through use of the UAV positions, the
measurement points are more correlated the closer they are to
each other. This has to be considered in the covariance matrix
for the FIM. For the correlated covariance matrix the squared
exponential covariance is used. It is defined as follows per

element:
(Pz‘ — p‘)2
CCi,j = 02 erp ———d ) (13)

212
where [ is the length-scale. The length-scale indicates the
smoothness of the function. Large length-scale values char-
acterize slow changing functions while small values charac-
terize functions which can change quickly.

By combining the distance depended covariance matrix and
the correlated covariance matrix one obtains

C=0*I+6(d)*+C, (14)

D. Refined anchor positioning and bias calculation

Using this definition of the covariance matrix in the
proposed D-optimum FIM optimizer, we take the UAV
positions correlation into account and can ensure well spaced
measurement points in the defined volume. Once the optimal
positions are defined in the volume we re-solve Eq. [3] for the
refinement of the anchor position and at the same time for
the bias terms. The anchor position and bias terms are later
used in the closed loop tightly coupled UWB-inertial based
control of the UAV.

IV. RESULTS
A. Simulation results

Using the process described in Section we simulated
UWB range measurements to different locations using our
distant dependent bias model from Eq. (9) with 3 = 0.0049
and v = 0.0951. These values result from static tests with
real hardware. For the standard deviation of the added noise,

we did a sweep from o starting at 0.02m to 0.2m in 0.02m
steps. Each o step consists of 200 individual simulation runs
in order to obtain statistically relevant results. Fig. [3| shows
the results. We noticed that our bias compensation signif-
icantly improved the results: for e.g. ¢ = 0.1m the mean
initialization error without bias consideration was 0.29m
whereas it dropped to 0.13m using our model including the
bias terms. Similarly, the error dropped from 0.58m to 0.23m
for ¢ = 0.2m with increasing improvements at higher noise
values.
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0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22
o [m]
Fig. 3: Error statistics for our proposed bias compensated
UWRB anchor position initialization in Eq. (3)) versus the one
proposed in [1] without bias compensation in Eq. (E[)

In Fig. ] we show the complete initialization procedure
showing the true position of the anchor (red triangle), the
randomly selected initial triangulation points (green Xx”)
with the coarse initial anchor estimation resulting from using
these positions in Eq. (B) (green triangle), the subsequently
selected volume within which information theoretic optimal
triangulation positions are chosen (blue ”x”), and the refined
anchor position estimation based on these optimal position
using again Eq. (3) (blue triangle). As a comparison and
demonstration of the effect of taking our suggested bias com-
pensation into account, the figure also shows the triangulated
anchor position using the optimal points but Eq. (3) without
modelling the bias (black triangle).

B. Real world results

We further performed a series of real experiments to
demonstrate the use of our approach with real hardware and
even for subsequent UWB-inertial closed loop control of
a UAV. For all real experiments, we use an Asctec Hum-
mingbird quadrotor (Fig. [T) equipped with a flight computer
(Odroid XU4) and a UWB module (DecaWave TREK1000).
Furthermore, three UWB modules (DecaWave TREK1000)
are placed arbitrarily in the environment. The UWB distance
measurements have a standard deviation of 0.09m. We use an
Optitrack motion capture system to obtain the UAV position
for all our process steps. We compare our real world results
to the ones reported in [1] where the authors move a UAV
on random trajectories to add range measurements whenever



Fig. 4: Our proposed initialization procedure first using
random triangulation points (green x) for coarse anchor
initialization (green triangle) and subsequently for the FIM
optimization to find optimal triangulation points (blue x)
within a volume for position refinement (blue triangle). Also,
the consideration of bias terms has an important positive
performance impact (blue versus black triangle). Ground
truth is the red triangle.

they improve the condition number of the matrix in Eq. [3]
consisting of previous measurements. New measurements are
added up to a maximum number of measurements or until a
certain quality of the matrix’ condition number is reached.

In a first experiment, we performed 120 initializations
as reported in [1]. The mean initialization distance error
using our bias compensated method in Eq. 3] is 0.0984m =+
0.0401m. Not using the bias compensation but with our
suggested method on FIM based triangulation position opti-
mization we achieve a mean initialization distance error of
0.1417m=+£0.0344m. In contrast, the random approach based
on the matrix condition number without considering biases
in [1] reports an error of 0.3444m £0.1326m (over 40 runs).
Our approach shows an improvement by a factor of nearly
3.5. Fig. [] shows the initialization results of our approach
with bias consideration.

X initialization error
®  mean
standard deviation

X X RO0MON XRBOBBEIONBIOI )] X WX X X X
L I I I

0 0.05 01 015 0.2 0.25 0.3
position error [m]

Fig. 5: Error statistics over 120 runs of UWB initialization

Additionally two more experiments where performed, a
hovering test and an trajectory tracking test using a tightly
coupled UWB-inertial EKF based on the anchor position
initialized by our proposed method. Ground truth is optained
by our Optitrack system. The mean tracking error for the
trajectory following was 0.19m with a standard deviation of
0.0997m while flying 20 times a mission with 18 waypoints
(Fig. |§[) In the hovering test, the UAV was sent to the
height of Im and was hovering there for 60 seconds. We

Fig. 6: Flying 20 times through 18 waypoints using a
tightly coupled UWB-inertial EKF based on the anchor
initializations of our proposed method. Ground trugh (blue)
is obtained from an Optitrack system.

used five different pose estimators on the UAV for closed
loop control: i) Optitrack as a reference (ref), ii) UWB
measurements with correctly initialized anchor positions but
without a bias model (u-gt), iii) UWB measurements with
estimated anchor positions using our FIM optimization but
without a bias model (u-est), iv) UWB measurements with
estimated anchor positions using our FIM optimization and
proposed bias model (u-bias), v) UWB measurements with
estimated anchor positions using the approach in [1]. Tab. [
shows the RMSE for all setups. For the method proposed in
[1] and with our best tuning knowledge applied, we still got
to an RMSE of 0.713m. Unfortunately, the authors in [1]
did not report the performance purely navigating based on
UWB-inertial estimation in their work. Interestingly, all other
UWB based setups show similar performance despite the
improved UWB positioning and bias compensation through
our method. With an RMSE of over 1cm even with Optitrack
measurement, we assume that this is due to the low controller
performance of the UAV shadowing estimation accuracy.

u-est
0.029

ref u-gt
0.012 | 0.025

u-bias [1]
0.028 | 0.713

RMSE [m]

TABLE I: Results of the hovering experiment

V. CONCLUSION

In this paper, we addressed the problem of accurate
UWB anchor initialization without prior knowledge using
the FIM for information-optimized triangulation-position
selection and using a distance dependent bias model for
the UWB measurements to improve the final triangulation
accuracy. Our approach is based on two steps where we
first use randomized triangulation points for a coarse anchor
initialization and bias estimation. These values serve then for
a FIM based optimization to generate optimal triangulation
points used in a refinement step for anchor position and
measurement biases. The result has a 3.5 times lower position



error compared to state of the art and reaches an anchor
initialization accuracy of 9.8cm. The proposed approach can
be applied sequentially or as a lump-sum optimization to
multiple anchors to use their initialized positions for subse-
quent UAV flight based on on-board, real-time UWB-inertial
state estimation. We showed real flight following a trajectory
with an RMSE of 19cm and a hover performance of under
3cm RMSE greatly superseding previous approaches.
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