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Abstract— This paper presents a novel approach to re-
cover outdated cross-covariance between correlated agents at
the moment they perform joint observations. This allows to
render Collaborative State Estimation (CSE) fully distributed,
with communication only required for the moment of joint
observation and most importantly, it significantly reduces the
maintenance effort in case of high frequent propagation sensors.
These properties make the approach suitable to a wide range
of multi-robot applications. In our evaluation on a Quaternion-
based Error-State Extended Kalman Filter (Q-ESEKF) using
an Inertial Measurement Unit (IMU) as propagation sensor at
a rate of 200 Hz, we showed a significant speedup against our
previous approach for maintaining a couple of interdependence.
We compared the approach in total against four different
approaches on both, a simulation and on a real-world dataset
for Micro Aerial Vehicles (MAVs).
Video: https://youtu.be/xkljfwbhMP0

I. INTRODUCTION

Teams of collaborating agents have potential in many
applications. For coordinating teams, an accurate localization
estimate of agents is a prerequisite [1].

Collaborative State Estimation (CSE) aims to fuse infor-
mation provided by different sensors from all agents in a
statistically optimal fashion. It allows to treat the team as
one system at the cost of strong coupling, maintenance,
communication and computational effort.

Rendering CSE exact can (i) significantly improve the
estimation performance of individual agents, (ii) provide
redundancy in case of sensor failures, jamming or spoofing,
and (iii) agents with less accurate sensors benefit from agents
with more accurate ones [2], [3]. Therefore it is often used
in the field of collaborative localization (CL).

A naive centralized implementation leads to computational
complexity of O(N2) and communication complexity of
O(N) per sensor measurement per agent, where N is the
number of agents. The total computational complexity per
time step is O(N4) [4]. To render CSE distributed on agents
is challenging as it can either degrade the performance, lead
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Fig. 1: Scenario S1: Estimated trajectory comparison using four
different CSE fusion techniques: DAH (red, proposed), DACC
(green), DP (cyan), and DDMV (purple). A1 receives global pose
measurement, while A2 receives correction from joint relative
position measurements with A1, starting from t = 5.05 s on. Due to
wrongly initialized states, A2 is drifting heavily, but in most cases it
can quickly converge towards ground truth despite no direct global
information being available. The agents fusing joint observation
using DDMV receive strong state correction and A2 starts diverging.
The problem is described in Section VI-A

to inconsistent estimates, requires extensive bookkeeping,
communication or computation if done naively.

It is even more challenging if agents use sensors that
provide measurements at high rates. In our case we use an
Inertial Measurement Unit (IMU) as propagation sensor for
a Q-ESEKF with rates typically above 100 Hz. The IMU is
often used in a modular fashion in combination with different
exteroceptive sensors, e.g. Global Navigation Satellite Sys-
tem (GNSS) module, camera, sonar, pressure, magnetometer,
or ultra-wideband (UWB) range measurements, to correct the
IMU propagation [5].

Recent work by Luft et al. in [6] and ourselves [7] has
shown that communication complexity can be reduced to
O(1) and is just required for joint observation. Yet, the
local maintenance of interdependencies (i.e. agent cross-
covariances) still increases linearly with the number of met
agents. This renders the Distributed Approximated Cross-
Covariance (DACC) presented in [6] ill-suited for large
swarms and long-duration missions with many encounters.

Therefore, the primary motivation for our proposed ap-
proach is the aim for O(1) in both maintenance and com-
munication. We propose a Distributed Approximated History
(DAH) approach to restore the cross-correlation between
agents at the moment they meet again as an extension to
DACC. Our experiments manifest the improvement while
accomplishing the same accuracy. More precisely our con-
tributions are:



• Development of a novel approach for CSE able to
restore outdated cross-covariance between agents at the
moment they meet.

• Reduction of maintenance cost from O(N) in [4], [6],
[8] to O(1) for private observations and to O(1) for
propagation steps (if the buffer size suffices) in DAH,
while performing equivalently as DACC.

• Comparison of DAH against two other approaches (i)
in a swarm of 20 collaborating agents, focusing on the
estimator credibility and timing, and (ii) on an a real-
world dataset.

II. RELATED WORK

In the past decades, distributed multi-agent localization
has received considerable attention. Here we will focus on
distributed Kalman filter approaches due to their computation
efficiency and recursive architecture.

Roumeliotis and Bekey investigated in [4] the decoupling
of the state propagation equation of the centralized multi-
agent EKF. Their Distributed Propagation (DP) approach
allows distributed local state propagation, but requires mesh-
based connectivity with all agents leading to a O(N) com-
munication complexity per update per agent. From per-
formance point of view it is equivalent to a centralized
architecture and thus regarded as baseline for our evaluations.

Later, a theoretical analysis about the influence of the ho-
mogeneous swarm size and sensors employed regarding the
localization accuracy and the upper uncertainty bound was
presented in [3], [9]. This was relaxed for a heterogeneous
swarm with an arbitrary topology in [2].

Aramebel et al. presented in [10] an approach to eliminate
the need for full connectivity through maintaining a copy
of the entire global state. These approaches have significant
issues regarding propagation/evolution as it requires the
kinematic motion model of the individual agents.

Kia et al. proposed in [8] an approach where a master
agent sends correction messages to all other agents based
on the information it received from all of them. Network
constraints are relaxed through message passing and relaying.
It requires no communication for local state propagation and
private updates, while joint updates requires corrections to
be received by all agents.

To avoid the maintenance of interdependencies, Carrillo-
Arce et al. presented in [11] an approach using Covariance
Intersection (CI), introduced by Julier and Uhlmann in [12],
to fuse generated pseudo observations from other agents.

Zhu and Kia proposed in [13], [14] an Distributed Discor-
related Minimum Variance (DDMV) approach to discorrelate
the agents’ local beliefs by weighting and underestimating
them. That is similarly to CI computing the upper bound
of the joint covariance matrix and thus allows ignoring
cross-covariances. This reduces both communication and
maintenance cost to O(1), yielding a highly scalable, but
pessimistic CSE approach. Unfortunately, this approach did
not work as shown in Figure 1 due to inconsistencies.

Later, Zhu and Kia presented in [14] the Estimated Cross-
covariance Minimum Variance (ECMV) approach to reduce
the conservatism of DDMV by estimating the unknown

cross-covariance between agents in a cascaded optimization.
In their case study ECMV outperforms DDMV at the cost
of 150× longer processing times for joint updates, thus it
is not real-time capable.

Recently, another major milestone for CSE in the field of
CL was achieved by Luft et al. in [6], proposing reasonable
approximations for the state correction of non-participating
agents in private and joint updates at the cost of performance.

Later in [7], Jung et al. combined these approximations
with a Q-ESEKF formulation to achieve collaboratively
aided inertial navigation.

Restoring outdated cross-covarinace at a later point in time
is dual problem to handling delayed updates as discussed by
Allak et al. in [15]. They proposed an efficient and versatile
way of computing covariances by the use of scattering theory
without recomputing all intermediate measurements.

III. PROBLEM FORMULATION

A team of N distributed and communicating agents are
equipped with an IMU and running a Q-ESEKF. It pro-
vides them with drifting pose estimates, while exteroceptive
observations are fused to correct them. Joint observations
between agents are provided by a black box, e.g. provided
by visual tag recognition (e.g. AprilTag [16]) on other agents.
The following simplifications are made:
• synchronized system clocks, e.g. by network based

synchronization protocols [17],
• the period of exteroceptive sensors is an integer multiple

of the IMU period,
• communication range is larger than the sensing distance,
• and exchanged information between agents and sensor

measurements arrive without delay.
A. Notation

The mean and covariance of multivariate random variable
are defined as Xi ∼ N (x̂i,Σii). A right subscript specifies
the agent’s identifier {Ai, i ∈ 1, . . . , N}. The time indices
of state variables are indicated by the right superscript,
e.g. Xk, denoting the state at the time t(k) ≡ tk. Names
of reference frames are capitalized and calligraphic, e.g. I
for IMU. A coordinate vector CCpP1

is read as from
in x to.

The operators ⊕ and 	 should emphasize that rotational in
SO3 and translational components in R3 have to be treated
differently. Positions, velocities and biases are additive, e.g.
GpI = Gp̂I+Gp̃I . Rotational errors are right-multiplicative,
e.g. GRI = GR̂I(I3 +

[
G θ̃I

]
×

) ∈ SO3.

IV. QUATERNION-BASED ERROR-STATE EKF IN CSE

The state space representation and the system propagation
model of each agent’s Q-ESEKF is inspired by Weiss and
Siegwart [18], yielding a 16-element state vector:

Xi =
[G
GpI ,

G
GvI ,

GqI , Ibω , Iba

]
i
, i ∈ 1, . . . , N, (1)

with GpI ,
G
GvI , and GqI as the position, velocity and orien-

tation of the IMU I w.r.t. the global frame G (or navigation
frame). Ibω and Iba are the estimated gyroscope and
accelerometer biases to correct the related IMU readings.



The corresponding error-state vector (x̃ = x 	 x̂) using the
small angle approximation GIθI for rotations is

X̃i =
[
G
Gp̃I ,

G
GṽI ,

G
I θ̃I , Ib̃ω , Ib̃a

]
i
. (2)

The error state kinematic used for the IMU propagation and
corrections through exteroceptive sensors is well studied and
can be found in e.g. [18].

V. DISTRIBUTED APPROXIMATED HISTORY FOR CSE

In the proposed Q-ESEKF, state propagation is performed
at a rate of the IMU which is typically above 100 Hz. Not
only the state but also all interdependencies due to cross-
correlations with met agents have to be propagated at this
rate. The more agents are correlated, the more maintenance
is required, even after not seeing each other for a long time.
To overcome that issue, we propose to keep locally just (i)
the most recent factorized cross-covariance between agents,
(ii) a timestamp of the event, and (iii) a sliding window buffer
B keeping track of the last corrections. The factorized cross-
covariance and timestamp can e.g. be stored in a dictionary
Dict accessed via the other agent’s ID.

We store the decomposed cross-covariance between the
agents Ai and Aj

Σk
ij = Skij

(
Skji
)T
, (3)

where the choice of decomposition is open [4], e.g. Skij =
Σk

ij and Skji = I.
Compared to other implementations, [4] [8] or [6], we do

not maintain all factorized cross-covariances during the pro-
pagation step. Instead, we restore an approximated a priori
cross-covariance Σ

m+1(−)
ij between agents at the moment

tm+1 they meet again by using the agents’ buffer histories.
For an exact forward propagation these buffers would require
a history reaching to the very last encounter. However, we
use a cyclic buffer B of a static size per agent. If a factorized
cross-covariance is about to fall outside the past time horizon,
we propagate it with an accumulated product towards current
time step. This ensures that the time horizon of the buffer
is always sufficient and allows the proposed approach to
behave equal as [6] in terms of estimation performance (we
rely on same assumptions), while reducing the maintenance
effort. Due to space limitation we will highlight just the main
assumptions. For details and proofs we would like to refer
the readers to Luft et al. [6].

In the following we investigate on the correction factors
that need to be provided to buffer at the different filter
steps: propagation (Φ), private observation (Υ), and joint
observations (Λ). The strategy for the buffer maintenance
and cross-covariance propagation is described in Section V-
C and DAH is summarized in Algorithms 1 to 5.

A. Propagation

The motion of different agents is independent and cor-
rupted by Gaussian noise νp ∼ N (0,N)

xk|k−1 = g(xk−1,uk + νk
p), (4)

with a smooth motion model g, where u can either be a
control input or a proprioceptive sensor measurement. The
motion model needs to be linearized to be used in the
Kalman filter propagation step Φk|k−1 = ∂g(x,u)

∂x (x̂k−1,uk)
with the process noise Qk|k−1 = GkNk(Gk)T, Gk =
∂g(x,u)

∂u (x̂k−1,uk).
The state covariance matrix on Ai is propagated using

Σk+1
ii = Φk+1

ii Σk
iiΦ

k+1
ii

T
+ Qk+1

ii . (5)

with Φk+1 as the discretized state transition matrix and
Qk+1 the discretized process noise covariance matrix.

As proposed in [4], the distributed cross-covariance pro-
pagation can be performed exactly. Typically it is done by
multiplying the state transition matrix on the factorized cross-
covariances [4], [6], [8]

Σk+1
ij = Φk+1

ii Skij(Skji)T(Φk+1
jj )T. (6)

In contrary, we append the state transition matrices Φ to our
sliding buffer (propagation step is advancing the buffer)

Bi(t
k+1) = Φk+1

ii , (7)

B. Private and Joint Observation

An observation is described by a measurement function
h of a state x and νz ∼ N (0,R) defining an independent
Gaussian noise

zk = h(xk,νk
z). (8)

For legibility we will neglect the time index {}k. Private
and joint observations are technically the same, while later
requires, in addition to the local state estimate, estimates
from one or multiple other agents. Therefore we can distin-
guish between participants (p) and non-participants (others
o), resulting in stacked random variable XT =

[
XT

p XT
o

]
(Xp is a joint belief of participants, e.g. constituting of Ai’s
and Aj’s belief XT

p =
[
XT

i XT
j

]
and Xo a joint belief of

others.
We assume that the computation of an observation is

performed on an interim master agent Ai ∈ p, e.g. based
on the lowest integer ID among participants. The partici-
pants might be directly or indirectly correlated with non-
participating agents Ao ∈ o := {1 . . . N |o 6∈ p}. The exact
state update according to the Kalman filter can be computed

as follows. Assume a joint covariance Σ =

[
Σpp Σpo

ΣT
po Σoo

]
and

the joint measurement matrix H =
[
Hp 0

]
. The corrected

a posteriori covariance is

Σ(+) =

[
(I−KpHp)Σ

(−)
pp (I−KpHp)Σ

(−)
po

(Σ
(+)
po )T −KoHpΣ

(−)
po + Σ

(−)
oo

]
(9)

with Kalman gain[
Kp

Ko

]
=

[
Σ

(−)
pp HT

p

Σ
(−)
po HT

p

](
HpΣ

(−)
pp HT

p + R
)−1

, (10)



and R being the measurement noise covariance. The a
posteriori mean is[

x̂
(+)
p

x̂
(+)
o

]
=

[
x̂
(−)
p ⊕Kpr

x̂
(−)
o ⊕Kor

]
, (11)

with measurement residual r = z	 h(x̂).
Like [6], we aim for constant communication complexity.

Thus we approximate non-participants’ beliefs by setting
them to X̆

(+)
o ∼ N

(
˘̂x
(+)
o , Σ̆

(+)
oo

)
= X

(−)
o . Consequently,

non-participants do not directly benefit from participants’ ob-
servations. However, the cross-covariance of non-participants
can be corrected Σ

(+)
po = ΥpΣ

(−)
po using

Υp = (I−KpHp) (12)

and allows this approximation to be consistent with respect
to the global system (9) as the resulting covariance error is
positive semidefinite

Σ̃(+) = Σ̆(+) −Σ(+) =

[
0 0

0 KoHpΣ
(−)
po

]
� 0. (13)

Summarized: For private observations (case of a single
participant) the participant, e.g. Ai, applies the correction
factor Υ (Equation (12)) on the corresponding element of
buffer

Bi

(
tk
)

= Υk
iBi

(
tk
)
. (14)

For joint observations with multiple participants, each par-
ticipant applies a correction in relation to gained information

Λk
i = Σ

k(+)
ii

(
Σ

k(−)
ii

)−1
on the corresponding element of

the buffer
Bu

(
tk
)

= Λk
uBu

(
tk
)
, u ∈ p (15)

The factor Λi, proposed by [6], is reasonable approximation
if participants p are strongly directly or indirectly correlated
with non-participants o before the joint observation.

C. Buffer maintenance and propagation strategy

In this subsection we describe how the cross-covariances
are propagated, once needed for joint observations, and how
we prevent cross-covariances to fall out of the past horizon.
Figure 2 shows how correction factors from different events
are used to propagate previous cross-covariance forward,
which is also described in Algorithm 4. To keep cross-
covariance in the buffer’s horizon, we suggest to perform
a sanity check e.g. at the end of each propagation step.
The aim is to find factorized cross-covariances by their
timestamps, that are exactly at the border of the horizon.
In that case, we perform immediately a forward propagation
using the entire history, which is described in Algorithm 2.
Note that setting the buffer size of B to 1, DAH emulates
DACC. Consequently a smaller buffer increases the chance
that a forward propagation is performed in propagation
steps (assuming sporadic joint observations). In the best
case the buffer size matches the ratio between the rate of
the propagation sensor and the rate of joint observations
rendering the approach constant in maintenance complexity.

Fig. 2: Decomposed cross-covariance forward propagation scheme
using elements with accumulated correction terms from the buffer
Bi on Ai. At t(k) = 1, Ai performs a joint observation with
the uncorrelated Aj resulting in a correction Λ1

ij (event b at
t1) and a decomposed cross-covariance S1(+)

ij . Propagations and
private updates result in Φ and Υ, respectively. The events are
left multiplied in order on the buffer elements. At t(k) = 6,
the correlated agents perform again a joint observations. Therefore
each agent accumulates it’s buffer elements to forward propagate
S1(+)
ij → S6(−)

ij by M6
2 (Algorithm 4). After that, a new correction

factor Λ6
ij and decomposed cross-covarinace S6(+)

ij is obtained.

Algorithm 1: Propagation on Ap

Input : x̂
k(−)
p ,Σ

k(−)
pp ,Bp,u

k,Nk,Dictp

1 Φk+1
p =

[
∂g(xp,u)

∂xp
(x̂p,u)

]k
2 Gk+1

p =
[
∂g(xp,u)

∂u
(x̂p,u)

]k
3 Qk+1 = Gk+1

p Nk(Gk+1
p )T

4 x̂k+1
p = g(x̂k

p,u
k)

5 Σk+1
pp = Φk+1

p Σk
pp(Φk+1

p )T + Qk+1

6 Bp

(
tk+1

)
= Φk+1 (push back)

7 check horizon(Bp,Dictp, t
k+1) (Alg. 2)

Algorithm 2: check horizon on Ap

Input : Bp,Dict, t
k

1 toldest = min(Bp)

2 for {tm,Sm(−), id} in Dict do
3 if tm ≡ toldest then
4 Mk

m = compute corr(Bp, t
m, tk) (Alg. 4)

5 Dict(id) = {Mk
mSm(−), tk} (forward prop.)

6 end
7 end

Algorithm 3: Private Observation on Ap

Input : x̂
k(−)
p ,Σ

k(−)
pp ,Bp, z

k,Rk

1 Hp =
[
∂h(xp)

∂xp
(x̂p)

]k(−)

2 Kp = Σ
k(−)
pp HT

p(HpΣ
k(−)
pp HT

p + Rk)−1

3 x̂
k(+)
p = x̂

k(−)
p ⊕Kp

(
zk 	 h(x̂p)

)
4 Σ

k(+)
pp = (I−KpHp)Σ

k(−)
pp

5 Υk
p = (I−KpHp)

6 Bp

(
tk
)

= Υk
pBp

(
tk
)

Algorithm 4: compute correction on Ap

Input : Bp, t
m−1, tm,∆t

1 Mm
m−1 = I

2 for i← tm−1 + ∆t to tm by ∆t do
3 Mm

m−1 = Bp(i)Mm
m−1

4 end
Output: Mm

m−1



Algorithm 5: Joint Observation on A{i,j}

Input : x̂
k(−)

{i,j},Σ
k(−)

{ii,jj}
izj

k
,Rk, id{i,j},Dict{i,j},B{i,j}

1 if idi < idj /* one possibility */ then
2 /* Interim Master */

Ai receives {x̂k(−)
j ,Σ

k(−)
jj , idj ,Sk(−)

ji } from Aj

3 {Sm(−)
ij , tm} = Dicti(idj)

4 Mk
m = compute correction(Bi, t

m, tk) (Alg. 4)
5 Sk(−)

ij = Mk
mS

m(−)
ij

6 Σ
k(−)
ij = Sk(−)

ij (Sk(−)
ji )T

7 Σ
k(−)
pp =

[
Σii Σij

ΣT
ij Σjj

]k(−)

8 Hp =
[
∂h(xi,xj)

∂xi
(x̂i, x̂j)

∂h(xi,xj)

∂xj
(x̂i, x̂j)

]k(−)

9 Kp = Σ
k(−)
pp HT

p(HpΣ
k(−)
pp HT

p + Rk)−1

10 x̂
k(−)
p =

[
(x̂

k(−)
i )T (x̂

k(−)
j )T

]T
11 x̂

k(+)
p = x̂

k(−)
p ⊕Kp

(
izj

k 	 h(x̂i, x̂j)
)

12 Σ
k(+)
pp = (I−KpHp)Σ

k(−)
pp

13 /* Note: split Σ
k(+)
pp and x̂

k(+)
p again */

14 Sk(+)
ij = Σ

k(+)
ij

15 Sk(+)
ji = I

16 Ai sends {x̂k(+)
j ,Σ

k(+)
jj , idi,Sk(+)

ji } to Aj

17 Λk
i = Σ

k(+)
ii (Σ

k(−)
ii )−1

18 Bi

(
tk
)

= Λk
i Bi

(
tk
)

19 Dicti(idj) = {Sk(+)
ij , tk}

20 else
21 {Sm(−)

ji , tm} = Dictj(idi)

22 Mk
m = compute correction(Bj , t

m, tk) (Alg. 4)
23 Sk(−)

ji = Mk
mS

m(−)
ji

24 Aj sends {x̂k(−)
j ,Σ

k(−)
jj , idj ,Sk(−)

ji } to Ai

25 Aj receives {x̂k(+)
j ,Σ

k(+)
jj , idi,Sk(+)

ji } from Ai

26 Λk
j = Σ

k(+)
jj (Σ

k(−)
jj )−1

27 Bj

(
tk
)

= Λk
jBj

(
tk
)

28 Dictj(idi) = {Sk(+)
ji , tk}

29 end

VI. EXPERIMENTS

The experiments are simulated in a MATLAB frame-
work, that allows to load existing datasets or to generate
trajectories. The exteroceptive measurements (private or joint
observations) are generated based on the ground truth tra-
jectory, the sensors calibration states and noise parameters.
The real-world IMU samples provided by the datasets are
directly (without modification) used as measurement. Finally,
all measurements are sorted chronologically and are locally
processed in a multi-instance manager. It is maintaining
multiple filter instances, while communication between filter
instances is handled locally.

The evaluation is performed on two scenarios S{1,2}.

A. Scenario S1

Following the motivation of our previous work [7], we
want to evaluate if all 6-DoF can be recovered by an agent
that locally obtains IMU measurements and sporadic joint
observations with another agent that has additionally private

observations providing absolute position measurements. This
time, the interdependencies are not maintained and just ap-
proximately restored using DAH. We evaluate the estimation
performance using the Machine Hall (MH) sequences (MH4
for A1 and MH5 for A2) of the EuRoC dataset [19].

Agent A1 is obtaining absolute position measurement at
a rate of 10 Hz with a standard deviation of σ = 0.1 m.
Local relative position measurements between the agents
are obtained from t = 5.05 s at a rate of 10 Hz with
a standard deviation of σ = 0.1 m. Both receive IMU
measurements at 200 Hz. The states were initialized wrongly
to demonstrate the self-calibration capabilities and emphasize
the state convergence.

Figure 1 shows that agent A2 is drifting heavily, due
to wrongly initialized gyroscope and accelerometer biases
(Ibω and Iba ). Using DDMV agent A2 is diverging and A1

receives significantly wrong corrections from joint updates,
that can fortunately be compensated by private ones. Thus,
our implementation of DDMV is not applicable for Q-
ESEKF and not included in the following evaluation.

Table I lists the Average Root Mean Square Error
(ARMSE) and the mean of the Normalized Estimation Error
Squared (NEES) (NEES) over the entire trajectory (including
the drift phases) of the estimated states for different CSE
approaches. No remarkable differences between either fu-
sion techniques are noticeable, while DAH is best scalable.
DP has to be considered as ground-truth as it fuses the
observations in a statistically optimal way. The NEES for
all states should be in average 3; lower than that indicates
conservatism, but all states are far from being considered in-
consistent. The lower and upper 99.97 % bound are 0.05 and
13.93, respectively. For details regarding estimator credibility
and the NEES please refer to [20] [21].

B. Scenario S2

The main motivation of the proposed approach is to reduce
the maintenance effort for estimators with high propagation
and update rates. In simulation with 20 agents, arranged in
a circle, where each performs a unique take-off (altitude
of 20 m, circle (diameter of 10 m), and landing procedure,
we compare different CSE fusion techniques. The duration
is 60 s. To emphasize the maintenance effort, each agent
observes relative position measurements with three other
agents (counter clock-wise on the formed circle). Thus, in
total each agent knows six agents and all agents are directly
or indirectly correlated. A quarter of the agents are provided
with absolute position measurements (14 only rely on IMU
and joint observations). The absolute position update is
received at a rate of 10 Hz, with a standard deviation of
σabs = 0.3 m, from t = 0.1 s on, and with a random message
drop rate of 20 %. Local relative position observations are
obtained at a rate of 10 Hz, with σrel = 0.1 m, and a
random message drop rate of 60 %. All receive unbiased
and very noisy IMU measurements at 200 Hz with a standard
deviation of σacc = 0.01 m/s2 and σgyr = 0.01 rad/s for the
accelerometer and gyroscope, respectively. All measurements
are generated from the ground truth trajectory. All agent’s



p [m] v [m/s] q [deg] ba [m/s2] bw [ rad/s]
ID CSE ARMSE NEES ARMSE NEES ARMSE NEES ARMSE NEES ARMSE NEES
1 DP 0.046 3.211 0.051 3.07 0.19 1.53 0.002 0.81 0.004 0.46
1 DACC 0.045 3.09 0.05 2.88 0.19 1.45 0.002 0.87 0.004 0.44
1 DAH 0.046 3.09 0.051 2.88 0.19 1.46 0.002 0.87 0.004 0.44

2 DP 0.72 2.7 0.3 5.28 1.91 1.04 0.001 0.13 0.01 1.03
2 DACC 0.72 2.42 0.3 3.86 1.8 1.04 0.001 0.23 0.01 0.95
2 DAH 0.72 2.42 0.3 3.85 1.8 1.03 0.001 0.23 0.01 0.94

TABLE I: Scenario S1: ARMSE and NEES values of the states estimated in the proposed Q-ESEKF. Real-world IMU measurements
from UAVs are used and described in VI-A, using different fusion approaches: DP, DACC, and the proposed DAH. Note: DACC and
DAH should perform in this setup equivalently. Due to random noise on measurements a slight deviation is given. Best values in bold.

(a) execution time on A20 using DP. (b) execution time on A20 using DACC. (c) execution time on A20 using DAH.

Fig. 3: Scenario S2: Execution time plots of A20, showing the execution time for each filter step: propagation (blue), private observation
(red), and joint observation (yellow). The legends inform about the average and the accumulated time for each type. Note: As joint
observations are performed on an interim master, the execution is rather short for the other participants and lowers the average of joint
observations (e.g in Figure 3a). The increasing maintenance effort can be clearly seen for DACC in Figure 3b, which increases at t ≈ 10 s
as joint observations began. Average timings are listed in Table II. Further details are given in VI-B.

p [m] q [deg] [ms] [ms] [ms]
CSE AR AN AR AN t̄prop t̄priv t̄joint

DP 0.076 2.41 1.54 0.69 0.4 35 58
DACC 0.105 5.19 1.91 1.04 0.83 0.28 1.4
DAH 0.106 5.21 1.94 1.09 0.53 0.12 1.6

TABLE II: Scenario S2: Shows the average over 20 agents of the (i)
ARMSE (AR), (ii) NEES (AN), (iii) average propagation time t̄prop,
(iv) average private update time t̄priv, and (v) average joint update
time t̄joint. The agents used the proposed Q-ESEKF with different
fusion approaches: DP, DACC, and the proposed DAH. Problem
formulation in Section VI-B. Best values in bold.

states are initialized correctly with a reasonable uncertainty.
The buffer size was set to 100 elements (horizon of 0.5 s).

Figure 3 and Table II show that DAH outperforms DACC
in terms of total execution time. Using DAH, the execution
time of the estimator was in total 7.87 s, while using DACC,
it was 11.26 s which is 43 % slower. It can also be seen,
that the processing time of joint observations are in DAH
approximately 33 % higher as in DACC. Concluding, DAH
keeps constant maintenance complexity for propagation and
private filter steps, if the buffer size satisfies the period
of joint observations. The estimation performance of DAH
seems to be a bit worse than DACC, despite there should be
no difference. Figure 4 provides a snapshot at t = 8.5 s of
the simulation performing DAH-CSE.

VII. CONCLUSION

Driven by the need to reduce local maintenance effort
using fast propagation sensors, this paper introduces a new
scheme for distributed Kalman filters, that performs the
forward propagation of interdependencies at the moment
they are needed. Our experiments manifest that the proposed
DAH approach outperforms DACC, while achieving the

same filter performance in terms of accuracy and credibility.
It can be seen as direct extension to DACC that requires
additionally a small amount of statically allocated storage

Fig. 4: Scenario S2: Top view on 20 agents’ a priori estimates, their
1σ uncertainty bound, as well as the ground truth position at t =
8.5 s. Some are performing joint observations (indicated by orange
lines connecting the corrected poses) that compensate drifting states
due to noisy IMU propagation. As only 6 agents are provided by
absolute position measurements, these joint observations guarantee
that the uncertainty remains bounded. The problem is described
in Section VI-B.



per estimator. DAH allows to render CSE distributed with
support for generic measurement and propagation models,
communication is required only in case of joint observa-
tion and no maintenance effort for private observations. By
choosing an appropriate buffer size, the maintenance effort in
propagation steps can be completely shifted to the moment
of joint observations making DAH a fully scalable CSE
approach with constant complexity both in communication
and maintenance.
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