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Abstract— State of the art visual-inertial odometry ap-
proaches suffer from the requirement of high gradients and
sufficient visual texture. Even direct photometric approaches
select a subset of the image with high-gradient areas and
ignore smooth gradients or generally low-textured areas. In
this work, we show that taking all image information (i.e.
every single pixel) enables visual-inertial odometry even on
areas with very low texture and smooth gradients, inherently
interpolating and estimating the scene with no texture based
on its informative surrounding. This information propagation
is only possible as we estimate all states and their uncertainties
(robot pose, extrinsic sensor calibration, and scene depth) jointly
in a fully dense filter framework. Our complexity reduction
approach enables real-time execution despite the large size of
the state vector. Compared to our previous basic feasibility
study on this topic, this work includes higher order covariance
propagation and improved state handling for a significant
performance gain, thorough comparisons to state-of-the-art
algorithms, larger mapping components with uncertainty, self-
calibration capability, and real-data tests.

I. INTRODUCTION

In this paper, we further extend our novel fully dense
tightly coupled direct extended Kalman filter (EKF) based
visual-inertial odometry approach, first presented in [1].
Predicting the intensities (known as direct approach) and
depths of all the pixels in the image, we enable motion
estimation even in low-textured environments with smooth
gradients. Having all pixels in the state, we do not need
to select high-gradient areas (semi-dense) or single pixels
(sparse) with heuristically chosen parameters, but take the
raw, full information of the camera. For improved prediction,
we represent the scene depth as inverse depth per pixel in
the state vector. This enables us to update all state elements
(i.e. robot motion state, sensor calibration states, and cur-
rent scene state) in a single step in contrast to calculating
state and scene information sequentially and separately (as
performed by current state-of-the-art algorithms decoupling
the uncertainties of estimated state and environment). With
the joint estimation, our approach provides metric depth
uncertainty per pixel as a further element to the dense
mapping in a statistically consistent fashion together with
the robot state. Both the map and the robot state are
tightly coupled in the same state vector and estimation
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Fig. 1. Visual-inertial odometry (VIO) over low-textured area with smooth
gradients. Zoom of the 3D reconstruction (left) and original image used in
the VIO algorithm (right). Gray-scale values are surface intensities.

process. In low-contrast environment (e.g. as in Figure 1),
we show in comparisons that all of the selected state-of-the-
art algorithms (ROVIO, OKVIS and VINS-Mono) fail. Also,
in environmental conditions favorable to the state-of-the-art
algorithms with both high contrast and large variations in
scene depth (incl. depth discontinuities), we show that our
approach has similar performance (about 0.5% final position
drift) making it usable in a large variety of scenarios.
Utilizing matrix properties and complexity reduction
methods, the entire estimation process is performed in linear
time dependent only on the number of pixels rendering it
possible to run in real-time on a standard laptop as a pure
CPU implementation. For our experiments, to process a
single image (downscaled to 94 x 60 pixels for updates but
using VGA resolution for propagation) requires 250 to 330
milliseconds, yielding a rate of 3 to 4 updates per second.

A. Related Work

Besides our feasibility study very recently shown in [1],
to our knowledge, no one-step fully dense direct CPU-based
visual-inertial odometry algorithm exists as of now.

DTAM [2] popularized GPU-based trajectory and depth
estimation in a fully dense fashion aided by feature based
initialization steps [3]. More recent work by Shen et al. added
inertial measurements [4], [S5] but shifted the focus to the
mapping part only. The authors use a sparse feature based
non-linear optimization method for visual-inertial odometry
(VIO) and post-reconstruct (in real-time) the environment in
a dense fashion based on the estimated camera poses and
on motion-stereo with semi-global matching. Uncertainty is
then attributed based on this reconstruction post-processing.
The train of thought to use VIO for subsequent dense map
reconstruction is further developed in [6] and [7] also by



the group of Shen where baseline heuristics for the subse-
quent map reconstruction or post-allocation of uncertainty
are discussed. [8] and [9] show (motion-)stereo approaches
with known baseline for depth estimation on a CPU. Known
extrinsics simplify the proces to a line search.

Our approach could best be compared to state of the art
in direct semi-dense [10] and sparse [11] visual odometry
methods. However, they feature a so-called two-step ap-
proach estimating motion and depth information (i.e. map)
separately leading to a disjoint uncertainty for both elements.
Furthermore, to select the sparse or semi-dense area, a pre-
processing selecting high-gradient image areas is done. Low-
gradient environment inherently lead to failures of such
algorithms as the selection process will not return suitable
image areas. Similarly, pseudo-dense (semi-dense among
gradients [12], super-pixels for monotonous regions [13])
VIO algorithms [14] were presented by Concha et al. with
the same limitations as [10] and [11].

Tangential to our approach is work using depth sensors
(e.g. RGB-D cameras) directly providing depth measure-
ments simplifying the process with limitation of sensitivity
to sunlight and sensor range. The authors of [15]-[17]
presented CPU based implementations, whereas [18] with
different extensions as e.g.in [19], [20], and integration of
IMU information in [21] present GPU implementations.

Apart of the pure motion estimation, several works include
self-calibration aspects ( [22]-[27]) in visual-inertial odom-
etry frameworks. None of them tackles this aspect in a fully
dense framework as we do here. Other recent work based on
deep-learning methods for depth estimation ( [28]-[30]) do
not yet make use of inertial readings.

B. Contributions

It is important to note that (particularly compared to the
one-step semi-dense direct approaches in [23], [24], [31])
the key to our approach is to include every single pixel
in the estimation. Only this truly dense approach allows
the tight linkage of the uncertainties between motion and
scene depth and, thus, the usage in over even very low-
textured, low-gradient areas. We demonstrate this capabil-
ity in emulated and real data in Section III. We showed
an initial feasibility study of this capability in our recent
contribution [1], proving that it is of use to cover short-
term low-gradient areas. The current work extended our
initial study in scope, duration and robustness: the higher
order covariance propagation led to improved consistency
enabling long trajectories with significantly reduced drift; the
improved handling of depth propagation enabled the motion
over larger cluttered scenes; and the more accurate image
down-sampling while propagating at high resolution enabled
the precision for larger scale motion estimation and inherent
mapping with uncertainty.

Those adaptions now extend our approach to a fully
dense direct filter-based monocular visual-inertial odometry
algorithm, capable of motion estimation in arbitrary areas
yielding uncertainty attributed dense maps in a one-step

process. Namely, and in particular view to our previous work
[1], the contributions of this paper are:

o Performance: higher order covariance propagation and
pixel propagation (depth and intensity) to enable more
precise motion estimation in both high-contrast and low-
contrast environments without parameter tuning.

o Evaluation: performance comparison to the frameworks
VINS-Mono, OKVIS, and ROVIO in different scenarios

e Mapping: probabilistic map generation of a medium
sized environment demonstrating simultaneous dense
mapping and motion estimation with joint uncertainty

o Self-Calibration: addition of IMU intrinsics and camera-
IMU extrinsics (incl. performance evaluation) rendering
the framework self-calibrating

o Real-world tests: Evaluation with real-world data and
real-world parameters (lens distortion, illumination
changes) using the EuRoC dataset.

II. DENSE DIRECT VISUAL-INERTIAL ODOMETRY

The main difference to other (semi-)dense direct ap-
proaches comparing predicted pixel intensities with the mea-
sured one is our single-step update, correcting both pose and
depth estimation at the same time for all pixels in the image.
This requires to add the depth per pixel to the state, yielding
a large state vector and providing a metric depth uncertainty
estimation for each pixel, connected to the pose estimation
in a single covariance matrix.

A. System Description

The state of our system is composed of a core state x.
and is extended with inverse depth per pixel p and intensity
value 2. x. contains position ., p,,, orientation q,, and
velocity v, of the robot frame in the world frame, position
/P, and orientation q,, of the camera frame in the robot
frame and the IMU intrinsics (biases b, and b, for angular
velocity and linear acceleration respectively).
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We refer to [1] for extended state/variable definition and [25]
for both continuous and discretized equations for the core
states f(x.) as well as the description of the corresponding
process noise matrix (Jx.. The derivation of the dynamics of
the inverse pixel depth p = f,(x) and the pixel intensity i=
fi(x), conceptually introduced in [1], are as follows (with
pr as the pixel ray on the image plane and e, = [0 0 1]):

p= 7ezp20pcp 3)
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Both inverse depth and image intensity dynamics depend
on the time derivative of the projected point coordinate in
the camera frame _p... p corresponds to the change of
the camera z coordinate, while i transforms the coordinate
change into the pixel frame, using the reprojection on the
image plane (I, , — K 'pre,), the intrinsic camera matrix



K and the gradient at the pixel position g. .p_, depends on
elements of x. and IMU readings as input.

CpCP = _CICTCWIT(WVWI + CWIIpIC + CWICICCpC’P)
S

B. State Propagation

While both intensity and inverse depth vectors are stored
in the state vector, only the core state x. is propagated upon
IMU readings for performance reasons. On each camera
reading, the state change introduced by IMU readings is
accumulated (i.e. integrated) and the pixel propagation is
calculated before comparing the intensity with the camera
measurement. By integrating camera rotation to C, and
translation to ,p, , we can transform pixel positions between
the previous frame 1 and the current frame 2, using their
inverse depths p1, pa.

pro =K (6)
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However, as pixel coordinates are integer numbers, care has
to be taken to not introduce a bias to the estimator through
rounding errors. Simply performing a linear extrapolation of
the rounding-induced intensity shift using the image gradient
multiplied with the position difference introduces errors for
large depth differences. A more exact solution is to first
calculate the target rounded pixel coordinates and then to

select the source coordinates.

As those will not be rounded, it is possible to perform
a sub-pixel intensity lookup for propagation. For this, a
knowledge of the scene depth at the position of the target
rounded pixel coordinates in the target frame is needed.
This scene depth may differ from the estimated depth at
the rounded source pixel coordinates, resulting in a different
pixel position depending on the depth difference.

Figure 2 illustrates the problem and depth interpolation as
our solution. While on the left side, the depth estimation is
available for every pixel center, the coordinates in the target
frame are off-center. Shifting those coordinates needs depth
interpolation to be able to do the backwards propagation.
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This depth gradient g, = [g,,,g,,,0] spans a plane around
the source pixel pr; as calculated in Equation (7) with
Pliocation) being the inverse depth of the pixel relative to
the currently considered pixel. By transforming the rounded
target pixel |pro| back into the first frame with a now
unknown depth, the intersection between this ray and the
depth gradient plane is calculated. This intersection point
is used to both generate the propagated depth in the new
frame and, after calculating the intersection with the image
plane, to do a sub-pixel based lookup of the image intensity
propagated to the target pixel.

p3 p1ol = KCL K (pry+Apry) (p7 ' +9,Ap1,)+ K,p,
®)
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Fig. 2. Left: forward propagation of a pixel center (black dot) using
estimated camera pose-change (from Caml to Cam?2) and estimated depth.
The propagated center (black dot) will not exactly result in the center of
a new pixel (circle). Right: backward propagation of a pixel center (black
dot) from the target frame (Cam2) into the source frame (circle in the image
plane of Caml) using estimated camera pose change and interpolated depth
based on depth gradients around the source pixel. The map is only depicted
for better understanding. Our approach does not maintain a map in the global
frame, instead it estimates inverse depths per pixel per camera frame.

Equation (8) shows a reformulation of Equation (6) with the
rounded target pixel |p;,| depending on an unknown pixel
offset in the source frame Apy,. Further reformulation of
Equation (8) will bring it into an Ax = b representation as
shown in Equation (9).
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Solving Equation (9) iteratively with A='b will yield the
pixel offset of the intersection point in the source frame, as-
suming the depth plane given by g,. With this, the combined
mean is calculated in Equation 10 by performing a weighted
sum with each weight w; depending on the overlap of the
neighboring source pixel and the interpolated pixel.

4 4
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C. Covariance Propagation

(10)

In Equations (3) and (4), the time derivatives of the states
are expressed as products of random variables. Although
the product Z of Gaussian random variables X and Y
(with means pxy and variances og(’y) is not Gaussian
distributed and therefore a source for inconsistencies, it can
be approximated as shown in Equation (11), assuming the
covariance is negligible.

Y

The linearized uncertainty propagation of JPJ”, with J be-
ing a Jacobian and P being a covariance matrix, contains the
parts ux o uk +pyo% ul, leaving 0% o2 as remaining not
yet included part of the approximated propagated uncertainty.

For Equation (3), the inverse depth time derivative is the
product of the inverse depth squared p? and the time deriva-
tive of the coordinate in the three-dimensional metric space.

The 3 x 3 uncertainty matrix Pa_p, ., can be calculated using

[z = px iy Oy & pxX 0y [ + Py ox iy +0x 0y



the corresponding Jacobian and the core state covariance
Py..
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The inverse depth variance Uf)mlt is added to the entry for
this pixel in the inverse depth process noise matrix @ 4q. For
Equation (4), the multiplicative covariance approximation of
three components is calculated. Besides PAcPop and aﬁ, the
image gradient covariance matrix P; is used. The resulting
multiplicative uncertainty propagation afmu“ is added to the
intensity process noise matrix ;. The calculation can be

derived similarly to Equation (12).

D. Image Downscaling

The algorithm operates on a downscaled image to speed
up calculations and to make operations on a CPU feasible.
As an example, an image resolution of 640 x 480 pixel may
be downscaled to 80 x 60 pixels, with each downscaled pixel
corresponding to 64 pixels in the original image. To calculate
both downscaled intensity values and corresponding gradi-
ents, first the intensity gradient between each neighboring
pixels is stored in the original image, yielding intensity ¢
and gradients g, and g,. For each downscaled pixel, these
values are used to generate both mean and covariance values.

The gradient covariance matrix Py is used in propagation
noise calculations. For an area with large arbitrary intensity
changes, the gradients can be near zero as positive and
negative gradients in the original image are compensating
each other in the superpixel while the entries in P, will be
large as those intensity changes sum up. For an area with
a continuous gradient, P, will be small as gradients in the
original image do not deviate from the gradient mean.

n
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To further improve propagation quality, the pixel intensity is
first propagated on the original image and then downscaled
as shown in Equation (13), giving both mean ¥4 and
variance aimal , of the residual for a superpixel. Contrary to
image-pyramid approaches, this assumes that areas with ar-
bitrary intensity changes and therefore varying residuals will
yield less information than monotonous areas and residuals.
Similarly to other direct approaches with roots in the
Lucas-Kanade method, the state update is calculated around
a linearization point using the image gradients as partial
derivatives of the pixel intensities. Especially in areas with
strongly changing gradients, discontinuities in the gradient
direction occur and result in erroneous depth calculations.
Instead of a blurred downsampling, our approach uses the
gradient uncertainty P, to apply a weightening factor to each
correction in the covariance propagation. We extended our
original approach to use both source and target pixel covari-
ances to improve the algorithm quality in areas with strongly
changing gradients as this covers both the propagation from

a monotonous area into an area with arbitrarily changing
intensity values and vice versa.

III. EVALUATION
A. Comparisons

We compared our approach to three existing VIO al-
gorithms wusing synthetically generated datasets. VINS-
Mono [32] and OKVIS [26] are both feature-based bundle-
adjustment approaches. ROVIO [24] is a direct filter based
approach, selecting a set of image patches and using intensity
residuals to perform the update.

All datasets have been played at a slower rate of 0.1x the
original speed, providing enough time for each algorithm to
completely process every frame. All camera images for the
subsequent tests with realistic data have been generated in
the Unity3D photo-realistic game engine at a resolution of
640 x 480 at 20 frames and pinhole camera without distortion
unless otherwise noted. IMU messages were generated at a
rate of 200 samples per second with time alignment between
IMU messages and camera images and with the following
continuous noise values: o2 = 1.86e—3m/s? for linear ac-
celeration noise, afa = 1.87e—4m/s> for linear acceleration
bias noise, 02 = 4.33e—4rad/s for angular velocity noise
and agw = 2.66e—5rad/s? for angular velocity bias noise.
Those values correspond to those of typical MEMS sensor
as measured on our real AscTec Hummingbird platforms.
Camera extrinsics have been initialized with the correct state
to allow fair comparisons between different algorithms.
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Fig. 3. Averaged drift over time expressed as global position error

divided by distance travelled. Red: ROVIO, blue: OKVIS, green: VINS-
Mono, black: ours. After initialization, all algorithms show a similar drift
performance.

In Figure 3, each algorithm was applied on ten simulations
of a cluttered scenario (see Figure 5) always navigating the
same trajectory of 40 meters length, but each time with
different ground texture and re-generated random IMU noise.
The position drift in percent compared to distance travelled
was averaged over all ten runs. After drift accumulation
during initialization phase, all algorithms show a similar
behavior. All trajectories were aligned to ground truth in the
same fashion. For our approach, the mean drift at the end
was 0.035, —0.001 and —0.026 m for x, y and z respectively,
with a standard deviation of 0.024, 0.021 and 0.016 m.

In Figure 4, a comparison between the same algorithms
is performed on a longer, 200m, trajectory (100m forth and
back again). Deviations from ground truth mostly originate
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Fig. 4. Trajectories over a 200m distance: Red: ROVIO, blue: OKVIS,

green: VINS-Mono, black: ours, black dashed: ground truth. Except for
some yaw drift, all algorithms show similar behaviour.

from yaw drift as all algorithms have less than 0.5% position
drift when returning to the starting position. Both Figures 3
and 4 show that our approach gives results comparable to
current state of the art algorithms under their favorable scene
conditions (i.e. well textured).

B. Uncertainty-Aware 3D Mapping

Fig. 5. Left: isometric view of the accumulated point cloud generated
by our algorithm. Right: corresponding isometric ground truth view in the
simulation environment.

Our dense direct approach performs a depth estimation for
every pixel, initialized with a high uncertainty and improved
over time. This yields an uncertainty-annotated 3D map
of the environment as a byproduct. Figure 5 shows the
accumulated point cloud generated by our algorithm in one
run for Figure 3. The map shows all accumulated 3D points
which have an uncertainty below a user selected threshold.
No loop closure or other post-adjustments were made.
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Fig. 6. Left to right: the camera image as generated in the simulation
framework, the downscaled prediction of the image, the inverse depth map
in the current image, and the certainty of the inverse depth estimation (white
is less certain)

Figure 6 displays the internal states generating those depth
estimations. At high-gradient areas, the depth estimation is
more certain than at low-gradient areas. However, as our
approach uses all available pixels, the remaining information
available enables the algorithm to still converge to the correct
depth values in low-gradient areas, albeit at a slower rate.

C. Featureless Areas

By using all available information in the image, visual-
inertial odometry is possible even on scenery consisting only
of low-gradient areas as shown in Figure 8.

S e
O 00—
T

translational
error [m]

| | | | | |

0 20 40 60 80 100
time in seconds

Fig. 7. Pose estimation on low-gradient areas. Red: ROVIO, blue: OKVIS,
black: our approach. VINS-Mono did not initialize at all. Both ROVIO and
OKVIS diverge, presumably because of pure IMU integration due to lack
of visual information for IMU correction.

As Figure 7 shows, our approach is able to estimate
the pose with an error similar to the drift seen in Figure
3 over a 40 meter trajectory including still phases to test
hover conditions. Conversely, due to the lack of strong
gradients and well behaving texture all tested state-of-the-art
algorithms fails: Either no initialization takes place (VINS-
Mono) or pure IMU integration continues leading to vast
position drift without any visual correction due to the lack
of contrast (OKVIS, ROVIO). Over time, easily estimated
depth values at higher gradients propagate to low-gradient
areas, yielding a depth estimation over the entire image. An
insight to this aspect is given in Figure 8 where the top row
shows only the points of the estimated scene with a minimal
uncertainty on the left and all estimated 3D points on the
right. While the centers of the hexagons clearly have higher
uncertainty (holes in the top left image and white areas in
the bottom right image) the algorithm estimates depth for
all image pixels. The bottom left image of the Figure shows
that, according to the uncertainty, the depth estimate on the
hexagon centers (blue ellipse) is less accurate but still well
made due to the inherent information propagation of the
neighboring, more certain areas (yellow box). This is also
reflected in the uncertainty map on the bottom right of the
Figure (white is high, blue low uncertainty).

D. Self-Calibration

By adding the pose of the camera in the IMU frame,
consisting of translation ,p,, and rotation q,,, to the state
X., we easen the else rather strict requirement of exact
calibration. Instead, after starting with a rough estimate, these
calibration states converge towards the correct values. The
speed of convergence strongly depends on the quality of ob-
servability which in turn depends on the trajectory. For these
tests, we used the same type of trajectory as for the other
evaluations in this paper without considering observability
aspects. Incorporating observability aware motion generation
[27], as presented by Hausman et al., would both speed up
convergence time and decrease remaining error.

Figure 9 shows the estimation of both camera/IMU transla-
tion and rotation over time. Five seconds after start of move-
ment, the estimated translation converges within 10 % of the
true values. As this state is difficult to observe, this is an
expected behaviour. With more rotation-heavy movements,
the state would further converge. The camera/IMU rotation
converges to the true values within 20 seconds. As additional
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Fig. 8. Depth estimation and uncertainty estimation in smooth and low
gradient environments. Top left: estimated scene intensity and depth only
displaying points with a low uncertainty. Clearly, the centers of the hexagons
yield least information as the gradient is lowest. Hence the hexagon centers
appear as holes as the point uncertainty is above the threshold. Top right:
estimated scene depth displaying all points. Bottom left: close-up and
side view of the hexagon center to appreciate the depth estimation of the
uncertain areas. Although the uncertainty is high for the hexagon centers
(blue ellipse), the depth is inherently well interpolated using the information
of the surrounding, more certain environment (e.g. yellow box). Bottom
right: uncertainty map again highlighting the information coming from the
(smooth) gradients and less from the hexagon centers (white is uncertain,
blue is certain).
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Fig. 9. Estimation of translation (left) and rotation (right) between camera
and IMU. Red, green and blue correspond to X, y and z respectively. The
dashed lines are the true values while solid lines are estimated.

drift during the initialization phase is a side-effect of filter-
based self-calibration, and for fair comparisons, previous
estimations use an already converged state.

E. Real-World Data

We extended our real-world tests to the EuRoC MAV
dataset [33], which consists of a time-synchronized camera
and IMU system with vicon ground truth data. We selected
the vicon room set V1_0l_easy as it contains both high-
frequency and low-frequency areas.

Figure 10 shows the estimated state and a 3D reconstruc-
tion of the scene. Although scene-depth estimation is more
certain for high-gradient areas, low-gradient depth estimation
still yields the correct depth.

In Figure 11, the estimated position is compared to the
ground truth value. Rotational trajectory alignment has been
performed. With increasing and decreasing position error
(e.g. in z dimension at second 60), the corresponding position
variance is also changing accordingly. During the 58.6 m
trajectory, the absolute translation error (RMSE) is 0.56 m
at its maximum and 0.11 m at the end. This end drift is
comparable to current state of the art algorithms which show
an error between 0.04 m and 0.1 m [34]. We note at this
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Fig. 10. Internal state and reconstruction during the EuRoC V1.01_easy
dataset. Left top to bottom: predicted image intensities, estimated depth,
uncertainty of estimated depth (white is less certain) of a scene showing a
high-gradient environment. Right: reconstruction of all pixels (large image)
and image intensities (bottom right) of a second scene, showing correct
estimation in low-gradient environment. Note that low gradient pixels further
away (right side) from the current camera (colored tripod) are not yet well
reconstructed due to lack of information from both motion and scene.
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Fig. 11. Estimation and ground truth of the EuRoC V1_01_easy dataset.
Red, green and blue correspond to position in x, y and z respectively. The
dashed lines are the ground truth while solid lines are estimated.

point that our approach only uses frame-to-frame information
without keeping older information.

IV. CONCLUSION

In this work, we significantly advanced our feasibility
study in [1] to a full grown visual-inertial odometry frame-
work with self-calibration properties and, to our knowledge
for the first time, capable of performing well in very low-
textured environments with very smooth gradients.

The theoretical contributions with respect to the higher
order covariance propagation as well as the inclusion of the
forward-backward propagation for pixel depth and intensity
interpolation during the propagation step were introduced as
important novel aspects to noticeably improve performance
compared to our previous work.

We also showed that our approach estimates the motion
with a precision comparable to current methods (about
0.5% final position drift) in scenes with high gradients
and good texture (only there, comparisons were feasible:
other approaches failed in low-textured scenes). For this,
we compared our approach against three VIO frameworks
deemed to be among the currently best performing ones in
the community (OKVIS, ROVIO, VINS-Mono) in a photo-
realistic simulation scene.

Unique to our approach, we further showed the capabil-
ity of simultaneous dense mapping and motion estimation
including the joint uncertainty of the mapped environment
and motion states. We demonstrated how our algorithm



works well in a low-textured environment with very smooth
gradients. In the comparison with other approaches, all tested
algorithms failed to conceive a visual update under such
conditions.

Lastly, besides demonstrating our approach using the
realistic data in our simulation environment, we also showed
the correct functioning of our approach in a public dataset.
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