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Abstract— Precise system identification is an important as-
pect of adequate control design and parameter definition
to allow for accurate and reliable navigation. While this is
well known in robotics, the community working with small
rotorcraft Unmanned Aerial Vehicles (UAVs) has yet to discover
the benefits. In contrast to existing work, which often performs
offline or deterministic (i.e. closed-form) system identification,
we present a probabilistic approach to the online estima-
tion of system identification parameters and self-calibration
states. Instead of decoupling system identification and state
estimation for vehicle control, we merge the entire process
into a holistic probabilistic framework to allow self-awareness
and self-healing. Our observability analysis shows that most
of the system identification parameters are observable and
converge quickly to the optimal value using a combination of
inertial cues, dynamic modeling, and an additional exteroceptive
sensor. We support our theoretical findings with extensive tests
simulating realistic data in Gazebo.

I. INTRODUCTION

The increasing practical application of autonomous acting
UAVs outside of controlled environments makes navigation-
safety more relevant than ever. Important factors in safe
navigation are self-awareness of the UAV, and the online
estimation of states often assumed to be static and known.
Such states include geometric and inertial properties. Ex-
emplary geometric states are the relative poses of Inertial
Measurement Unit (IMU) and exteroceptive sensors in the
system’s body frame, and typical inertial states are mass, the
center of gravity, and the system’s moments of inertia. These
estimated properties used in model-based adaptive controls
improve tracking performance, as shown by [2], [3].

We show that an extension of the system dynamics formu-
lation with aerodynamic properties of the rotors, thrust coef-
ficient and moment coefficient, allows the online estimation
of before mentioned geometric, inertial, and aerodynamic
properties. A further generalization of the formulation adds
sensor frame rotations of IMU and exteroceptive sensors to
account for arbitrary sensor placements. A successful (joint)
estimation of all these properties is shown both in theory
with a nonlinear observability analysis and in practice with
realistic simulation experiments in Gazebo.

The proposed estimation for system identification and state
estimation includes the following contributions:
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Fig. 1. Estimated geometric and inertial properties based on Lissajous
trajectories [1]. Values assumed to be known (gr BP, and m) are not
shown. Lines are the mean of the respective estimates over 30 runs. Axis
x (blue), y (red), z (green) or rotor 1 (blue), 2 (red), 3 (green), 4 (orange).
The shaded area represents the standard deviation of the estimates showing
the spread. Dashed lines represent the ground truth values of the state.

« Extension of state-of-the-art system dynamics to include
aerodynamic properties of the rotors &, (thrust coeffi-
cient) and k,, (moment coefficient) within an estima-
tion framework. Online estimation of these properties
allows, e.g., detection of rotor failure during navigation.

« Addition of frame rotations of IMU and exteroceptive
sensors with respect to the body frame qg, and qg,
thus, making arbitrary placements of sensors possible.

« Observability analysis of the augmented system dynam-
ics assuming pose and IMU measurements to determine
observable and unobservable states as well as joint
observable sub-spaces.

« Validation of observability analysis and estimation with
experiments in Gazebo/RotorS.



II. RELATED WORK

Trawny and Roumeliotis [4] used an IMU within an
Indirect Kalman Filter (IKF) to propagate the pose of a
body and an exteroceptive sensor to update the state values.
This replacement simplifies the state estimator at the cost
of information loss by neglecting the rotor speeds already
available on the Flight Control Unit (FCU). Taking the
system’s dynamics itself to propagate the estimates and to
use the IMU to update the estimate increases the overall
information content. Furthermore, this work introduced unit
quaternions as a singularity-free rotation representation in the
context of Extended Kalman filter (EKF) based Visual Iner-
tial Odometry (VIO). Kelly and Sukhatme [5] fused visual
and inertial sensors based on the Unscented Kalman Filter
(UKF) using system dynamics based on IMU measurements.
However, calibration states between the camera and IMU
together with intra-sensor calibration states, e.g., IMU biases,
allow sensor self-calibration during run-time.

A detailed differential geometric analysis of the ob-
servability for the camera-IMU system was introduced by
Hermann and Krener [6]. Krener and Ide [7] extended the
observability analysis to calculate the quality of observabil-
ity of states. These offline observability analysis insights
can be used to generate specific motions that improve
state observability and measurement quality. Observability-
aware motion generation produces trajectories that aim to
maximize the overall observability through the Expanded
Empirical Local Observability Gramian (E2LOG) introduced
by Hausman et al. [8] and Preiss et al. [9].

Weiss [10], and Weiss and Siegwart [11] combined visual
and inertial sensors inside an Iterated Extended Kalman
Filter (IEKF) formulation on low-powered hardware. This
approach allows online state estimation as well as sensor self-
calibration. The system dynamics use the IMU measurements
as input similar to previous methods. As others before, this
approach lacks the capability of online identification of the
underlying physical model.

Burri et al. [12], [13] applied self-calibration to geometric,
inertial, and aerodynamic properties of a reduced rigid body
model of a UAV. In contrast to this work, we allow an offset
between IMU and the center of gravity and add the rotor
thrust coefficients and moment coefficients to the estimation.
These properties are estimated based on an offline Maximum
Likelihood (ML) parameter identification. While nonlinear
least-square algorithms produce more reliable results, the
real-time application on-board the UAV becomes unfeasible
with growing problem complexity and data stream length.
The approach decouples these properties from the rest of
the state vector, inherently neglecting correlations in the
estimation process. In contrast, a filter-based approach can
perform online on-board estimation in fixed time as it
performs implicit marginalization.

Wauest et al. [1] formulated the estimation with the center
of mass, the moments of inertia, and the weight of the UAV
as a set of self-calibration states both for an EKF as well
as an UKF. The individual rotor speeds serve as the input

of the system’s dynamics based on rigid body dynamics to
propagate the state vector. An IMU and VIO based pose
sensor provide information for state correction. Therefore,
the UAV can perform tasks in the same quality even after a
change of payload location. This influences the geometric
and inertial properties of the UAV, changing its system
response and rendering previous offline calibrations invalid.
Bohm et al. [14] showed in combination with the E2LOG that
the convergence of geometric and inertial property estimates
can be improved.

As Wuest et al. [1] uses assumptions on the alignment of
the reference frames and, therefore, neglects self-calibration
states like rotations between frames and the z-component of
the IMU displacement, no full self-calibration is possible.
Our work further reduces assumptions by allowing arbitrary
sensor placement and the estimation of rotor related aerody-
namic coefficients, hence, going towards a more generalized
approach.

x

Fig. 2. Reference frames of the UAV model

III. EXTENDED STATE ESTIMATION FOR UAVS

To successfully calculate pose changes based on rotor
speeds, one has to take into account mass, moments of
inertia, the center of gravity, rotor thrust coefficients, and ro-
tor moment coefficients. A continuous-time nonlinear state-
space representation with underlying Newton-Euler equa-
tions describing rigid body dynamics formulates the system
dynamics in the estimation. For ease of notation and read-
ability, the time dependency of variables is neglected.

A. Notation

Leading subscripts indicate the reference frame of a vari-
able. W is the fixed world frame, B is the UAV’s body frame
or the center of geometry, and M is the center of gravity.
Sensors can be placed arbitrarily on the UAV, therefore we
define two additional frames. P is the frame of the position
or pose sensor, and I the IMU’s frame. Fig. 2 illustrates the
UAV’s model reference frames. A position vector pointing
from frame W to frame B, that is expressed in the coordinate
frame W, is denoted by ,r,, 5 according to Eq. (1). This
work uses quaternions to represent rotations and according
to Sola [15] is the orientation of W with respect to B defined
as qy 5 as per Eq. (2).

[Frame] ¥ [From] [To] (1)
q [T0] [From] 2



The corresponding rotation matrix Ry, is a function of
d,5- The rotation matrix is applied the following way
wrws = Ryssrwp- In addition, the conjugate of a quater-
nion is written as g5 and corresponds to R, ;.

B. State Vector

The states ;, Tz, Vg, and qy,5 represent the position,
linear velocity and orientation of B all expressed in and with
respect to W. Similarly, pw,, 5 denotes the angular velocity
of B with respect to W and expressed in B.
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To incorporate measurements from pose, position, or IMU
sensors and allow full self-calibration, we include their
position and orientation with respect to the UAV body frame
B as states. Therefore, zry, is the position of the sensor
frame P expressed in and with respect to B. qp, denotes the
rotation quaternion of P in B. Continuing, 5r g, denotes the
position of the IMU frame I expressed in and with respect to
B. qg; denotes the rotation quaternion of I in B. ;b, and
;b are the IMU’s biases with ;b, as linear acceleration
bias and ;b as angular velocity bias. For further details
regarding the body-IMU system dynamics (bias), we refer
to Eq. (15) through Eq. (18).
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The last part of the state vector contains the geometric,
inertial, and aerodynamic properties of the UAV, i.e. system
identification parameters. The mass of the UAV is denoted as
m. The 3x3 inertia matrix of the UAV ,,I is expressed with
respect to M and its principal axes coincide with M. There-
fore, only its diagonal elements ,,% (moments of inertia) need
to be represented in the state vector, ,,I = diag(,,2). In
addition, the frame B and M are aligned and R, = L
This assumption is valid for our UAV configuration. The state
Ty €xpresses the position vector of M measured in, and
relative to B, and describes the UAV’s shift in the center of
gravity. The coefficients for the thrust force and body torque
of each rotor, k i and km,;’ are added to the state vector as
well. These values are based on the squared motor speeds.
This addition, compared to Wuest et al. [1], enables, e.g.,
rotor fault detection.

N C)

Assuming the UAV is configured with 4 rotors, this results
in a state vector with 48 elements.

_ TT
X, = [m, Mt BT Ko Ky K-

.
x=[x/,x],x]] . (6)
C. Control Inputs

The system control input is given as a set of angular
velocities of the rotors w; in revolutions per second.

Lwyl (7)

Although this paper’s UAV is a quadrotor with the number
of rotors being N = 4, the system dynamics in this sections
are applicable for different UAV configurations.

u=[w,..

D. System Dynamics

A set of first-order time-dependent differential equations
models the UAV’s behavior based on current state x, current
control input u, and process noise w.

x =f(x,u,w) ®

As a first step, it is necessary to calculate the force gF, and
torques ;M, acting on the UAV. These are generated by the
rotors with respect to the frame B or the center of gravity
M respectively.

N
R =I
sFy = ZBFi —— vF, = 5F,, ©))
i=1

where ;F, = Ry, ek, (w; +w;)°. (10)

N

R =I

M, = ZBMi + [BI'MRJX ¥y (11)

BT BM 70 =1
where ; M, = R, €.k, (w; +w;)%, (12)
and pryp = grpp, — ey (13)

The mapping from rotor speeds to forces and torques relies
on the following known constants: prp,. as the distance of
the rotor to the body frame B, the orientation of the rotors
Qpp, in B, and a unit vector e, = [0,0,1]". The rotors
point upwards along the +z axis of B and thus show no
tilt resulting in Ry, (qgg, ) = L. The noise w; ~ N (0,07)
refers to the uncertainty caused by the electronic speed con-
troller (ESC). [e] is the skew-symmetric matrix according
to Sola [15].

From Newton-Euler equations with respect to the world
frame W and a rigid body assumption, it is possible to derive
the acceleration acting on any point of the UAV a__,(r) with
respect to the center of mass.

(14)

a,.,(r) = (iBFt + [B(‘bWB]X r+ [BwWB]i r)

This allows the formulation of the differential equations
governing the state.

wlws = wVws (15)
wVws = Rupa,.(—pTm) — w9 (16)
dws = Faws © [0 pls] (17)
MPws = MT1 (MMt - []\/IwWB]x wml M“’WB) (18)
Reu, M%ws = B¥Ywa (19)

Eq. (15) refers to the change in position. The change of
linear velocity V5, Eq. (16), is a result of Euler and
centrifugal forces of the rigid bodies movement, the control
input’s force zF,, and ;g = [0,0,9.81]7 as the gravitational
pull acting on the UAV. Eq. (18) contains pw,; and models
its change with Euler’s rotation equation around the center
of gravity M including the control input’s torque ,,M,. Iba
and Ibw model the drift of the biases in form of a Brownian
motion with w , ~ N(0,0%, ) and w1, ~ N (0,02, ),
respectively. All other states are constant over time due to
the rigid body assumption.



E. Measurement Models

State vector updates through pose, position, and IMU
measurements are modeled based on the current state x,
control input u, and measurement noise v.

z =h(x,u,v) (20)

The sensor model h;,,, of the IMU assumes a 6 degrees
of freedom (DoF) sensor providing linear acceleration and
angular velocity in 3 dimensions each. It is possible to
predict the accelerations in frame [ the same way as done
for Eq. (16) with the displacement gr,,, and the rotation
R, (q};) taken into account. To predict the angular velocity
one needs to rotate zwy,z With RL,(q};) into the frame T
of the IMU. Both measurements are subject to bias ;b, and

/b, as well as noise v, ~ N(0,02) and v, ~ N(0,02).

Rglaact(BrMI) + /b, + Vv,
RTBJB“’WB + /b, + V. ’

where gr,,; =

(22)

BYBr — BYBM-

A position sensor, e.g., a Global Positioning System (GPS)
receiver, can provide absolute position information expressed
in W, while a pose sensor, e.g., a tracking system, may
provide absolute orientation information as well. The pose
measurements h,,,;. can be predicted by moving the current
pose of the body frame B into the sensor frame. Noises
v, ~ N(0,02) and vy ~ N(0,0;) depend on the sensor
used and are assumed to be independent.

h, . = wTws T Rywgplee +V, v, = 11 (23)
P Awrs @ dpp @ Vq Vo

IV. NONLINEAR OBSERVABILITY ANALYSIS

State estimation quality depends on how well different
initial states z(0) are distinguishable through the system’s
input-output map, also known as the system’s observability.

A. Observability Analysis

Following the description for a nonlinear system in
Hermann and Krener [6], stacking gradients of Lie deriva-
tives VL gives us the observability matrix O, as shown
in Eq. (24). These Lie derivatives are based on the sensor
model h(x,u) and can be seen as h(x,u) derived along
f(x,u). This connects measurements with state entries over
the system dynamics.

O (x,u) = [(VLOh)T (VILh)', (VLLh)", .. .T (24)

i—1
with Z%h = h (x,u) and Zih = 2 e 25)

In the nonlinear system case, the matrix O depends on the
current state values and control inputs, hence, the trajectory
choice impacts the quality of observability. With motion
that takes these facts into account it is possible to avoid
unobservable directions and improve convergence [9]. In
a fully observable system, the matrix O will have a full
rank equal to the number of states in x. To perform the
observability analysis for our UAV, we create the control-
affine form of the system dynamics from Sec. III-D, as

suggested in Kelly and Sukhatme [5]. This control-affine
form divides f(x,u) into drift vector field fy(x) and the
control input vector fields of u; as f;(x), respectively.
X =f+> fi(x)u (26)
i=1

Note that there is a variable substitution u* for the squared

rotor speeds in Eq. (10) and Eq. (12) as system inputs.
* ]T

ut = [wi,.. (27)

2
Wy

This step is necessary, because squared motor speeds will not
allow the derivative of the control input vector fields f;(x)
which only depends on the state vector x. By investigating
the null-space of the observability matrix O and its spanning
dimensions, one can identify observable and unobservable
sub-spaces of a system’s state space as well as jointly
observable states through continuous symmetries as done by
Martinelli [16]. Additional virtual measurements ensure the
unit quaternion constraint holds for rotations.

.
h,...= [q“l/—VB Awp: qTBP Apps (IJT31 qBI]

B. Discussion of Observability

(28)

The observability analysis of the presented approach as-
sumes both pose and IMU measurements to be present. Tab. I
shows the results of this analysis and gives us important
insights, that can be used to interpret estimation results in
the following section. It was conducted symbolically and
numerically in Matlab, with the null-space calculations in
numerical form.

The observability matrix O and its corresponding null-
space show two joint observable sub-spaces and no un-
observable states. These joint observabilities are JI (-1/8)
and J2 (-1/11) respectively. The positive values in brackets
refer to the number of observable states, while the negative
ones represent the unobservable states subtracted from the
state vector length. JI includes one unobservable dimension
spanned by the position of the UAV ,r, 5, the velocity of
the UAV , v, and the z components of the displacement
self-calibration states of the pose sensor prg,_, the IMU
BT .. and the center of gravity zrp, .. Thej/ get jointly
observable due to Eq. (22) and the fact that BTpy,. ets o
excitation from body torques in Eq. (12). 1,5 and , vy p
are part of this unobservable sub-spaces because a change of
any calibration state can not be differentiated from positional
or velocity changes. J2 spans one unobservable dimension
across the mass of the UAV m, the diagonal elements ;2 of
the UAV’s inertia matrix, the rotor thrust coefficients k fi0 and
the rotor moment coefficients k,, . Those state components
are on both sides of fractions in Eq. (16) and Eq. (18).
Therefore, the system can only estimate the ratio between
all these states. As mentioned before, all 27 remaining states
are independently observable.

This gives us a rank of 46 compared to 48 dimensions. It is
important to note, to get a fully observable system one needs
to add a state component of each joint observable sub-space
JI and J2 as measurement to the estimation. This enforces
application specific assumptions about the system.



TABLE I. Observability analysis results of the extended system model with pose & IMU measurements. The matrix O shows two jointly observable

sub-spaces J1 and J2 including each one unobservable dimension with the other states being independently observable.

observable
dimensions

state vector
dimension

wrws | wVws | Aws | BYwB BYBP ‘ aspP

k,

m

ba

by

BYBI ‘ AdBr M BYBM ‘ kfl,4 mi_4

48 46

xyz:J1

xyz:J1 ‘ ok ‘ ok

xy:ok  zJl ‘ ok

xy:ok  zJl ‘ ok ‘ ok ‘ ok ‘ JZ‘ J2

xy:ok ZZJ]‘ J2 ‘ J2

V. EXPERIMENTAL RESULTS
A. Simulation Setup

For this validation, a simulated UAV based on the AscTec
Hummingbird UAV was used within the Gazebo/RotorS
framework [17]. The benefit of such a realistic simulation
environment is that most states are known (apart from the
inertia matrix, which we calculated indirectly from other
properties in the simulation). Noise and physics are modeled
realistically, such that the evaluation of our estimator is
best feasible. To prevent trajectory-based unobservability, we
use the aggressively tuned, Model Predictive Control (MPC)
in [18] to fly our trajectories with sufficient excitation in all
6 DoF. A well-tuned MPC can compensate small changes
in the UAV’s parameters, online estimates could improve
robustness against larger changes.

The Ground Truth column of Tab. II lists all system prop-
erties modeled. The position and orientation values of sensor
self-calibration parameters correspond to their placement on
the UAV in Gazebo. The accelerometer bias ;b, has been
modeled based on a time series of IMU measurements from
the real hardware IMU. The angular bias ;b_ is not applied
as the FCU compensates it. All properties in x,, come from
the AscTec Hummingbird model in RotorS. The elements
of ,,% are approximated from the RotorS definitions and
may show some offset due to different modeled effects,
e.g., moments of inertia calculations of the spinning rotors.
Among the differences are velocity-induced drag forces and
roll moments on the rotor, which are currently not considered
in the model presented. For very fast flights, these effects are
expected to impact the estimation process.

The control input’s noise o, is 2 revolutions per second
and was measured on the real hardware as an average of
multiple time series of different rotor speed set-points. As
mentioned in Sec. III-D, Brownian motion models the change
of the IMU biases with o = 8.3 x107*m/+/s* and
Ob, = 1.3 x 10~*rad/ \/s>3, respectively. In addition, the
FCU’s IMU measurement noise values are o, = 0.083 m/s?
for the linear acceleration and o, = 0.013rad/s for the
angular velocity. Position and orientation measurement noise
of the pose sensor are o, 1x107*m and o,
1.7 x 1073 rad assuming an absolute tracking system like
OptiTrack. Each noise mentioned is assumed to be zero-mean
gaussian white noise.

The frequency at which the FCU and/or Gazebo publish
the motor speed values and IMU measurements is set to
200 Hz with pose measurements published at 50 Hz.

B. Evaluation of Performance

We tested the observability experimentally on 30 dif-
ferent trajectories to prevent trajectory-induced biases on

the estimation results. As shown by Wuest et al. [1] and
Bohm et al. [14], Lissajous figure based trajectories are
a feasible way to excite all DoF to allow convergence of
states. Each Lissajous trajectory lasts for 30 seconds, with
a large amount of rotational movement along each axis to
improve estimation performance. These Lissajous figures are
generated at random by modulating the frequency component
of each position axis as well as the yaw orientation. Fig. 3
depicts an example of such a Lissajous trajectory.

Estimation was performed in a fully observable configura-
tion with prp,  and m assumed to be known and supplied
as additional measurements (cf. discussion in Sec. IV-B).
Because it is possible to place the pose sensor anywhere on
the UAV (e.g., markers of a tracking system or a camera
with VIO), its position can easily be measured with respect
to the body frame B. The mass m can be determined by
weighing the UAV before take-off. For all 30 runs, mean
and standard deviation of the sensor state vector x, and the
system identification parameters state vector x, have been
calculated and can be seen in Fig. 1 for the assumed 4-rotor
configuration. It shows the overall behavior of the estimation.
The absolute error at the end of the 30 s flights compared to
ground truth provides performance metrics indicating how
well the estimates converge.

C. Discussion

Fig. 1 shows the estimation results of the sensor state
vector x,, and the system identification parameters state
vector x,, as mean with its spread over 30 runs. Trajectory
state vector x; entries are not part of this figure as each
trajectory performs a different movement. It shows that
each state converges fast towards the optimum, assuming
pTpp,. and m are known, even when disregarding velocity-
induced effects modelled in RotorS. This behavior confirms
the theoretical observability results from Sec. IV-B. Tab. II
shows the empirical results of the full state vector x. For
comparison, Wuest et al. [1] reach an absolute error below
0.22 x 107* kg m? for the moments of inertia and less than
2mm for the position of the center of gravity.

—180 | | | | |
0 5 10 15 20 25 30

time [s]

Fig. 3. Example of Lissajous trajectory with trajectory #12. The UAV
position of the body frame B y;,ry;5 (left) and its orientation around the
z axis with respect to world frame W qpp vaw (right).
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Fig. 4. Estimated geometric properties with m assumed to be known in the
estimation. The one unobservable DoF of J1 spfmned by wrwa> wVwa:
BYBP.,» BYBI, and BYBM » results in a drift shared among all states.
The state ,,% becomes observable through the knowledge of m, included
in J2. Lines are the mean of the respective estimates over 30 trails. Axis x
(blue), y (red), z (green). The shaded area represents the standard deviation
of the estimates showing the spread. Dashed lines represent the ground truth
values of the respective state.

TABLE II. Ground truth values and estimation results of the full state
vector. The ground truth values of the trajectory states x; are omitted as
they change over time. The two jointly observable sub-spaces JI and J2

get observable with the assumption that gr BP, and m are known.

Ground Truth Absolute Error Standard Deviation Unit

at the end at the end
z —0.5 12.7
wrws y - 3.9 14.6 mm
z —0.5 5.1
z - 0.026 0.107
wVws y - 0.051 0.107 m/s
z - 0.004 0.033
roll - —0.340 1.016
aws pitch - 0.158 1.007 °
yaw - 0.128 1.798
z - —0.012 0.099
BWWB y - 0.002 0.046 rad/s
z - —0.006 0.152
z 26.0 —0.4 5.8
BTBP Y 38.0 3.0 7.1 mm
z 75.2 known known
roll 0.0 0.087 0.222
dpp pitch 0.0 —0.018 0.104 °
yaw 0.0 —0.224 1.016
z 19.0 -0.7 1.1
BrH y -9.3 —0.01 2.0 mm
z 19.5 1.3 2.3
roll 0.0 0.103 0.252
s pitch 0.0 —0.026 0.176 °
yaw 0.0 —0.115 0.953
z —0.22 —0.014 0.049
/b, y —0.21 —0.015 0.058 m/s?
z 0.14 —0.009 0.016
z 0.0 0.001 0.009
/by, y 0.0 —0.001 0.009 rad/s
z 0.0 0.001 0.004
m 0.716 known known kg
z 7.7 %1070 0.6x107° 0.4x107°
M y 7.7 %x 1072 —0.8x 1073 0.2 x107% kgm?
z 13.4 x 1073 -1.2x107° 1.1x 1073
z 0.0 4.62 x 1072 0.7
BYBM Y 0.0 3.61 x 1072 0.6 mm
z 17.0 2.5 2.5
1 3.375 x 107* —0.030 x 10~* 0.046 x 10~*
% 2 3.375 x 1071 0.034 x 107" 0.030 x 10~* N/s-2
fi 3 3.375 x 1074 —0.033 x 107* 0.046 x 1074 i
4 3.375 x 107* 0.035 x 107* 0.027 x 107*
1 5.400 x 107¢ —0.782 x 107 0.680 x 107¢
& 2 5.400 x 107°¢ —0.378 x 107° 0.637 x 107° Nm/s—2
3 5.400 x 1076 —0.028 x 107 1.142 x 107° ’
4 5.400 x 107° —0.490 x 107° 0.720 x 107°

In Sec. IV-B, two joint observabilities were discovered,
J1 and J2. Removing each assumption one by one during
additional tests shows the validity of those claims. For JI,
only m was set with a known value and for J2, rp,  was

1 —
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Fig. 5. Estimated inertial properties with assumed a-priory knowledge of

self-calibration state prpp . The one unobservable dimension of J2 gets
spanned by all four depicted states and shows as overall drift of each states.
Lines are the mean of the respective estimates over 30 trails. Axis x (blue),
y (red), z (green) or rotor 1 (blue), 2 (red), 3 (green), 4 (orange). The shaded
area represents the standard deviation of the estimates showing the spread.
Dashed lines represent the ground truth values of the respective state.

the only known value. Fig. 4 shows the development of J/
over time. The position ,ry; and the velocity vy, of
the UAV, as well as the self-calibration states zrgp _, gTp; .,
and grpg,, . do not converge and drift away from the grouﬁd
truth values jointly, corresponding to the one unobservable
dimension. This indicates that the z axis of the body frame
B can be chosen freely. The state ,,2 shows that J2 is
independent of JI. Fig. 5 shows case J2 in which the mass of
the UAV is not known, but zrp;,  is. All affected states, the
mass m, the moments of inertia ,,¢, the thrust coefficients
kfi’ and the moment coefficients kmi, show the same drift
behavior similar to the previous case. Also, the shared drift
corresponds to the one unobservable dimension of J2.

VI. CONCLUSION

We have shown that self-awareness and online self-
calibration of an UAV is possible through state estimation
of geometric, inertial, and aerodynamic properties of the
UAV, given only two a-priori values. This method is more
reliable than using offline calibration methods as system
changes during task execution can invalidate their results
after calibration. We include thrust coefficients (k:fi) and
moment coefficients (k,, ) of each rotor as well as frame
rotations of IMU (qz;) and exteroceptive sensors (qzp) With
respect to the body frame. These estimates provide improved
information on different levels of control compared to both
offline calibration and currently used system simplifications.
For example, short-term planning of a MPC can improve
with a better approximation of possibly changing values,
and-long term planning of an autonomous operating swarm
can enhance the monitoring of an individual agent’s health
(e.g., detection of rotor failure). Empirical results confirm our
understanding of the theoretical nonlinear observability anal-
ysis. This analysis, assuming pose and IMU measurements,
revealed two joint observable sub-spaces, each spanning one
unobservable dimension. Applying only two assumptions
(e.g., gTgp , and m are known) renders the whole state vector
observable due to their joint inter-linkage.
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