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MaRS: A Modular and Robust Sensor-Fusion
Framework
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Abstract—State-of-the-art recursive sensor filtering frame-
works allow the fusion of multiple sensors tailored to a specific
problem but do not allow a dynamic and efficient introduction
of additional sensors during runtime - an important feature to
enable long-term missions in dynamic environments. This paper
presents a robust, modular sensor-fusion framework that enables
the addition and removal of sensors at runtime. These sensors
could be not a priori known to the system. The framework handles
the complexity of system and sensor initialization, measurement
updates, and switching of asynchronous multi-rate sensor in-
formation with sensor self-calibration in a truly modular and
generic design. In addition, the framework can handle delayed
measurements, out-of-sequence updates, and can monitor sensor
health. The introduced true-modularity is based on covariance
segmentation to allow the isolated (i.e., modular) processing of
propagation and updates on a per-sensor basis. We show how
crucial properties of the overall state covariance can be main-
tained as naive implementation of such a modularization would
invalidate the covariance matrix. We evaluate our framework for
a precision landing scenario switching between combinations of
GNSS, barometer, and vision measurements. Tests are performed
in simulation and in real-world scenarios to show the validity of
the introduced method. The presented framework will be open-
sourced and made available online to the community.

Index Terms—Sensor Fusion, State-Estimation, Modularity,
Autonomous Navigation

I. INTRODUCTION

STATE-Estimation is an essential part of robotics and
engineering. The accurate knowledge of the location of

a robotic platform in the world is crucial for navigation,
control, and manipulation. Dedicated estimators are repeat-
edly developed, and most existing approaches are tailored to
accomplish a specific task on specific hardware under specific
conditions, limiting re-usability if the scenario, sensor suite,
or the platform changes. Current open-source and state-of-
the-art Extended Kalman Filter (EKF) frameworks start to
address this issue, but they are designed to handle a setup
of sensors that is pre-defined during the compilation time or
start-up phase of the filter. The reference frames of additional
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Fig. 1. True modularity. Left: Structure of a state-of-the-art multi-sensor
fusion approach. The covariance matrix is always fully updated. Right:
Modular segmentation of the update and propagation process. Only the core
and currently active sensor state covariance is used to perform the update.

sensors are also often pre-defined and are not dynamically
adapted to the current situation. Such frameworks do not allow
the initialization of sensors during runtime, especially if the
sensor definition is not a priori known to the system. This
limits their application to static hardware configurations and
does not support novel applications with modular platforms
that can be extended during runtime with sensor modules not
known to the core framework (e.g., connectable snake robots
or humanoids with exchangeable end-effectors).

A major challenge is that additional sensors require ad-
ditional calibration states because they are rarely aligned
with the robot’s estimated body frame, nor are they in-
trinsically calibrated. Therefore, the number of calibration-
states increases with the number of sensors. An increasing
number of states requires more operations to perform the
estimation (e.g., for propagation and updates in filter-based
estimates). The processing time of a naive estimator increases
cubically O(n3) with the number of sensors n due to matrix
multiplications. This effect is even worse for delayed and out-
of-sequence measurements in a multi-sensor system because
delayed signals trigger numerous re-computation steps should
the estimator remain credible. Hardware synchronization can
mitigate this issue, but it may not always be possible (partic-
ularly with dynamic sensor rates). While non-recursive filter
formulations (e.g., graph optimization-based) have been shown
to be able to initialize previously unknown sensors during
runtime, their computational load makes them ill-suited for ex-
ecution on resource-constrained platforms such as Unmanned
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Fig. 2. Estimated state variables with self-calibration are shown as dotted
lines; measurements and one fixed global reference frame (e.g. Global
Navigation Satellite System (GNSS)) are shown as continuous lines.
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Aerial Vehicles (UAVs). Here, we present a recursive, unified,
and modular multi-sensor-fusion framework with support for
efficient, multiple asynchronous updates resulting in constant
complexity independent of the number of sensors. It further
provides generalized interfaces that allow an easy exchange of
components between projects and collaborators. The contribu-
tions of this work are the following:
• The design and implementation of a truly modular multi-

sensor fusion framework as a recursive filter with the
capability of on-line addition of previously undefined sen-
sors with delay and asynchronous measurements. These
sensors will be self-initialized and self-calibrated based
on their extrinsic states, which are added to the system.

• A novel approach for correct covariance segmentation,
which preserves the properties of a covariance matrix
throughout the isolated processing of individually joined
segments. This renders the framework both consistent
and computationally tractable on constrained platforms:
the complexity depends only linearly on the number of
sensors and the propagation step constant/independent of
the number of sensors.

• Statistically relevant tests in simulations and verification
of the proposed framework with real data.

On-line sensor addition is achieved by decoupling the navi-
gation states (e.g., position, velocity, and attitude for a mobile
system) from calibration states of individual sensors (e.g.,
the transformation between sensor and agent body frame).
This allows the introduction of a sensor-update-module during
runtime (e.g., through independently launchable nodelets in
a Robot Operating System (ROS) environment). Our design
also accounts for offsets between global and local references
maintaining smooth state evolution upon inclusion of a new
reference frame. To maintain consistency despite this modu-
larization, we introduce a covariance segmentation approach,
which retains the filter’s credibility, to correctly propagate
isolated covariance components by maintaining fundamental
properties of covariance matrices. This is crucial for the correct
application of propagation and update steps. A naive approach
would result in ill-conditioned covariances. The presented
approach reduces the complexity of updates and renders the
processing time of the propagation as well as the update phase
constant and independent of the number of sensors.

The approach provides continuous self-calibration (see
Fig. 2) while keeping maximum flexibility at a low computa-
tional cost. We validate the proper propagation of information
(i.e., observability properties), the credibility of the overall
approach, and the performance with a statistically relevant
number of simulations. We illustrate the feasibility of our
approach for computationally-constrained platforms with real-
world experiments and an UAV. The experiments are per-
formed with Inertial Measurement Unit (IMU) driven dynam-
ics; however, different dynamic formulations are possible, and
the framework can, of course, be deployed on other platforms,
not limiting the contribution to UAVs.

II. RELATED WORK

State estimation with pre-defined sensor suites and com-
plementing calibration states, including self-calibration and

delay compensation with multi-sensor rates, have been studied
thoroughly in literature. The Single Sensor Fusion framework
(SSF) presented by [1] covers the topics of online self-
calibration and accurate handling of sensor delays (out-of-
sequence updates). An extended version of SSF was used by
[2] in a multi-sensor setup for long-duration autonomy. The
Multi-Sensor Fusion framework (MSF) has been introduced by
[3], and [4] has presented similar work that details relative and
absolute sensor updates using local vision updates and global
position information as an example. While both frameworks,
SSF, and MSF can accommodate sensor outages, the work
of [5] extended the MSF framework and studied the topic
of online sensor initialization and switching based on sensor
availability and health metrics.

[6] introduced a method for the handling of delayed mea-
surements, designed for computationally-constrained embed-
ded systems. [7] presented a generalized extended Kalman fil-
ter implementation based on ROS. This framework defines its
sensor structure during startup but does not allow modification
of the setup during runtime. Sensor measurements are assumed
to be expressed in the robot’s origin. The framework does
not introduce sensor calibration states and does not perform
online self-calibration. It neither estimates Gyroscopic biases
for the IMU, and the process noise of the system is tuned
by hand. The method presented here goes further and allows
the incorporation and removal of sensors that are not a priori
known to the system during runtime by decoupling the core
states from the sensor states. This allows a decentralized yet
tightly-coupled processing of sensor information.

The work of [8] describes the state-of-the-art centralized
and decentralized sensor-fusion for driver-assistance systems
and discusses the current challenges of this approach. In short,
centralized approaches allow tightly-coupled estimation but
require high communication bandwidth. Existing approaches
are also hard to extend and require extensive workload for
the implementation of new sensor instances. State-of-the-art
decentralized systems make use of loosely-coupled sensor
integration, which has the disadvantage of inconsistencies
because of inadequate handling of the sensor and core states
cross-covariances. The focus of the presented work relies
specifically on modularity and consistency/credibility; how-
ever, it will also benefit the development of decentralized
systems (e.g., swarms). It allows tightly-coupled sensor-fusion
with reduced bandwidth between system components because
the states of a sensor instance can be stored and processed
locally. It further simplifies the development and extension
of systems by minimizing the workload for integrating new
sensors and allows online retrofitting.

The work of [9] and [10] studied the modularization
of multi-sensor fusion and presented a vector graph-based
method which employs a real-time batch optimization process.
Both authors’ work focuses on the optimal and the minimal
selection as a subset of the given sensor suit and covers
observability for sensor selection. The authors perform plug
and play experiments by abstracting the sensor to avoid the
direct use of physical measurements. It is important to note
that the use of vector graph-based methods is limited in terms
of scalability, especially in combination with computationally-
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constrained resources. The presented work is different because
it focuses on a truly modular approach with a recursive
filtering technique. The presented approach minimizes the size
of covariance matrices, reducing the number of mathematical
operations and increasing performance/scalability. To the best
of our knowledge, no truly modular recursive filter approach,
as presented in this paper, has been reported in the literature.

III. METHOD

A. Truly Modular Sensor Fusion
Recursive filters such as EKFs require all states and co-

variances during the update and propagation phase. A typical
setup of a filter for estimating a system, defines core states that
describe the essential variables of a platform that are necessary
for propagation and to perform controls. We use the core
state definition established by [1] and shown by Equation (1).
The essential core states are the translation from the world
to the IMU/body frame WpWI ≡ pWI expressed in the world
frame, velocity vWI , the orientation of the IMU in the world
frame qWI , gyroscopic bias bω and accelerometer bias ba,
with CpAB = R(qCA)ApAB and R(qCA) ≡ RCA.

XC =
[
pT

WI ,v
T
WI ,q

T
WI ,b

T
ω,b

T
a

]T
(1)

Generally, for mobile systems, the state and covariance
can be propagated by an IMU driven and time-dependent
dynamic model. The following differential equations govern
the state-dynamics, with Ω(ω) being the right side Quaternion
multiplication matrix for ω, gravity expressed in the world
frame g, and nba , nbω being zero mean white Gaussian noise
of the accelerometer and gyroscope measurements.

ṗWI = vWI (2)
v̇WI = R(qWI)

(am − ba − na)− g (3)

q̇WI =
1

2
Ω(ωm − bw − nw)qWI (4)

ḃω = nbω
, ḃa = nba

. (5)

If the system provides additional sensors, they are likely
not aligned with the center of the platform. The extrinsics of
individual sensors can be implemented as calibration states
and may be estimated online. Given a system with e.g., two
additional sensors S1 and S2 the core state can be augmented
with their extrinsic calibration states accordingly

X =
[
XC; XS1 ; XS2

]
. (6)

The observation of additional sensors introduces cross-
correlations between the core and sensor states, resulting
in cross-covariances in the covariance matrix P. The joint
covariance matrix after sensor observations is

P =
PC PCS1

PCS2

PS1C PS1
0

PS2C 0 PS2


 , (7)

with PCS2
= (PS2C)T and sensors S1 and S2 assumed to be

independent to each other.
Starting from this structure, we propose a segmentation

approach that isolates the core and sensor covariance compo-
nents. Performing the propagation on the isolated core states
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Fig. 3. The figure shows a representative sequence for the truly modular
filter process with two sensors. The covariance correction element performs
two steps, first the generation of the state-transition blocks for the propagation
of the sensor covariance, and second, the Eigenvalue covariance correction.
Please note that the sensor covariance and cross-covariance (orange and purple
boxes) are stored at the time of their update and do not evolve over time until
their next update. Sensor measurements occur at t = 21, 26, and 31s.

reduces the size of the covariance matrix, minimizing com-
putational effort. A possible filtering routine with covariance
segmentation for a two-sensor scenario is shown by Figure 3.

The scenario describes the filtering procedure for a time
section between t=0 s and 31 s. The filter is initialized at t=0 s,
two sensors have been added and initialized during runtime, S1
at t=5 s, and S2 at t=9 s. The covariance handling is performed
as follows: The core covariance and states are propagated
separately in the time t=10 s and 20 s. Sensors S1 and S2 have
not been part of this propagation. S1 provides a measurement
at t=21 s; at this point, the latest sensor covariance PS1 and
cross-covariance with the core states PCS1 at t=5 s (orange
segment) is joined with the latest core state covariance PC at
t=20 s, and the update for t=21 s is performed. The sensor
covariance PS1 and sensor/core cross-covariance PCS1 is
separated from the core covariance PC afterwards and stored
until the next update of S1 at t=31 s.

The core state is propagated until the measurement update
of S2 at t=26 s, and the latest covariance segments PC of the
core (t=25 s) and S2 (t=9 s) are used for the update at t=26 s.
At this point, the process continues with the same procedures:
the propagation of the isolated core covariance PC and the
update of individual sensor states with the core. One important
aspect is that measurement updates of one sensor are separated
from the state of any other sensor (see Eq. (7)). This is one of
the key components of the introduced covariance segmentation
that allows true modularity. The routine shows that any sensor
can be added or removed without interfering with other sensor
covariances. We call this truly modular since only the minimal
representation of the current state, and covariance segments are
joined for a particular update or propagation.

B. Consistent Truly Modular Covariance Estimation

The described covariance segmentation introduces two prob-
lems. Due to this approach, two or more sensors are never
updated in the same step, and thus, no cross-covariance
terms between sensors are generated. We make the design
choice that the cross-covariance between any sensor states
are zero (see Eq. (7)). Thus, all additional auxiliary states of
individual sensors are independent, but the covariance of an
individual sensor and its cross-covariance with the core state is
maintained (see Fig. 1). An intuitive physical example can be
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given by using a 3DoF magnetometer and 3DoF GNSS sensor.
The rotational calibration of the magnetometer with respect to
the IMU and the translation of the GNSS with respect to the
IMU do not have a physical relation. Although these cross-
covariance do exist from an analytical point of view; they
are negligible as the experiments in Section IV-A validate.
Thus, negligible losses in accuracy allow vast performance
improvements given the gained recursive modularity.

The second problem is the validity of the covariance matrix
for the joined covariance segments. The covariance segments
were calculated for different points in time and do not include
the same amount of sample data, which leads to non-positive-
semidefiniteness. Thus, we propose pre-update routines to
reintroduce the information that was not handled during the
propagation and individual update phases. We then select the
closest valid (positive-semidefinite) covariance matrix from
this augmented matrix.

1) Propagation: The information that each isolated sensor
component was missing during the propagation phase can be
fetched and propagated forward consistently to the current
update step. In [11] it is shown that the cross-covariances can
be independently propagated using the state-transition matrix
series. The state-transition matrix series Φ(m,n) between two
time instances t(m) and t(n) is defined as

Φ(m,n) = ΦnΦn−1 . . . Φm with t(m) < t(n), (8)

with Φk as the discrete state-transition matrix Φk|k−1 that en-
codes the state dynamic, evaluated based on the system input,
and integrated for the propagation step δt = t(k) − t(k − 1).
The corresponding cross-covariance PCS between core C and
sensor S can be propagated from the time instance t(m) until
t(n) with

PCS,n(−) = ΦC(m,n)PCS,mΦS(m,n)
T
, (9)

ΦC(m,n) being the state-transition matrix series of the core
and ΦS(m,n) for the sensor state. Storing a history of
state-transition matrices, allows the generation of a state-
transition matrix series to propagate sensor covariance and
cross-covariance between core and sensor states. The sensor
covariance PCS inherits the information that was not intro-
duced while the core PC was propagated in isolation. This
on-demand information inheritance allows to only compute
the core states at each propagation step, keeping this step at
constant complexity independent of the number of sensors, but
requires a computational spike for the pre-update step.

2) Updates: [11] also showed that indirect observations
affect core and sensor states because of cross-correlations
between the core and individual sensor states. This means that
a sensor observation, e.g., provided by S1, results in an update
and correction of states correlated with the core state e.g.,
those of S2. Due to this, sensor covariances can usually not
be removed and reintroduced directly. Considering Figure 3,
the removal of a previously introduced sensor S1 at t=21 s and
its reintroduction at t=31 s after other measurement updates
have been performed (S2 at t=26 s), invalidates the covariance
matrix, which becomes non-positive semidefinite and is called
a pseudo covariance matrix. This non-continuous evolution of

the segmented covariance matrix can be corrected by enforcing
the required properties of covariance and correlation matrices,
respectively. Covariance matrices are symmetric and positive-
semidefinite P ∈ Sn

+, which ensures that its correlations
are coherent, but it is not guaranteed that the combination
of covariance segments, as described above, satisfies this
property. As an example: Given the covariance matrix P
in Equation (10): Let PAB and PBC be a positive cross-
covariance between the states. Due to this relation, PAC needs
to represent a positive correlation as well.

P =


PCA

PBA

PA

PCB

PB

PAB

PC

PBC

PAC
 ∈ Sn

+ (10)

A covariance correction step needs to be applied to accom-
modate this issue. [12] and [13] discuss a variety of methods
to estimate the nearest positive-semidefinite covariance matrix
of a given pseudo covariance matrix. The more interesting
approaches are the Eigenvalue method and the Scaling/Hy-
persphere decomposition with angular parametrization, which
have not been applied to the field of state-estimation to our
knowledge.

The scaling method uses an optimization process to min-
imize the Frobenius distance (lower caps are the scalar ele-
ments of a matrix) A =

∑n
i

∑n
j (pi,j−p̃i,j)2 with respect to a

given covariance matrix where P is the true covariance matrix
and P̃ is the closest approximation. The Eigenvalue method
approximates a positive-semidefinite matrix by correcting neg-
ative Eigenvalues. [14] proves that the Eigenvalue method
also minimizes the Frobenius norm. Due to its deterministic
nature and the lower complexity, the Eigenvalue method is
the preferred choice for the presented real-time estimation
problem. To perform the Eigenvalue correction, the first step
is to decompose the covariance matrix P = DEDT that
needs to be adapted. E is a diagonal matrix with Eigenvalues,
and D are the Eigenvectors. If the covariance matrix is non-
positive-semidefinite, then a subset of the Eigenvalues E(<0)

is negative. These can be corrected by performing the:
• Absolute Eigenvalue correction (ABS), to preserve the

dimension that is spanned by the Eigenvectors.
• Zero Eigenvalue correction (Zero), performing the mini-

mal change required to gain a positive determinant, and
• Delta Eigenvalue correction (Delta), which sets the neg-

ative Eigenvalues to a positive empirical parameter.
The covariance matrix is then constructed based on the cor-
rected Eigenvalues and can be used to update the recursive
filter. The three methods are applied for the framework and
evaluated in Section IV-A.

C. Implementation

The framework is structured in logical blocks (see Fig. 4)
that represent the system design. Each component is self-
contained with clearly defined interfaces for exchangeability.
The core logic handles the organizational part of the frame-
work and is the bridge between the buffer (see Fig. 5) and all
sensor components. Its high-level logic determines if measure-
ments are still valuable to the system or rejected (e.g. if the
measurement was delayed and is older than the latest buffered
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entry). The core logic redirects dynamics measurements (e.g.,
from an IMU) to the core state module, which propagates the
core state vector and its covariance. If measurements are as-
sociated with any other sensor instance (e.g., GNSS), then the
core logic requests the latest state entry from the buffer and all
state-transition matrices starting at the previous update of this
sensor until the current step. The information is used to gener-
ate the state-transition matrix series described in Section III-B,
which is used to propagate the cross-covariance terms of the
core and sensor states. The propagated sensor cross-covariance
is used to build a covariance matrix with the corresponding
sensor and core covariance. The resulting covariance matrix is
corrected with the Eigenvalue method and is passed to the sen-
sor instance, which performs the update. The sensor instance
can handle the reduced covariance matrix and state-prior (latest
core and sensor state) as it is done for the classical approach.
This also allows the use of statistical tests (e.g. χ2 test)
within the sensor’s update step. The sensor instance returns
the updated states and covariance segments of the core and
the sensor to the core logic, which stores it in the buffer.
The presented method renders the core agnostic to the sensor
definition, which allows the arbitrary addition of sensors. Each
sensor instance is self-contained, performs its own updates,
and applies the corrections to its states. The same holds if a
new sensor instance is added during runtime. A sensor module
also handles its initialization based on the current core state,
provided by the core logic. The framework is programmed in
Matlab for fast prototyping, and implemented in C++ for high-
performance applications. The C++ framework has minimal
dependencies and only relies on the Eigen library. A ROS
package that uses the API of the C++ library is also provided.

IV. EXPERIMENTS

A. Validity and Observability

Due to the assumptions made in Section III-B, the approach
needs to be evaluated in terms of performance and characteris-
tics in simulation and the real-world. The tests of this section
have three objectives:

1) The evaluation of the three Eigenvalue correction meth-
ods (ABS, Zero, Delta = 0.05).

2) An experimental analysis that unobservable vision states
become observable by introducing a global pose sensor
(i.e., that correct/consistent information is propagated
despite the simplifications).

3) The validation of the overall modular approach.

The setup is as follows: we use the same simulated
ground-truth trajectory to generate 20 independent Monte-
Carlo datasets, which allow a statistically significant number
of repetitions. The trajectory has a duration of 15 minutes with
continuously varying velocity, accelerations, and randomly
introduced smooth orientations. Each sequence has the same
trajectory and the same Gaussian noise characteristics for
sensor and IMU measurements. The datasets provide 200 Hz
IMU measurements for propagation, 6DoF loosely-coupled
vision pose (10 Hz), and 6DoF pose sensor measurements
(50 Hz). The validity of the filter and the underlying modular
approach is quantified by the:

• Average Normalized Estimation Error Squared (ANEES)
described by [15] to determine the filter characteristics in
terms of consistency and credibility,

• State error plots for time-dependent coherence, and
• Root-Mean-Square Error (RMSE) w.r.t. ground-truth,

comparing the classical filter and our modular approach.

One dataset was processed with the classical full filter
approach to establish a baseline for the best-case scenario
(similar to the framework introduced by [3]). Each of the
20 datasets was processed with the modular filter definition
using the three different Eigenvalue correction methods. The
individual result of each state, from the modular approach,
was used to generate an RMSE with respect to the full filter
scenario. The mean of the individual core state RMSE for the
different Eigenvalue correction methods are shown in Figure 6.
The results show that the absolute Eigenvalue correction
method performs best for all states except for velocity, where
the zero method performs slightly better on two out of the
three dimensions.

The same test was performed for the observability validation
with introduced random state initializations for each sequence.
The calibration of the vision-world reference frame for the
vision sensor is unobservable but can be rendered observable
by introducing a global pose sensor. Since we are using the
segmentation of the covariance matrix, the vision and pose
sensor are never jointly present in the covariance matrix in the
same update step. Thus, we need to validate that the usual flow
of information from the pose sensor to the vision sensor, which
contributes to the observability of the vision-world reference
frame due to cross-covariances, can be recovered from the core

Fig. 6. We generated results with the classical full filter approach and 20
datasets each, with the three Eigenvalue correction methods of the modular
approach. The graph shows the mean of the RMSE between the results of the
classical and the modular filter for the essential core states.
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Fig. 7. We applied randomly generated and minorly wrong initializations
of the states that are unobservable without using other sensor modalities to
prove that the method preserves observability properties when using multiple
sensors. The initial covariance encloses the error of the initialization by 3σ
to allow for correct convergence.
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Fig. 8. The vision state pVW is unobservable without additional global
information. The plot shows the convergence of the state error (left) and
standard deviation (right) using the modular approach with the absolute
Eigenvalue method, 20 Monte-Carlo independent datasets, and varying errors
on the initialization of pVW . The result further proves that observability
properties are preserved with the modular approach.

states despite the covariance segmentation for the modular
approach. This is not inherently given as we explicitly de-
couple the covariances of the sensors. If this information flow
is not maintained, our approach would not be adequate for
practical usage. For testing purposes, the state initializations
for the vision sensor are altered for each dataset, and the
covariance is adapted such that the introduced error is enclosed
by a 3σ bound.

The RMSE of the core state is expected to be signifi-
cantly higher if the vision states do not converge. Figures
6 and 7 as well as Table II confirm that the Eigenvalue
correction to a small delta value (∆ = 0.05) shows the
least accurate performance, and motivate the usage of the
absolute Eigenvalue method, which was therefore used for the
remaining experiments and in Section IV. The low RMSE
for the described scenario, shown by Figure 7, and the correct
convergence of the state error and covariance in Figure 8, using
the absolute Eigenvalue method, confirm that the modular
approach preserves observability properties.

The next step is the validation of the overall filter credibility.
We are using a sensor setup with two pose sensors for this
test. The set of 20 datasets is processed with the modular
and full filter setup, and the NEES for each run is used to
generate the ANEES. Figure 9 shows the ANEES for the full
and the modular approach with their corresponding mean. It
also shows the 3σ upper-bound of the ANEES based on the
number of states and datasets. Both ANEES results are below
the upper 3σ ANEES bound, and the individual mean of the
ANEES is shown in Table II.

The error plot for this scenario is not shown because the
state errors are small and well presented by the RMSE in
Table I. Although the mean error is slightly higher due to
our approximation, the credibility is still given. The same
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Fig. 9. ANEES for the core states of the full (blue) and modular (red) filter
implementation using the absolute Eigenvalue method. We used 20 Monte-
Carlo independent datasets to generate a statistically significant characteriza-
tion of both filter methods. The plot shows the mean for both ANEES after the
individual filter method converged. The upper 3σ bound of the the ANEES
represented by the dashed line, is based on the number of core states and
datasets.

evaluation is done for real-world in-flight data with additional
environmental effects such as vibrations of the rotors that
affect IMU readings in Section IV-C.

TABLE I
STATE ERRORS FOR THE FULL AND MODULAR FILTER DEFINITION

pWI [cm] qWI [degree]
x y z roll pitch yaw

Full µ 0.84 0.83 1.27 0.361 0.375 1.707
Full σ 0.08 0.12 0.48 0.040 0.082 0.332

Modular µ 1.51 1.60 1.42 0.509 0.478 1.154
Modular σ 0.29 0.46 0.40 0.125 0.084 0.741

TABLE II
SUMMARY OF THE MEAN FOR THE ANEES RESULTS

States Full Filter Modular Abs Modular Zero

Nav. Core 0.35 0.3 0.3
Pose Sensor 0.9 0.6 13

B. Performance

The performance of the modular filter is another essential
aspect. This section presents timing profiles for a standard
scenario and a scenario that forces the framework to repropa-
gate states because of a delayed sensor measurement. Timing
profiles are generated with three complete runs for each data
point. Figure 10 shows the processing time of the update
and propagation step for a series of 1-10 pose sensors. Each
sensor introduces a 6DoF calibration state for translation and
orientation. The core error state is defined with 15 states,
derived from Section III-C and [1]. Thus, the figure shows
the timings for ’one sensor’ + ’core state’ (21 States) and
’ten sensors’ + ’core states’ (75 states). Considering the case
with 75 states: The corresponding covariance matrix has 5625
elements, which are processed by the classical approach for
each update and propagation step. The benefit of the modular
version is that it only processes the core state during the
propagation phase and the core state with one additional sensor
(21 · 21 = 441) during any update phase.

The evaluation confirms that the propagation (Fig. 10, right)
for the modular approach is independent of the number of
additional sensors while the processing time of the classical
implementation increases with the number of additional states.
The processing time of the update (Fig. 10, left) for the
classical approach grows exponentially while the modular
approach grows linearly. The modular version is more efficient
in terms of the total processing time (update + propagation
phase), starting at a scenario with three additional sensors (see
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Fig. 10. Timing profile for the classical full and modular EKF approach.
The time includes the buffer access and communication of data between the
filter instances. This is done to provide a fair comparison since the modular
approach introduces a slight overhead with respect to the classical approach.
Overall, the modular version still outperforms the classical approach.

Fig. 11. Total running time comparing the full and modular method over a
range of active sensors.

Fig. 11). The reason is a slight overhead due to the covariance
correction, being the state transition block generation and the
Eigenvalue correction, shown by the flow chart in Figure 3.
The overall efficiency of the whole system is higher for the
modular approach due to the decreased sensor update, and core
propagation time.

C. Vision Aided Landing Scenario with Sensor Switching

This section presents experiments with a realistic flight
scenario that is performed in simulation (see Fig. 13) and
the real-world (see Fig. 16). The setup uses a GNSS sensor
that provides position and velocity measurements at 5 Hz with
a position standard deviation of σpg

= [0.85 0.85 2.16]T

according to [16] and σvg
= 0.15 m/s2 for the velocity

measurement as suggested by [17]. The setup also includes
a loosely-coupled vision sensor in the form of a RealSense
T265 with σpv = 0.05 m for the position and σRv = 1 ◦

for the orientation measurement. The sensor suite further
includes an NXP MPXH6115A integrated pressure sensor with
σpp

= 0.15 m. Sensor delays are not intentionally introduced.
Figure 12 shows the flight profile and phases in which the
sensors are switched with the same self-calibration states that
are shown by Figure 2. Sensor states are initialized based
on the current core state, and the covariance is initialized to
enclose the possible error by a 3σ bound. The experiment
is performed with 0.5 m/s velocity for all translations. The
vehicle performs a vision based takeoff until an altitude of 3 m
is reached (segment 1 ). The GNSS and barometric sensors
are initialized in 2 . Since these two sensor instances are not
a priori known to the system, this event represents the addition
of new sensors to the system. The vision sensor is deactivated
at some point after the start of the horizontal translation. The
vehicle performs a 3 m translation in the x-direction, holds
at 4 , translates 1 m in the y-direction, and returns to the
takeoff location 3 . Back in 2 , the vision sensor is initialized
to the current location, and after a short overlapping period,
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Fig. 12. Experiment THL flight profile with sensor switching cues.
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Fig. 13. 3D position estimate (blue) of the simulated sensor switching scenario
and overlayed ground-truth (red). RMSE are shown by Table III. The curvy
path allows for improved yaw estimation using GNSS and pressure sensors.

Fig. 14. State error for the position and orientation of the core state. This
scenario was performed with 20 datasets to gain a statistically significant result
for the truly modular approach. The initial increase of the error in z-position
is caused by vision drift due to the takeoff maneuver, which also causes the
increased initial covariance of the rotation in yaw.

the GNSS and barometric sensors are deactivated. The vehicle
performs a vision-based landing at 5 .

The real-world experiment is performed in a motion cap-
turing room that provides 6DoF ground-truth for the vehi-
cle’s pose. The real vision and pressure measurements are
used, and the GNSS position and velocity measurements are
generated based on the ground-truth, with normal distributed
noise, according to the characteristics mentioned before. The
simulated and real-world scenarios do not provide synchro-
nized measurements, and the datasets have high acceleration
sections to render the bias of the core state observable.
The presented modular state estimation framework performs
self-initialization and self-calibration of the individual sensor
reference frames and extrinsics based on the current state and
sensor measurement.

The results of the simulation (see Fig. 14, Fig. 15, and
Table III) further confirm the validity of the approach. They
show that the covariance converges quickly after the absolute
measurement is introduced and is consistent but underconfi-
dent throughout the experiment shown by the ANEES plot.
The low RMSE in Table III also confirms the validity of the
approach. The results of the real-world scenario (see Fig. 16
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Fig. 15. ANEES for the simulated sensor switching scenario.
TABLE III

RMSE FOR THE SIMULATED AND REAL-WORLD THL SCENARIO.

pWI [cm] qWI [deg]
x y z roll pitch yaw

Simulated
Modular µ 4.03 3.27 6.23 0.62 0.65 1.94
Modular σ 1.17 0.61 1.25 0.156 0.199 1.083

Real-World
Modular µ 15.23 12.65 15.06 2.59 1.97 2.20
Modular σ 14.24 11.54 13.03 2.51 1.73 1.49
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Fig. 16. 3D estimate of real-world data with sensor switching (blue) and
overlayed ground-truth (red).

and Table III) illustrate that similar results are obtained with
real data.

V. CONCLUSIONS

We introduce a novel truly modular multi-sensor fusion
approach based on state covariance segmentation, which al-
lows for the addition and removal of sensors at runtime
with a significant gain of performance. Naive separation of
covariance elements and successive propagation and update
steps invalidates the fundamental properties of a covariance
matrix. The introduced approach preserves these properties
and ensures a consistent filter process. Extensive experiments
in simulation and real-world prove that the true modularity
approach is credible based on statistically significant ANEES
analysis. Furthermore, the modular approach preserves ob-
servability, performs self-calibration, and self-initialization.
This was shown throughout a vision based takeoff, transition,
and landing scenario with four different sensor measurement
updates. The scenario showed that the filter remains sta-
ble, consistent, and accurate throughout the presented sensor
switching scenario with four sensor switching cues and two
self-initialization procedures. All scenarios have been per-
formed with asynchronous sensor measurements both in simu-
lation and in a real flight. The modular approach outperforms
the classical approach due to faster sensor updates, which
improves general scalability for implementations that use this
approach.

It was also shown that the propagation phase of the modular
approach is constant and invariant to the number of sensors,
while the processing time of the classical approach grows
exponentially. This is especially interesting if a system uses
sensors that introduce measurement delays because the mod-
ular approach requires significantly less time to perform a re-
propagation step.
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