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Abstract— In this paper, we apply an observability-aware
trajectory generation method to the estimation of geometric
and inertial parameters of an Unmanned Aerial System (UAS).
These parameters are critical for reliable control and agile
maneuvers, especially in the context of reconfiguration of the
aerial vehicles during manipulation or transportation tasks. An
extended observability analysis provides detailed insights on
the observable and inter-state dependencies. We employ the
observability-aware motion generation approach considering
full system dynamics and self-calibration parameters. Improve-
ments in the absolute error of BrBP estimates of up to 46.8%
and decreases in uncertainty of up to 87% are achievable with
this approach. Experiments with an autonomous quadrotor
platform validate the approach.

I. INTRODUCTION AND RELATED WORK

UAS (Unmanned Aerial Systems) as highly agile plat-
forms push for robust, stable, and accurate state estimation
and self-awareness for autonomous safe mission execution.
Most applications combine different sensors to improve
accuracy and allow redundancy of at least the control states
(current position, velocity, and attitude). More sophisticated
approaches (e.g. [2], [3], [4]), further include system calibra-
tion states to account for the on-line estimation of extrinsic
sensor misalignment and intrinsic biases. This improves the
accuracy of the control states [5] and allows for the health
monitoring of sensors (e.g. misalignment after collision) and
their signals (e.g. magnetic distortions). We focus on the
so-called self-calibration capability and the extension with
states for geometric and inertial properties of the UAS. Such
properties are mass, the center of mass, moment of inertia,
and extrinsic misalignment between the system’s body frame,
the IMU, and exteroceptive sensors (e.g. [1], [6], [7], [8]).
Estimating these on-line enables the system to adjust not
only to varying payloads or mechanical modifications during
transportation or manipulation tasks [1], [9], [10], but also to
other physical changes due to exogenous factors, and failures
during the mission. This renders the UAS highly versatile and
adjustable for different missions over a long duration without
human intervention for system re-calibration. In particular,
adding inertial properties to the estimation process via rotor
speeds as system input in the UAS model, even IMU failures
can be detected and compensated. Adding a multitude of
states to a system asks for a thorough observability analysis
(e.g. through [11]) to ensure proper state estimation at all
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Fig. 1. Euclidean distance (or RMSE) convergence of EKF calibration
state estimates compared to ground truth [1] for 20s random (red) and 20s
optimized trajectories (blue). Curves show averages of the estimates with
1σ illustrating the variation in estimation accuracy over different trails.

times. As shown in [12], [13], not only the sensor quality
plays an important role for the state estimation performance
but also, and statistically probably more important, the
generated system input (i.e. informative robot trajectories). It
is vital to generate trajectories both enabling well observable
states and avoiding unobservable modes. To achieve that,
we make use of the non-linear observability analysis, [14]
for identifying continuous symmetries and jointly observable
states in the system, and [15] for the observability-aware
optimization metric. The observability-aware optimization
metric is an extension of the previously introduced idea in
[16] of using the observability Gramian as measure of the
quality of observabiltiy of a system. With that in mind, this
paper focuses on the application of the observability-aware
motion generation on a geometric and inertial properties
based estimation framework [1]. It also demonstrates the
need and effectiveness of well-chosen trajectories for fast
and accurate state convergence. We present the following
contributions: The extension of the quality of observability
metric E2LOG [12] to include geometric and inertial system
properties through the inclusion of extended differentially flat
trajectory properties. A detailed observability analysis of the
unobservable, jointly observable, and fully observable states
of a GNSS sensor configuration. The demonstration of the
beneficial effect (absolute error reduction of up to 178% and
a decrease in uncertainty of up to 87%) of E2LOG optimized
trajectories comparing our approach to the state of the art and
random trajectories on the real system.
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TABLE I. Visual overview of the observability analysis for the system setup described in Sec. II and [1].

Available
Measurements

state vector
dimension

observable
dimension W rWM WvWM qWM MωWM m M i BrBM BrBP

BrBI

[x, y]
ba bω

IMU only 18 17 u u u ok J1 ok ok u ok xy:ok z:J1 ok
GNSS only 23 22 ok ok ok ok ok ok xy:ok z:J2 xy:ok z:J2 u u u
Pose only 23 22 ok ok ok ok ok ok xy:ok z:J3 xy:ok z:J3 u u u

IMU & GNSS 31 31 ok ok ok ok ok ok ok ok ok ok ok
IMU & Pose 31 31 ok ok ok ok ok ok ok ok ok ok ok

II. OBSERVABILITY-AWARE TRAJECTORY GENERATION

The system model from Wuest et al. [1] is the starting
point of our analysis and optimization. It assumes additive
Gaussian noise in the process model f(x,u) and measure-
ment models h(x,u) for the design of the EKF.

Fig. 2. Overview of the coordinate frames [1].

Following the representation in Fig. 2, we consider a fixed
world frame W, the center of mass frame M, and the body-
fixed frame B. A time-dependent state vector xt contains all
control states: position of M W rWM , velocity of M WvWM ,
orientation of M qWM , and angular velocity MωWM with
respect to. W. We further specify a time-independent state
vector xc. This state vector contains geometric and inertial
parameters of the UAS: mass m, the moments of inertia M i,
and the position of the center of mass BrBM with respect to
B as well as self-calibration parameters of the sensors in use.
An on-board IMU in the frame I measures linear acceleration
and angular velocity. The VIO based pose sensor measures
the position and orientation of the frame P with respect to
W. Calibration states of the IMU and the pose sensor are
their position on the UAS BrBI , and BrBP respectively. The
authors refer to [1] for a more detailed study.

A. Observability Analysis

A system is fully observable if the rank of the observability
matrix O is equal to the size of the state vector. The
observability matrix O of a non-linear system is composed
of stacked gradients of Lie derivatives ∇Lhi , as shown in
[11]. Lie derivatives, therefore, are based on the measurement
model h (x,u) and zero-noise assumption, as suggested by
[2].

Lh0 = h (x,u) Lhi+1 =
∂Lhi
∂x

f(x,u) (1)

Note that we did a variable substitution u∗i for the squared
rotor speeds as system inputs to enable the control-affine
form.The null space of O and its spanning dimensions show
unobservable and jointly observable states [14]. As entries
depend on the current state values and control inputs, one
can infer that the choice of trajectory impacts the quality of
observability.

B. Discussion of Observability

We conducted additional observability analyses with this
method to complement the work of [1]. This paper adds
the study of global navigation satellite system (GNSS)
measurements in isolation as well as combined with IMU
information. GNSS measurements only provide position in-
formation, and it shows that the attitude information of the
pose measurements yields redundant information. Position
measurements and inertial readings already render the system
of [1] fully observable. Tab. I shows a complete overview.

1) Measurements from GNSS: Having only position mea-
surements available and no IMU measurements renders the
calibration states of the IMU BrBI , ba, and bω unobservable.
With the trajectory states xt, the overall state vector consists
of 23 elements. The corresponding observability matrix O
shows a rank deficiency of 1, caused by rBPz being jointly
observable with rBMz

. The position sensor’s placement on
our UAS allows the assumption rBPz

= 0 to make the
system fully observable. As one can see, additional attitude
information from a pose sensor adds no information. Hence,
position measurements from the GNSS or pose sensor will be
sufficient for this setup. On another note, the angular velocity
MωWM is observable even without IMU measurements. The
IMU only serves as an update if available and improves
estimation quality.

2) Measurements from GNSS and IMU: This configu-
ration represents the outdoor use cases of a UAS, which
makes it an interesting configuration to study. Adding rBIz
to the state vector results in a joint observability between
rBIz , rBPz , and rBMz . On our system, rBIz aligns with
the body frame B in the z-direction, and the assumption
rBIz = 0 renders all three states observable. Furthermore,
position measurements make m observable, which results in
baz being observable as well. The rank test shows a fully
observable system and, therefore, position measurements are
sufficient for the estimation. In other words, the estimator
can infer the system’s orientation based on system dynamics
and the resulting change in position.

These insights are important and need to be considered in
the optimization of individual states because unobservable
states won’t allow convergence during optimization.

C. Expanded Empirical Local Observability Gramian

A state is well observable if the system output changes sig-
nificantly by slightly perturbing the state value [4], [15]. The
Expanded Empirical Local Observability Gramian (E2LOG),
[12], uses this fact to generate estimator-implementation
agnostic observability-aware trajectories for a variety of
systems. Inspired by [12], we approximate the input-output



map of a system with the n-th order Taylor expansion at
t0. Through the Jacobian, we obtain the sensitivity of the
output with respect to the control input and state change.
This reflects the idea of (quality of) observability.

∂

∂x
ht0(x(t),u(t)) =

n∑
i=0

δti

i!
∇Lhi . (2)

This time, the Lie derivatives are based on the control-
nonaffine form of the system dynamics. With that, over the
time horizon T follows:

W̃t0,T (θ) =

∫ T

0

Kθ,t0(t0 + t)TKθ,t0(t0 + t)dt, (3)

Kθ,t0(t) =
∂

∂x
ht0(xθ(t),uθ(t)), (4)

where xθ(t) and uθ(t) represent the system states and
control inputs respectively. Both derive from a trajectory
using the differential flat properties of the system [17].
This mapping from the 3D UAS trajectory as piece-wise
polynomial to xθ(t) and uθ(t) is key to the optimization
procedure highlighted in the following section. We refer
to [12] for a more thorough derivation of the Expanded
Empirical Local Observability Gramian (E2LOG) W̃0(θ).
This gramian makes it possible to generate trajectories that
improve the system’s convergence and make states better
observable in general. Multi-state optimizations with the
E2LOG require K to use nominal values of all states. This
avoids small changes in one state resulting in output changes
dominating over other state’s contributions. Column scaling
the states with their corresponding standard deviations does
this normalization. We ran 30 different random trajectories
in order to determine each state’s standard deviation.

D. Non-Linear Optimization & Data Generation

Wuest et al. [1] show the potential of estimating geometric
and inertial properties of a UAS. Their results also show sub-
optimal state convergence behavior across the state vector.
These issues mainly manifest in very slow convergence
and/or imprecise estimates. One example for both issues is
BrBP with a final error of more than 15% and 25% in x- and
y-direction respectively. We will show, with BrBP , that we can
estimate geometric and inertial self-calibration parameters
of a UAS faster and more precise using the optimization
problem as follows [12]:

maximize σmin(W̃0(θ))

subject to θ suitable for task
θ dynamically feasible

(5)

In words, the cost function maximizes the sensitivity of the
output with respect to the input and states in the dimension
where this sensitivity is lowest. We implemented this process
in MATLAB and initialize the optimization with randomly
generated trajectories. Non-linear inequality constraints keep
the optimization within within system and dynamic limits:
A maximum angular velocity of ±2π, a maximum travel of
1m in all directions, maximum and minimum rotor speeds

of 16400 rpm and 5500 rpm, and a maximum roll and pitch
angle of 70◦. These constraints demand knowledge of the
mapping from piece-wise polynomial trajectory to individual
rotor speeds. Mellinger and Kumar [17] show how one can
get body velocities and accelerations from a sequence of
differential flat outputs consisting of 3-D positions and yaw
angles. With knowledge about the setup, the allocation matrix
mapping velocities and accelerations to rotor speeds can be
derived. We extend the E2LOG approach in [12] with this
element. Generating one optimized trajectory in MATLAB
took around 5h on a IntelrCoreTM i7-7820HQ notebook,
reflecting the higher problem complexity compared to [15].

III. EXPERIMENTAL RESULTS

In this section, we present the experiments that have
been performed in the ARPL lab at the New York Uni-
versity indoor testbed with a flying space of 7 × 5 ×
4m3. The UAS platform is a so-called quadrotor, and uses
a QualcommrSnapdragonTM board for on-board compu-
tations. The ground truth values for each geometric and
inertial parameter of the quadrotor can be found in [1].
Software components during the experiments are a position
and attitude controller, and a visual-inertial odometry (VIO)
based pose estimation algorithm running at 30Hz. The VIO
uses a down-facing camera and an IMU at 250Hz. For more
details on the localization and control approaches, the reader
can refer to our recent work [18], which demonstrates agile
flight maneuvers in indoor environments.

A. Evaluation Method

We take the EKF results from [1] as a baseline for our
performance evaluation. To show the beneficial effects of
observability-aware motions, we tested two types of tra-
jectories with the UAS. The first trial of trajectories are
random ones with close to the same constraints as the
optimized ones. Intuition tells us that those will perform
worse than or as good as Lissajous figures. Then, a trail with
BrBP optimized trajectories will show the improvement in
performance achievable. All trajectories have a 20s duration.
A sampling-based method optimizing the EKF’s end co-
variance is not considered due to the significantly increased
computational effort. Preiss et al. [12] show similar effects
of the end covariance optimization to self-calibration states
as E2LOG, but with 18 times longer computation time. VIO-
based pose and IMU measurements have been recorded with
ROS and are processed in the implemented EKF framework.
All following evaluations and plots use the average of the
estimates �̂ and covariances σ2

� from each trail.

B. Discussion of Results

First we discuss the influence on B r̂BP because it has been
a problematic state in [1]. The estimate of B r̂BP showed
an absolute error of −7.32mm in x-, −4.90mm in y-,
and −2.14mm in z-direction respectively. The euclidean
distance or root mean squared error (RMSE) at the end of
the trajectory is 9.1mm. Random trajectories generate an



Fig. 3. Estimation result for the geometric and inertial parameters
through the EKF based on 20s random trajectories (left) and 20s optimized
trajectories (right). Curves show averages of the estimates and 1σ standard
deviation as shaded ares over 10 test flights per trajectory type. The x
variables are blue, y variables are red, and z variables are green.

average absolute error of 2.82mm in x-, −8.56mm in y-
, and −5.62mm in z-direction with a RMSE of 15.8mm.
This equals to a relative change in absolute error of −61.5%,
+74.7%, and +162.6% respectively. In contrast, B r̂BP from
the optimized trajectories shows on average an absolute error
of 3.89mm in x-, 3.83mm in y-, and −7.18mm in z-direction
with a RMSE of 12.1mm. The high error in z-direction is
due to rBPz

being zero and the resulting lack of excitement.
One needs to take into account that the comparison against
a single Lissajous figure might skew the results. A relative
change in absolute error with respect to [1] of −46.8%,
−21.8%, and +235.5% shows the improvements possible
with optimized motions. Comparing this error with the
random motion, we look at +37.9%, −55.2%, and +27, 7%.
Small offsets of the estimates can exist because of unmodeled
effects (e.g. air drag or inaccurate thrust approximation). We
optimized for the whole state BrBP , meaning that individual

components might have a higher absolute error (difference
in region of 1mm) than other trails, but the RMSE shows
an overall improvement. This can be seen in Fig. 1, where
B r̂BP converges at around 5 seconds to its value while the
random trajectories struggles to converge this fast. Although
we specifically ran the observability-aware optimization for
BrBP , the therefor generated motion is also beneficial for
other states as seen in Fig. 3. On the other hand, states
not optimized for and requiring different specific motion (as
e.g. M iz requires large yaw motion for good convergence)
naturally show lower performance. This causes the RMSE
of M î to drift a bit off at the end. The IMU calibration state
B r̂BI improves as well with a relative changes of −26.0%
and −48.2% compared to [1]. We see at least similar
performance for the other states. The optimized trajectories
are able to decrease the variance values of σ2

BrBP
by up to

−82%, −63%, and −79% compared to random motions. A
comparison with [1] is due to the lack of data not possible.
Another good example is σ2

M i with up to −34%, −65%, and
−87%. This shows the positive effect on the uncertainty of
the EKF’S estimates.

IV. CONCLUSION

In this paper, we addressed the problem of observability-
aware motion generation for complex state estimation. It
presents an optimization approach for geometric and inertial
self-calibration of UAS outperforming the current state of the
art both in convergence accuracy and estimation precision. A
thorough observability analysis revealed the joint observabil-
ity of the different frames on the rigid body with respect to.
their alignment in the z-direction (or one general direction if
they had rotational offsets against each other). This supports
the assumptions in [1] that the body and IMU frame have
a known zero-z-offset, which renders the remaining states
observable due to their joint inter-linkage. Furthermore, it
showed that position measurements are sufficient to render
the states fully observable. Therefore, attitude measures are
redundant information. The optimization framework in [12]
requires differential flat trajectories to optimize for selected
states. For our problem set, we extended this differential
flatness to individual rotor speeds of the UAS. Finally, the
findings of the observability analysis and the extensions
in the E2LOG approach led to a framework achieving an
improvement in the absolute error of BrBP of up to −46.8%
compared to the state of the art. While maintaining the same
or even lowering the convergence rate, a decrease in the
EKF’s variance of up to −87% is achievable. There is a clear
motivation for using observability-aware motion generation
for geometric and inertial self-calibration on UASs with
these improvements. Future works will consider the ability
to extend this framework to estimate properties of physically
interconnected aerial systems. We would also like to inves-
tigate the performances for a large repertoire of grasping
maneuvers, where the system needs to reconfigure and re-
estimate in real-time the geometric and inertial parameters
based on the payload.
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