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Abstract— Monocular Visual-Inertial Odometry (VIO) has
become ubiquitous for navigation of autonomous Micro Air
Vehicles (MAVs). Yet, state-of-the-art VIO is still very failure-
prone, which can have dramatic consequences. To prevent this,
VIO must be able to re-initialize in mid-air, either during a free
fall or on a constant velocity trajectory after attitude control
has been re-established. However, for both of these trajectories,
the visual scale cannot be observed with VIO batch initializers
because of the absence of acceleration change. We propose to
use a small and lightweight laser-range finder (LRF) and a
scene facet model to initialize vision-based navigation at the
right scale under any motion condition and over any scene
structure. This new range constraint is integrated into a visual-
inertial bundle-adjustment initializer. We evaluate our approach
in simulation, including robustness to various parameters, and
demonstrate on real data how this approach can address mid-
air state estimation failure in real-time.

I. INTRODUCTION

Autonomous, safe, and robust navigation is crucial for
a micro air vehicle (MAV). In-flight pose estimation must
provide accurate and robust poses for flight controllers to
perform ever more complex maneuvers. Many different ap-
proaches exist, ranging from multi-sensor to minimal-sensor
set state estimation. Although these approaches differ, their
common ground is the need for an initial state.

Especially minimum sensor suite approaches, i.e., visual-
inertial odometry (VIO) algorithms, are constrained on their
estimator initialization. Most state-of-the-art VIO rely on a
specific scenario or motion to start their estimator correctly.
However, this limits the level of MAV autonomy since the
scenario or motion might be unknown when (re-)initializing.
Particularly, fully-autonomous systems should be able to
initialize in all airborne scenarios, which are
(a) excitation motion,
(b) constant velocity motion, including hovering (no mo-

tion), and
(c) free-fall motion.

Excitation motions are perfect for initialization, and nearly
all state-of-the-art VIO algorithms rely on excitation in their
initialization technique. Similarly, filter-based algorithms can
cover hover or static initialization. These scenarios also
refer to the most common initialization motion, especially
when performing manual or velocity-control-based takeoff.
Nevertheless, constant velocity and free-fall initialization can
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Fig. 1. Illustration of the proposed mid-air initialization algorithm for
constant velocity flights. The 3D-structured scene is captured by a downward
looking camera. With its generated images, features can be triangulated and
divided into subgroups of triangles. Then a laser-range finder (LRF) can
be used to metrically scale the Delaunay triangulated structure and camera
poses in a non-linear optimization. Further, in combination with an IMU,
the full MAV navigation states can be recovered in a linear way, providing a
full onboard initialization. Please note that the environment is not assumed
to be planar (i.e., it can be structured).

occur in mid-air deployment or mid-air recovery scenarios.
However, traditional VIO frameworks cannot handle these
initialization trajectories. Hence, additional environment in-
formation is needed to provide a full state visual-inertial
initialization for motion (b) or (c), removing the autonomy
of such approaches.

Therefore, this work aims to provide an initialization
algorithm that is
• Motion independent: Our proposed framework can

initialize in any non-zero motion, regardless of being
excitation, constant velocity (as illustrated in Fig. 1), or
free-fall motions.

• Computationally fast: Analysis of our proposed ap-
proach showed it is able to run in real-time onboard an
embedded platform to provide fast initialization under
time-limited motions (e.g., free-fall).

• Free of prior knowledge: Typically, initializers take
advantage of prior knowledge, e.g., planar ground,
height, level attitude, or similar. Our proposed approach
works without any prior information on the motion or
environment.

This work is structured as follows: Sec. II will examine
state-of-the-art initialization techniques, their limitations in
the in-flight reference scenarios, and why range measurement
can lift these limitations. Sec. III presents our initialization



algorithm, that can initialize in any mid-air scenario. Sec. IV
takes a closer look at the influence of noisy measurements on
our proposed algorithm, and Sec. V presents and discusses
results on real-world constant flight experiment, as depicted
in Fig. 2.

II. RELATED WORK
A. Visual-Inertial Odometry

State-of-the-art visual-inertial state estimation frameworks
comprise many different methods and algorithms. Neverthe-
less, such frameworks are usually grouped into two main
algorithm categories: filter and optimization-based [1].

Filter approaches typically represented with a variant
of extended Kalman filter (EKF) [2]. Filter based visual-
inertial estimators are able to quickly propagate the state
and its covariance and provide information needed for flight
control using high-frequency information from the inertial
measurement unit (IMU). With the IMU typically modeled
as input for the system dynamics and therefore generating
growing uncertainties over time, a camera sensor can provide
a pose update to correct eventual drift and to decrease the un-
certainty. Filter approaches shine by their ability to efficiently
retain past information through marginalization implicitly in
the error covariance matrix, allowing estimations without the
need for time-consuming iterative optimizations. Filter-based
frameworks can be divided into tightly and loosely coupled
estimators [3]. Loosely coupled estimators [4], [5] perform
the visual pose calculation independently from the state
update and include a metric scale in their state definition.
In comparison, tightly coupled systems use the include the
tracked features directly in their dynamics to update and
correct the state [6], [7], [8], [9], [10].

Non-linear optimization-based algorithms iteratively per-
form a least-square approach to converge to a state es-
timate [3]. The most commonly used optimization is the
bundle-adjustment (BA) that minimizes the re-projection
error of tracked features. The BA can be used for vison-only
systems such as ORB-SLAM [11], SVO [12], or fused with
inertial measurements as the Robust and Versatile Monoc-
ular Visual-Inertial State Estimator (VINS-Mono) [13] or
Open Keyframe-based Visual-Inertial SLAM (OKVIS) [14]
showed. Their advantage is that they can approach with
sufficient iterations they can achieve better estimation qual-
ity. However, they require translation to triangulate a map.
Further, they are computationally more costly since they
optimize over past measurements. This problem has been
mitigated in recent years as onboard processing power has
increased, and through marginalization of past information.

As both nonlinear filtering and optimization approaches
find the local optima, they are dependent on an accurate
initialization of the state vector in the vicinity of the global
optima.

B. Initialization
Robustness and performance of both filter- and

optimization-based algorithms depend on the quality
of the initialization routine. The former require an initial
pose and velocity state estimates, which can be zero motion
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Fig. 2. Real-world experiment for initializing the proposed framework
under a constant velocity flight. The initialization is triggered at (pink point),
and the next 10 image frames (i.e., 0.33 s) are taken for the initialization
window (orange estimates). After computing the initial navigation states
(after approx. 0.75 s), the estimator VINS-Mono is initialized (red point)
and continues with a visual-inertial navigation (blue estimates). The norm of
the velocity throughout the initialization phase, computed with the position
derivatives from the motion capturing system, are shown in the lower plot.

(assuming MAV starting on the ground before take-off).
This estimate has to be relatively close to the actual value
in order for the filter to converge. On the other hand,
optimization-based approaches need an initial map and
visual scale.

As an example of mid-air self-initialization without partic-
ular excitation motions, several studies have been presented
that address the throw-and-go (TnG) problem under specific
assumptions: [15] used height assumption to provide an
initial estimate to their filter-based estimator, whereas [16]
required an attitude estimation before the fall, flat ground
surface, and horizontal translation to triangulate the initial
structure and derive the metric scale for their optimization-
based estimator. Further, in our previous work [17], we
managed to initialize in a free-fall by aligning the magnitude
of visual acceleration to the magnitude of gravity.

These free-fall initialization approaches are limited to that
exact scenario and prior knowledge or assumptions and
cannot be applied to horizontal motion at constant veloci-
ties. Nevertheless, IMU-pre-integration [18] can provide an
opportunity to unify the mid-air self-initialization approaches
in one framework and remove pre-initialization assumptions.
E.g., methods with visual-inertial optimization in initializa-
tion, such as VINS-Mono, OKVIS, or OrbSLAM3 [19], rely
on the IMU pre-integration to generalize their initialization
algorithm to all visual-inertial observable motions.

We selected VINS-Mono as state-of-the-art algorithm to
compare our approach against because of both maturity
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Fig. 3. The proposed Range-Visual-Inertial initialization framework. Images are used to derive the initial camera poses using the Fundamental or
Homography matrix method (Sec. III-A). First the scene structure from motion (SfM) is derived using a perspective-n-point (PnP) approach (Sec. III-B).
Second, this structure is scaled metrically with the range measurements received by the LRF (Sec. III-C). Then, to reduce the impact of measurement noise
a range-visual bundle-adjustment (R-BA) is performed (Sec. III-D). Finally, the range-visual poses are aligned with the pre-integrated IMU measurements,
to derive the globally aligned states (Sec. III-E).

and repeated good initialization performance in different
scenarios. Taking a closer look on VINS-Mono’s four step
initialization algorithm [20], this approach first estimates
the initial pose and structure using camera trigonometry,
given a initialization window of N keyframes. Then a
perspective-n-point (PnP) is performed to derive all other
keyframe camera poses in the window and triangulate all
remaining matches to form a complete structure. This struc-
ture and camera poses are then used in a visual BA to
minimize measurement noise and triangulation errors, and
improve the estimated poses. Given the first keyframe set
as visual camera coordinate frame C, and given the body
(or IMU) coordinate frames k = Bk for each image at
time tk, all initialization window position and rotations,
Cpk and CRk, are derived in the BA. At the last step,
VINS-Mono performs a linear least-square (LLS) to linearly
align these visual with the inertial IMU measurements.
The latter are pre-integrated to derive the frame-to-frame
position and velocity, kα̂k+1 and kβ̂k+1, respectively. Equ. (1)
describes the LLS that solves for the remaining state vec-
tor kx̂k+N =

[
kv̂T

k+1, . . . , k+N−1v̂T
k+N ,

CĝT, λ
]T con-

taining the camera velocities expressed in the body frame,
gravity vector expressed in the initial camera frame Cĝ,
and metric scale λ. Further, δtk is the frame-to-frame time
difference, ∆Cpk = Cpk+1−Cpk the frame-to-frame position
difference from the BA, and kRk+1 the body frame-to-frame
rotation derived from IMU pre-integration.

kx̂k+N =
(
kHT

k+N
kHk+N

)91
· kHT

k+N · kzk+N (1)

with the frame-to-frame measurement matrix and vector

kzk+1 =

[
kα̂k+1 − BpC + kRk+1

BpC
kβk+1

]
(2)

kHk+1 =

[
−I3 δtk 03

1
2

kRC δt
2
k

kRC∆
Cpk

−I3 kRk+1
kRC δtk 03

]
(3)

However, this final step already shows the sensor limi-
tations of this visual-inertial algorithm using a IMU pre-
integration and visual optimization method. First, one can
show [21] that under constant velocity motions, the Gram-
mian of the measurement matrix kHk+N is 0. Hence the

matrix kHT
k+N

kHk+N is singular and the LLS not solvable
[22]. Similarly, in a free-fall motion, this linear formulation
yields to the measurement vector kzk+N being 0. As a result,
the estimation of the LLS Equ. (1) can only yield a state
estimate of kx̂k+N = 0, which differs from the ground
truth. Hence, in our work’s two given reference scenarios,
the visual-inertial approach cannot yield a correct initializa-
tion. This also corresponds to previous work performed on
visual-inertial closed-form solution [23] and visual-inertial
navigation system (VINS) [24] unobservability analysis. For
this reason, and to the best of our knowledge, there are
no previous works attempting to initialize a VINS system
in a constant velocity flight. Therefore, in the next section,
we will present a range-visual-inertial approach that keeps
this computationally efficient structure and can mitigate the
visual-inertial unobservable motions.

III. RANGE-VISUAL-INERTIAL INITIALIZATION

Given VIO unobservability issues discussed in the pre-
vious section, we present a new algorithm extending the
visual-inertial initialization with a range sensor. In previous
work [25], we already showed the improvements range
measurements can bring to a visual-inertial filter framework.
With our current approach, we extend the VINS-Mono with
the ranged facet constraints. Therefore, we keep the general
structure of VINS-Mono’ initialization algorithm and extend
it with the additional range sensor, which accounts for the
new scene distance information, to a five-step algorithm as
shown in Fig. 3.

A. Keyframe Selection and Initial Structure
The keyframes are selected based on a baseline criterion of

[26]. If the baseline after accounting for rotation between the
current image and the last keyframe exceeds a threshold thb,
the current frame is selected as the next keyframe. Further,
feature tracking takes place on a frame-to-frame basis with
consistent tracks developed as new frames appear.

Initially, a structure from motion (SfM) is created using the
newest and oldest keyframes that exceed a baseline thresh-
old thb. This threshold is needed to account for hover-like
motions. Then using the pose recovery criterion provided by
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Fig. 4. The plane spanned by a Delaunay triangle which the LRF
measurement intersects {WF(1),WF(2),WF(3)} is used to to derive the
estimated range iẑr from the SfM. This estimate is then compared to the
LRF distance measurement iz̆r to derive the metric scale for the structure
and camera poses.

OrbSlam [11], the initial transformation is derived using the
Fundamental or Homography matrix in the 5-point or DLT
algorithm, respectively. This provides more flexibility for
initialization scenarios, as it accounts for planar or structured
environments. This differentiation is especially needed for
downward-looking cameras, since their field-of-view more
likely covers only the ground plane when flying at a low
altitude.

B. Full Structure and Camera Poses

The other N−2 camera poses are derived using a PnP ap-
proach. First, all transforms from the initial camera pose Ck
to all other camera poses Cj , 0 < j < N − 1, j 6= k are de-
rived in a forward-PnP. Further, any missing feature matches
are triangulated. To decrease the transform calculation error
between camera frames with a large baseline, a similar back-
ward-PnP is performed. As a next step the newest camera
pose Ck and all other camera poses Cj , N − 1 > j > 0, j 6= k
are used. Again all previously untriangulated feature matches
between two image frames are triangulated. This vice-
versa PnP is chosen for two reasons: First, this increases
the number of triangulated features in the structure, which
increases the amount of information available in the later
bundle-adjustment stage. Second, the image overlap between
the initial keyframe k and any other keyframe cannot be
guaranteed. This approach tries to mitigate this issue by using
the newest frame N for the transform calculation.

C. Structure Scaling

Camera only triangulation suffers from scale ambiguity.
Therefore, an additional sensor is needed to scale the re-
sulting structure of the previous step metrically. In most
scenarios, the onboard IMU provides sufficient information
to do so. However, in the given reference scenarios, an IMU
will not yield enough metric scale information. Therefore,
an additional sensor, the laser-range finder (LRF), is added
to the system to provide single distance measurements at the
camera rate. This range is then used to scale the structure
initially.

This scaling approach follows the one proposed by
Ref. [26], which models the surface structure and the range
estimate as a function of the current states and measurement.
However, at this point in the initialization, no state estimates
are available. Therefore, only the raw, scalar distance mea-
surements iz̆r are used.

iẑr = iẑr ·
uT
ri · n

uT
ri · n

=

(WpCF2
−WpCi

)T · n
uT
ri · n

(4)

with

n =
(WpCF1

−WpCF2

)
×
(WpCF3

−WpCF2

)
(5)

All tracked features from the initial triangulation frames are
grouped in triangles using the Delaunay triangulation [27].
The triple of features in which the range measurement falls
is selected, and its range is derived in camera frame using
Equ. (4), with a visual representation shown in Fig. 4. This
approach assumes a local flatness of the plane spanned by
the selected triangle, an assumption that holds given enough
tracked features.

Then in Equ. (6) the derived plane depth is compared to
the range measurement to derive the metric scale s. This
scale is then used to scale the camera poses and resulting
structure metrically.

s =
iẑr
iz̆r

(6)

Please note that this derived scale is subject to the range
sensor’s measurement noise, feature tracker implementation,
and violation of the triangle plane real-world flatness. Hence
the derived scale might be error-prone. Consequently, the
next step performs a range-visual optimization to minimize
this initial scale error.

Further, one could argue that this scaling step can be
performed before the PnP. However we chose to do this
after the PnP for two reasons: First, the initial structure (A)
is error prone and is minorly optimized through the PnP
(B). Secondly, simulation analysis showed that scaling the
structure before the R-BA (D) yields best initialization results
overall.

D. Range-Visual Bundle-Adjustment
All sensors used in the above steps are subject to measure-

ment noise. Therefore, we perform a range-visual bundle-
adjustment (R-BA) optimization to reduce noise-induced
measurement errors. The R-BA extends the standard bundle-
adjustment with an additional term in the cost function
for the LRF measurement. This addition is necessary, as
the initial range measurement used for the structure scaling
might be noisy and thus slightly wrong. However, adding the
additional cost to the optimization reduces the impact of the
assumed Gaussian white noise on the range measurement.

iP is the i-th image projection matrix used to project the
j-th 3D-feature F(j) onto the image plane. It is selected
based on the criterion discussed in Sec. III-A. if (j) is the



corresponding normalized pixel measurement in the i-th
image. With this, the cost function to be minimized becomes

arg min
iP,F(j)

N∑
i=0

( ∣∣iz̆r − iẑr
∣∣+

M∑
j=0

d
(
iPF(j), if (j)

))
. (7)

E. Bias Estimation and Inertial Alignment
The IMU bias estimation from VINS-Mono is kept, which

estimates the gyroscope bias using the IMU pre-integration
first presented in Ref. [18]. Further, the initial acceleration
bias W b̂a = 0d m s−2 is used. Several state-of-the-art visual-
inertial estimators have shown that they can handle an initial
zero acceleration bias estimate and converge to the ground
truth [5], [13].

The remaining initial states including only the camera
frame velocities and the gravity direction, are estimated in
a LLS estimation using the metrically scaled camera poses
from the previous step. The frame to frame measurement
matrix and vector for these remaining states are

kzk+1 =

[
kα̂k+1 − BpC + kRk+1

BpC − kRC∆
Cpk

kβk+1

]
(8)

kHk+1 =

[
−I3 δtk 03

1
2

kRC δt
2
k

−I3 kRk+1
kRC δtk

]
(9)

In contrast to the VINS-Mono formulation (see Eqs. (2)-
(3)) the new full measurement matrix kHk+N ∈ R4N×(6N+3)

matrix only needs three camera poses to become invertible
and the states therefore observable. Further, regardless of
the scenario, the measurement vector is guaranteed to be
non-zero, eliminating the possibility of the trivial solution in
constant-velocity or free-fall scenarios.

IV. SIMULATION TESTS

Initially, we investigate the performance of the proposed
algorithm under the influence of standard measurement
noise. Therefore, we generated range, feature, and inertial
data in a point-based simulation under a constant velocity
motion with Wv0 =

[
1 1 0

]T
m s−1. All sensor noises

are assumed to be white Gaussian, and are set to values
representative of the sensors listed in Sec. V. We then
evaluated the initialization algorithm on 100 independent
Monte-Carlo runs.

The results of this Monte-Carlo simulation are displayed
in Fig. 5. This figure shows the mean and standard deviation
of the norm of the error in attitude, position, and velocity
throughout the window. As can be seen, for all three states,
the error norm is low. Especially the small estimated velocity
error shows that this approach can be used to initialize a
visual-inertial estimator near the optimal solution.

Furthermore, we performed various sensitivity tests with
simulated data on different parameters such as (i) fea-
ture tracking pixel noise, (ii) distance measurement noise,
(iii) number of keyframes in the initialization window,
(iv) number of tracked features and required baseline for
keyframe selection, and (v) planar and structured environ-
ments. From these tests we concluded that our algorithm
performs as expected independently of the environment, with
10 keyframes in the initialization window, and with 100−200
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Fig. 5. Monte-Carlo evaluation of the proposed algorithm with
100 independently simulated data runs with constant velocity flight of
Wv =

[
1 1 0

]T m/s and a flight height of 1 m. This result shows
the mean and standard deviation boundaries (1σ boundary) of the error for
each keyframe in the initialization window. For all runs the window was
set to 10 keyframes at an image rate of 30 Hz. The position and velocity
errors throughout the initialization period is low enough to initialize a visual-
inertial estimator.

tracked features. The authors refer to [21] for a more detailed
simulation analysis and to [28] for a stress test of the
facet assumption. Further, this evaluations showed that the
optimization can mitigate measurement noise if its standard
deviation is below 3 px for the features and 10 % of the flight
height for the range measurement.

V. EXPERIMENTS
A. Experimental Setup

The experiments were carried out on an AscTec Hum-
mingbird quadrocopter. Sensors included the internal IMU
of the Hummingbird, a Matrixvision Bluefox mvBlueFox-
MLCw camera with 640 px× 480 px resolution, and a
Garmin Lidar Range v3. Ground truth for all flights was
recorded with an Optitrack motion capture system. The
algorithm was implemented in C++, as an extension of
the open-source version of VINS-Mono using the Ceres
Solver [29] for the R-BA. It ran on OdroidXU4 under Ubuntu
18.04 and ROS melodic in SkiffOS [30].

In our test, the MAV was commanded to a constant
velocity flight of 0.5 m s−1 using the Optitrack pose as
reference input for the flight controller. Although inertial
attitude control would be more representative of an actual
mid-air re-initialization scenario, attitude and velocity control
with motion capture was deemed safer to avoid a crash in
the limited lab space. The constant velocity is representative
of a MAV applying constant thrust and controlled to a
level attitude through an IMU after a VIO failure. The
initialization algorithm was started on board in real time
using a window of 10 image frames with corresponding
LRF measurements. The initial state estimate was then used
to start the VIO navigation framework VINS-Mono. Once
initialized, the reference input of the controller was switched
from motion capture to VINS-Mono to demonstrate mid-air
recovery and stable follow-up flight. Further, the experiments
were carried out in an cluttered environment with small



Fig. 6. For the experiments a AscTec Hummingbird quadrocopter equipped
with an OdroidXU4 for onboard computations was used. The visual data
(images) were provided by and Matrixvision Bluefox mvBlueFox-MLCw
camera (coordinate system) mounted next to a Garmin Lidar Range v3 (pink
range arrow) for single range measurements.

objects lying on a plane with a maximum height difference
of 10 % of the flight height.

B. Results

The trajectory ground truth of this experiment is presented
in Fig. 2. It demonstrates that our framework can initialize
in a constant velocity flight condition, which would be
unobservable for any VIO approach. Further, our approach
can also initialize the full state of the optimization-based
estimator VINS-Mono at metric scale, and then safely use
it for the MAV control input. This figure further shows that
our framework is accurate enough to initialize an estimator
and fast enough to run onboard an embedded MAV system.
For this experiment, the computation time was measured to
be approximately 0.75 s, including a data acquisition time of
0.33 s on the OdroidXU4 embedded computer.

Furthermore, as shown in Fig. 7, the position, velocity,
and attitude error norms throughout the initialization period
are low enough to initialize visual-inertial estimators. The
mean and standard deviation of the error in the initial-
ization window within this experiment is calculated to be
2.524± 0.799° in attitude, 0.0070± 0.0051 m in position,
and 0.0794± 0.0038 m s−1 in velocity.

We then tried to start VINS-Mono with its original
initialization approach offline. Out-of-the-box VINS-Mono
does not initialize in the given scenario since insufficient
accelerations are present for VIO. For comparison purposes,
we disabled all excitation checks in VINS-Mono and tried to
initialize it under the constant velocity motion. The outcome
of this test is shown in Fig. 7 (dashed lines).

In comparison to our approach, the visual-inertial ini-
tialization algorithm of VINS-Mono results in larger initial
errors. Especially the unobservable metric scale in VINS-
Mono’s problem formulation renders it degenerate, as ex-
pected and analyzed in Sec. II-B. Subsequently, the visual-
initially derived initial state led VINS-Mono to diverge as
shown in Fig. 2.
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Fig. 7. Our approach’s attitude, position, and velocity error norms
(solid lines) of the initialization period in a real-world experiment with
constant velocity flight shown in Fig. 2. In comparison, VINS-Mono’s
initialization state error norms are presented (dashed lines). As can be seen,
our framework outperforms the visual-inertial only initialization for all
three states.

VI. CONCLUSION

Visual-inertial odometry cannot observe the metric scale
in the absence of acceleration change. This VIO limita-
tion is even more problematic in the event of mid-air re-
initialization, where either constant velocity (zero accelera-
tion) or free-fall trajectories (constant acceleration) are ex-
pected, and other navigation states are completely unknown
(unlike e.g., before take-off on the ground). We tackled this
issue through a novel range-visual-inertial MAV initialization
algorithm that can function even in the absence of excitation,
and without prior environment nor state knowledge. As a
core element of our approach, we leverage the distance
measurement of a laser range finder which is tightly in-
tegrated into the visual-inertial system for robust metric
system initialization in arbitrary situations. With the only
requirement of local flatness (i.e., planar terrain in between
three visual features) our approach is applicable in a large
variety of, even to some extent cluttered, environments.

We analyzed our proposed approach in a Monte-Carlos
simulation environment, which showed it to be robust against
standard sensor noise values. We demonstrated our approach
in real-time with closed-loop control onboard an MAV and
compared it to the start-of-the-art VINS-Mono initialization
algorithm. Future work includes outlier identification and
rejection of the facet triangulation and full integration in an
in-flight fault-detection and recovery framework.
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