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Abstract—Recent studies have shown that the violation of the
Interface Segregation Principle (ISP) is critical for maintaining
and evolving software systems. Fat interfaces (i.e., interfaces
violating the ISP) change more frequently and degrade the
quality of the components coupled to them. According to the
ISP the interfaces’ design should force no client to depend on
methods it does not invoke. Fat interfaces should be split into
smaller interfaces exposing only the methods invoked by groups
of clients. However, applying the ISP is a challenging task when
fat interfaces are invoked differently by many clients.

In this paper, we formulate the problem of applying the ISP
as a multi-objective clustering problem and we propose a genetic
algorithm to solve it. We evaluate the capability of the proposed
genetic algorithm with 42,318 public Java APIs whose clients’
usage has been mined from the Maven repository. The results
of this study show that the genetic algorithm outperforms other
search based approaches (i.e., random and simulated annealing
approaches) in splitting the APIs according to the ISP.

Index Terms—Interface Segregation Principle; APIs; refactor-
ing; search-based software engineering; genetic algorithms;

I. INTRODUCTION

The main problem a developer can face in designing an

interface of a software component is coping with fat interfaces

[1]. Fat interfaces are interfaces whose clients invoke different

subsets of their methods. Such interfaces should be split into

smaller interfaces each one specific for a different client (or a

group of clients). This principle has been formalized by Martin

[1] in 2002 and is also known as the Interface Segregation
Principle (ISP). The rationale behind this principle is that

changes to an interface break its clients. As a consequence,

clients should not be forced to depend upon interface methods

that they do not actually invoke [1]. This guarantees that clients

are affected by changes only if they involve the methods they

invoke.

Recent studies have shown that violation of the ISP and,

hence, fat interfaces can be problematic for the maintenance

of software systems. First, in our previous work [2] we

showed that such interfaces are more change-prone than non-
fat interfaces. Next, Abdeen et al. [3] proved that violations of

the ISP lead to degraded cohesion of the components coupled

to fat interfaces. Finally, Yamashita et al. [4] showed that

changes to fat interfaces result in a larger ripple effect. The

results of these studies, together with Martin’s insights [1],

show the relevance of designing and implementing interfaces

according to the ISP.

However, to the best of our knowledge, there are no studies

that propose approaches to apply the ISP. This task is challeng-

ing when fat interfaces expose many methods and have many

clients that invoke differently their methods, as shown in [5].

In this case trying to manually infer the interfaces into which

a fat interface should be split is unpractical and expensive.

In this paper, we define the problem of splitting fat in-

terfaces according to the ISP as a multi-objective clustering

optimization problem [6]. We measure the compliance with

the ISP of an interface through the Interface Usage Cohesion
metric (IUC) as in [2], [3]. To apply the ISP we propose a

multi-objective genetic algorithm that, based on the clients’

usage of a fat interface, infers the interfaces into which it

should be split to conform to the ISP and, hence, with higher

IUC values. To validate the capability of the proposed genetic

algorithm we mine the clients’ usage of 42,318 public Java

APIs from the Maven repository. For each API, we run the

genetic algorithm to split the API into sub-APIs according to

the ISP. We compare the capability of the genetic algorithm

with the capability of other search-based approaches, namely

a random algorithm and a multi-objective simulated annealing

algorithm. The goal of this study is to answer the following

research questions:

Is the genetic algorithm able to split APIs into sub-APIs with
higher IUC values? Does it outperform the random and

simulated annealing approaches?

The results show that the proposed genetic algorithm gener-

ates sub-APIs with higher IUC values and it outperforms the

other search-based approaches. These results are relevant for

software practitioners interested in applying the ISP. They can

monitor how clients invoke their APIs (i.e., which methods

are invoked by each client) and they can use this information

to run the genetic algorithm and split their APIs so that they

comply with the ISP.

The remainder of this paper is organized as follows. Sec-

tion II introduces fat APIs, the main problems they suffer

from, and formulates the problem of applying the ISP as a

multi-objective clustering problem. Section III presents the

genetic algorithm to solve the multi-objective clustering prob-
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lem. Section IV presents the random and local search (i.e.,
simulated annealing) approaches implemented to evaluate the

capability of the genetic algorithm. The study and its results

are shown and discussed in Section V while threats to validity

are discussed in Section VI. Related work is presented in

Section VII. We draw our conclusions and outline directions

for future work in Section VIII.

II. PROBLEM STATEMENT AND SOLUTION

In this section, first, we introduce fat APIs, their drawbacks,

and the Interface Segregation Principle to refactor them. Then,

we discuss the challenges of applying the Interface Segregation

Principle for real world APIs. Finally, we present our solution

to automatically apply the principle.

A. Fat APIs and Interface Segregation Principle

The Interface Segregation Principle (ISP) has been origi-

nally described by Martin in [1] and it copes with fat APIs.

Fat APIs are APIs whose clients invoke different sets of

their methods. As a consequence clients depend on interface

methods that they do not invoke. These APIs are problematic

and they should be refactored because their clients can be

broken by changes to methods which they do not invoke. To

refactor fat APIs Martin [1] introduced the ISP.

The ISP states that fat APIs need to be split into smaller

APIs (referred to as sub-APIs throughout this paper) according

to their clients’ usage. Any client should only know about the

set of methods that it invokes. Hence, each sub-API should

reflect the usage of a specific client (or of a class of clients that

invoke the same set of methods). To better understand the ISP

consider the example shown in Figure 1. The API shown in

Figure 1a is considered a fat API because the different clients

(i.e., Client1, Client2, and Client3) invoke different methods

(e.g., Client1 invokes only method1, method2, and method3
out of the 10 methods declared in the API). According to the

ISP, this API should be split into three sub-APIs as shown in

Figure 1b. These sub-APIs are specific to the different clients

(i.e., Client1, Client2, and Client3) and, as a consequence,

clients do not depend anymore on interface methods they do

not invoke.

B. Fat APIs and Change-Proneness

Fat APIs are also problematic because they change fre-

quently. In our previous work [2] we showed empirically that

fat APIs are more change-prone compared to non-fat APIs. In

this work we used external cohesion as a heuristic to detect

fat APIs. The external cohesion was originally defined by

Perepletchikov et al. [7], [8] for web APIs and it measures

the extent to which the methods declared in an API are used

by their clients. An API is considered externally cohesive if

all clients invoke all methods of the API. It is not externally

cohesive and considered a fat API if they invoke different

subsets of its methods.

To measure the external cohesion we used the Interface

Usage Cohesion metric (IUC) defined by Perepletchikov et

FatAPI

1-method1()

2-method2()

3-method3()

5-method5()

4-method4()

6-method6()
7-method7()
8-method8()

9-method9()
10-method10()

Client1

Client2

Client3

(a) A fat API with different clients
(i.e., Client1, Client2, and Client3)
invoking different sets of methods
(denoted by rectangles). Clients de-
pend on methods which they do not
invoke.

Client1

Client2

Client3

SubAPI1

1-method1()
2-method2()
3-method3()

SubAPI2

4-method4()
5-method5()
6-method6()

SubAPI3

7-method7()
8-method8()
9-method9()
10-method10()

(b) The fat API is split into sub-
APIs each one specific for a client.
Clients depend only on methods
which they invoke.

Fig. 1: An example of applying the Interface Segregation

Principle.

al. [7], [8]. This metric is defined as:

IUC(i) =

∑n
j=1

used methods(j,i)
num methods(i)

n

where j denotes a client of the API i; used methods (j,i) is the

function which computes the number of methods defined in

i and used by the client j; num methods(i) returns the total

number of methods defined in i; and n denotes the number of

clients of the API i. Note that the IUC values range between

0 and 1.

Consider the example shown in Figure 1. The FatAPI in

Figure 1a shows a value of IUCFatAPI= ( 3
10 + 3

10 + 4
10 )/3 =

0.366 indicating low external cohesion that is a symptom of

a fat API. The sub-APIs generated after applying the ISP

(shown in Figure 1b) show higher external cohesion. They

have the following values for IUC: IUCSubAPI1= ( 33 )/1 = 1,

IUCSubAPI2= ( 33 )/1 = 1, and IUCSubAPI3= ( 44 )/1 = 1.

In [2] we investigated to which extent the IUC metric

can be used to highlight change-prone Java interface classes.

The results showed that the IUC metric exhibits the strongest

correlation with the number of source code changes performed

in Java interface classes compared to other software metrics

(e.g., C&K metrics [9]). The IUC metric also improved the

performance of prediction models in predicting change-prone

Java interface classes.

These results, together with Martin’s insights [1] and results

of previous studies [3], [4], motivated us to investigate and

develop an approach to refactor fat APIs using the ISP.

C. Problem

The problem an engineer can face in splitting a fat API

is coping with API usage diversity. In 2013, Mendez et al.
[5] investigated how differently the APIs are invoked by

their clients. They provided empirical evidence that there is

a significant usage diversity. For instance, they showed that

Java’s String API is used in 2,460 different ways by their

clients. Clients do not invoke disjoint sets of methods (as

shown in Figure 1a) but the set of methods can overlap and
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can be significantly different. As a consequence, we argue that

manually splitting fat APIs can be time consuming and error

prone.

A first approach to find the sub-APIs consists in adopting

brute-force search techniques. These techniques enumerate

all possible sub-APIs and check whether they maximize the

external cohesion and, hence, the value for the IUC metric. The

problem with these approaches is that the number of possible

sub-APIs can be prohibitively large causing a combinatorial

explosion. Imagine for instance to adopt this approach for

finding the sub-APIs for the AmazonEC2 web API. This web

API exposes 118 methods in version 23 [10]. The number of

20-combinations of the 118 methods in AmazonEC2 are equal

to:
(
118
20

)
=

118!

20!98!
≈ 2 ∗ 1021

This means that for evaluating all the sub-APIs with 20

methods the search requires to analyze at least 2∗1021 possible

combinations, which can take several days on a standard PC.

As a consequence, brute-force search techniques are not an

adequate solution for this problem.

D. Solution

To overcome the aforementioned problems we formulate

the problem of finding sub-APIs (i.e., applying the ISP) as

a clustering optimization problem defined as follows. Given

the set of n methods X={X1,X2...,Xn} declared in a fat

API, find the set of non-overlapping clusters of methods

C={C1,C2...,Ck} that maximize IUC(C) and minimize clus-
ters(C); where IUC(C) computes the lowest IUC value of the

clusters in C and clusters(C) computes the number of clusters.

In other words, we want to cluster the methods declared in a fat

API into sub-APIs that show high external cohesion, measured

through the IUC metric.

This problem is an optimization problem with two objective

functions, also known as multi-objective optimization prob-

lem. The first objective consists in maximizing the external

cohesion of the clusters in C. Each cluster in C (i.e., a sub-API

in our case) will have its own IUC value (like for the sub-APIs

in Figure 1b). To maximize their IUC values we maximize

the lowest IUC value measured through the objective function

IUC(C).
The second objective consists in minimizing the number of

clusters (i.e., sub-APIs). This objective is necessary to avoid

solutions containing as many clusters as there are methods

declared in the fat API. If we assign each method to a

different sub-API, all the sub-APIs would have an IUC value

of 1, showing the highest external cohesion. However, such

sub-APIs do not group together the methods invoked by the

different groups of clients. Hence, the clients would depend

on many sub-APIs each one exposing a single method.

To solve this multi-objective clustering optimization prob-

lem we implemented a multi-objective genetic algorithm (pre-

sented in next section) that searches for the Pareto optimal

solutions, namely solutions whose objective function values

(i.e., IUC(C) and clusters(C) in our case) cannot be improved

without degrading the other objective function values.

Moreover, to compare the performance of the genetic al-

gorithm with random and local search approaches we imple-

mented a random approach and a multi-objective simulated

annealing approach that are presented in Section IV.

III. GENETIC ALGORITHM

To solve multi-objective optimization problems different

algorithms have been proposed in literature (e.g., [11], [12],

[13]). In this paper, we use the multi-objective genetic al-

gorithm NSGA-II proposed by Deb et al. [11] to solve the

problem of finding sub-APIs for fat APIs according to the ISP,

as described in the previous section. We chose this algorithm

because 1) it has been proved to be fast, 2) to provide better

convergence for most multi-objective optimization problems,

and 3) it has been widely used in solving search based

software engineering problems, such as presented in [11], [14],

[15], [16]. In the following, we first introduce the genetic

algorithms. Then, we show our implementation of the NSGA-

II used to solve our problem. For further details about the

NSGA-II we refer to the work by Deb et al. [11].

Genetic Algorithms (GAs) have been used in a wide range

of applications where optimization is required. Among all the

applications, GAs have been widely studied to solve clustering

problems [17]. The key idea of GAs is to mimic the process of

natural selection providing a search heuristic to find solutions

to optimization problems. A generic GA is shown in Figure 2.

Different to other heuristics (e.g., Random Search, Brute-
Force Search, and Local search) that consider one solution

at a time, a GA starts with a set of candidate solutions, also

known as population (step 1 in Figure 2). These solutions are

randomly generated and they are referred to as chromosomes.

Since the search is based upon many starting points, the

likelihood to explore a wider area of the search space is

higher than other searches. This feature reduces the likelihood

to get stuck in a local optimum. Each solution is evaluated

through a fitness function (or objective function) that measures

how good a candidate solution is relatively to other candidate

solutions (step 2). Solutions from the population are used to

form new populations, also known as generations. This is

achieved using the evolutionary operators. Specifically, first

a pair of solutions (parents) is selected from the population

through a selection operator (step 4). From these parents

two offspring solutions are generated through the crossover

operator (step 5). The crossover operator is responsible to

generate offspring solutions that combine features from the

two parents. To preserve the diversity, the mutation operators

(step 6) mutate the offspring. These mutated solutions are

added to the population replacing solutions with the worst

fitness function values. This process of evolving the population

is repeated until some condition (e.g., reaching the max

number of iterations in step 3 or achieving the goal). Finally,

the GA outputs the best solutions when the evolution process

terminates (step 7).
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Create initial population of 

chromosomes

Evaluate fitness of each 

chromosome

Select next generation

(Selection Operator)

Perform reproduction

(Crossover operator)

Perform mutation

(Mutation operators)

Max

Iterations
Output

best chromosomes

1

2

4

5

6

3

7

Fig. 2: Different steps of a genetic algorithm.

To implement the GA and adapt it to find the set of sub-

APIs into which a fat API should be split we next define the

fitness function, the chromosome (or solution) representation,

and the evolutionary operators (i.e., selection, crossover, and

mutation).

A. Chromosome representation

To represent the chromosomes we use a label-based integer
encoding widely adopted in literature [17] and shown in Fig-

ure 3. According to this encoding, a solution is an integer array

of n positions, where n is the number of methods exposed in a

fat API. Each position corresponds to a specific method (e.g.,
position 1 corresponds to the method method1() in Figure 1a).

The integer values in the array represent the clusters (i.e., sub-

APIs in our case) to which the methods belong. For instance

in Figure 3, the methods 1,2, and 10 belong to the same cluster

labeled with 1. Note that two chromosomes can be equivalent

even though the clusters are labeled differently. For instance

the chromosomes [1,1,1,1,2,2,2,2,3,3] and [2,2,2,2,3,3,3,3,1,1]

are equivalent. To solve this problem we apply the renum-
bering procedure as shown in [18] that transforms different

labelings of equivalent chromosomes into a unique labeling.

1 1 2 3 2 4 5 3 6 1
1 2 3 4 5 6 7 8 9 10

Fig. 3: Chromosome representation of our candidate solutions.

B. Fitness Functions

The fitness function is a function that measures how good a

solution is. For our problem we have two fitness functions

corresponding to the two objective functions discussed in

Section II, namely IUC(C)) and clusters(C). IUC(C) returns

the lowest IUC value of the clusters in C and clusters(C)
returns the number of clusters in C. Hence, the two fitness

functions are f1=IUC(C) and f2=clusters(C). While the value

of f1 should be maximized the value of f2 should be minimized.

Since we have two fitness functions, we need a comparator

operator that, given two chromosomes (i.e., candidate solu-

tions), returns the best one based on their fitness values.

As comparator operator we use the dominance comparator

as defined in NSGA-II. This comparator utilizes the idea

of Pareto optimality and the concept of dominance for the

comparison. Precisely, given two chromosomes A and B, the

chromosome A dominates chromosome B (i.e., A is better

than B) if 1) every fitness function value for chromosome

A is equal or better than the corresponding fitness function

value of the chromosome B, and 2) chromosome A has at least

one fitness function value that is better than the corresponding

fitness function value of the chromosome B.

C. The Selection Operator

The selection operator selects two parents from a population

according to their fitness function values. We use the Ranked

Based Roulette Wheel (RBRW) that is a modified roulette

wheel selection operator as proposed by Al Jadaan et al. [19].

RBRW ranks the chromosomes in the population by the fitness

values: the highest rank is assigned to the chromosome with

the best fitness values. Hence, the best chromosomes have the

highest probabilities to be selected as parents.

D. The Crossover Operator

Once the GA has selected two parents (ParentA and Par-
entB) to generate the offspring, the crossover operator is

applied to them with a probability Pc. As crossover oper-

ator we use the operator defined specifically for clustering

problems by Hruschka et al. [17]. In order to illustrate how

this operator works consider the example shown in Figure 4

from [17]. The operator first selects randomly k (1≤k≤n)

clusters from ParentA, where n is the number of clusters in

ParentA. In our example assume that the clusters labeled 2

(consisting of methods 3, 5, and 9) and 3 (consisting of method

4) are selected from ParentA (marked bold in Figure 4).

The first child (ChildC) originally is created as copy of the

second parent ParentB (step 1). As second step, the selected

clusters (i.e., 2 and 3) are copied into ChildC. Copying these

clusters changes the clusters 1, 2, and 3 in ChildC. These

changed clusters are removed from ChildC (step 3) leaving

the corresponding methods unallocated (labeled with 0). In the

fourth step (not shown in Figure 4) the unallocated methods

are allocated to an existing cluster that is randomly selected.

The same procedure is followed to generate the second child

ChildD. However, instead of selecting randomly k clusters

from ParentB, the changed clusters of ChildC (i.e., 1,2, and

3) are copied into ChildD that is originally a copy of ParentA.

E. The Mutation Operators

After obtaining the offspring population through the

crossover operator, the offspring is mutated through the muta-

tion operator with a probability Pm. This step is necessary to

ensure genetic diversity from one generation to the next ones.

The mutation is performed by randomly selecting one of the

following cluster-oriented mutation operators [18], [17]:

• split: a randomly selected cluster is split into two dif-

ferent clusters. The methods of the original cluster are

randomly assigned to the generated clusters.

• merge: moves all methods of a randomly selected cluster

to another randomly selected cluster.
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1 1 2 3 2 4 5 1 2 5 4 2 1 2 3 3 2 1 2 4

4 2 1 2 3 3 2 1 2 4

ParentA ParentB

ChildC

1: copy ParentB into ChildC

4 2 2 3 2 3 2 1 2 4ChildC

2: copy clusters 2 and 3 from 

ParentA to ChildC

4 0 2 3 2 0 0 0 2 4ChildC

3: remove changed methods 

from B (i.e., 1,2,3)

4: unallocated objects are allocated to the cluster 

with the nearest centroid

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Fig. 4: Example of crossover operator for clustering problems

[17].

• move: moves methods between clusters. Both methods

and clusters are randomly selected.

We implemented the proposed genetic algorithm on top

of the JMetal1 framework that is a Java framework that

provides state-of-the-art algorithms for optimization problems,

including the NSGA-II algorithm.

IV. RANDOM AND LOCAL SEARCH

To better evaluate the performance of our proposed genetic

algorithm we implemented a random algorithm and a local

search algorithm (i.e., a multi-objective simulated annealing

algorithm) that are presented in the following sub-sections.

A. Random Algorithm

The random algorithm tries to find an optimal solution by

generating random solutions. To implement the random algo-

rithm we use the same solution representation (i.e., chromo-

some representation) used in the genetic algorithm described

in Section III. The algorithm iteratively generates a random

solution and evaluates it using the same fitness functions

defined for the genetic algorithm. When the maximum number

of iterations is reached the best solution is output. This

algorithm explores the search space randomly relying on the

likelihood to find a good solution after a certain number of

iterations. We use a random search as baseline because this

comparison is considered the first step to evaluate a genetic

algorithm [20].

B. Multi-Objective Simulated Annealing

As second step to evaluate the performance of our proposed

genetic algorithm we implemented a local search approach.

A local search algorithm (e.g., hill-climbing) starts from

a candidate solution and then iteratively tries to improve

it. Starting from a random generated solution the solution

is mutated obtaining the neighbor solution. If the neighbor
solution is better than the current solution (i.e., it has higher

fitness function values) it is taken as current solution to

generate a new neighbor solution. This process is repeated

until the best solution is obtained or the maximum number of

iterations is reached. The main problem of such local search

1http://jmetal.sourceforge.net

approaches is that they can get stuck in a local optimum. In

this case the local search approach cannot further improve the

current solution.

To mitigate this problem advanced local search approaches

have been proposed like simulated annealing. The simulated

annealing algorithm was inspired from the process of anneal-

ing in metallurgy. This process consists in heating and cooling

a metal. Heating the metal alters its internal structure and,

hence, its physical properties. On the other hand, when the

metal cools down its new internal structure becomes fixed.

The simulated annealing algorithm simulates this process.

Initially the temperature is set high and then it is decreased

slowly as the algorithm runs. While the temperature is high

the algorithm is more likely to accept a neighbor solution that

is worse than the current solution, reducing the likelihood to

get stuck in a local optimum. At each iteration the temperature

is slowly decreased by multiplying it by a cooling factor α
where 0 < α < 1. When the temperature is reduced, worse

neighbor solutions are accepted with a lower probability.

Hence, at each iteration a neighbor solution is generated

mutating the current solution. If this solution has better fitness

function values it is taken as current solution. Otherwise

it is accepted with a certain probability called acceptance
probability. This acceptance probability is computed by a

function based on 1) the difference between the fitness func-

tion values of the current and neighbor solution and 2) the

current temperature value.

To adapt this algorithm for solving our multi-objective

optimization problem we implemented a Multi-Objective Sim-

ulated Annealing algorithm following the approach used by

Shelburg et al. in [21]. To represent the solutions we use

the same solution representation used in the genetic algorithm

(i.e., label-based integer encoding). We generate the neighbor

solutions using the mutation operators used in our genetic

algorithm. We compare two solutions using the same fitness

functions and dominance comparator of our genetic algorithm.

The acceptance probability is computed as in [21] with the

following function:

AcceptProb(i, j, temp) = e
−abs(c(i,j))

temp

where i and j are the current and neighbor solutions; temp is

the current temperature; and c(i,j) is a function that computes

the difference between the fitness function values of the two

solutions i and j. This difference is computed as the average

of the differences of each fitness function values of the two

solutions according to the following equation:

c(i, j) =

∑|D|
k=1(ck(j)− ck(i))

|D|
where D is the set of fitness functions and ck(j) is the value of

the fitness function k of the solution j. In our case the fitness

functions are the IUC(C) and clusters(c) functions used in the

genetic algorithm. Note that since this difference is computed

as average it is relevant that the fitness function values are

measured on the same scale. For this reason the values of
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the fitness function clusters(C) are normalized to the range

between 0 and 1. For further details about the multi-objective

simulated annealing we refer to the work in [22], [21].

V. STUDY

The goal of this empirical study is to evaluate the ef-

fectiveness of our proposed genetic algorithm in applying

the ISP to Java APIs. The quality focus is the ability of

the genetic algorithm to split APIs in sub-APIs with higher

external cohesion that is measured through the IUC metric.

The perspective is that of API providers interested in applying

the ISP and in deploying APIs with high external cohesion.

The context of this study consists of 42,318 public Java APIs

mined from the Maven repository.

In this study we answer the following research questions:

Is the genetic algorithm able to split APIs into sub-APIs with
higher IUC values? Does it outperform the random and

simulated annealing approaches?

In the following, first, we show the process we used to

extract the APIs and their clients’ usage from the Maven

repository. Then, we show the procedure we followed to

calibrate the genetic algorithm and the simulated annealing

algorithms. Finally, we present and discuss the results of our

study.

A. Data Extraction

The public APIs under analysis and their clients’ usage

have been retrieved from the Maven repository.2 The Maven

repository is a publicly available data set containing 144,934

binary jar files of 22,205 different open-source Java libraries,

which is described in more detail in [23]. Each binary jar file

has been scanned to mine method calls using the ASM3 Java

bytecode manipulation and analysis framework. The dataset

was processed using the DAS-3 Supercomputer4 consisting of

100 computing nodes.

To extract method calls we scanned all .class files of all

jar files. Class files contain fully qualified references to the

methods they call, meaning that the complete package name,

class name and method name of the called method is available

in each .class file. For each binary file, we use an ASM

bytecode visitor to extract the package, class and method name

of the callee.

Once we extracted all calls from all .class files, we

grouped together calls to the same API. As clients of an

API we considered all classes declared in other jar files from

the Maven repository that invoke public methods of that API.

Note that different versions of the same class are considered

different for both clients and APIs. Hence, if there are two

classes with the same name belonging to two different versions

of a jar file they are considered different. To infer which

version of the jar file a method call belongs to we scanned

the Maven build file (pom.xml) for dependency declarations.

2http://search.maven.org
3http://asm.ow2.org
4http://www.cs.vu.nl/das3/

#Methods #Clients #Invocations

0
20

40
60

80
10

0

Fig. 5: Box plots of number of methods (#Methods), clients

(#Clients), and invocations (#Invocations) for the public APIs

under analysis. Outliers have been removed for the sake of

simplicity.

In total we extracted the clients’ usage for 110,195 public

APIs stored in the Maven repository. We filtered out APIs not

relevant for our analysis by applying the following filters:

• APIs should declare at least two methods.

• APIs should have more than one client.

• IUC value of the APIs should be less than one.

After filtering out non relevant APIs we ended up with a data

set of 42,318 public APIs whose number of clients, methods,

and invocations are shown by the box plots in Figure 5 where

outliers have been removed for the sake of simplicity. The

median number of methods exposed in the APIs under analysis

is 4 while the biggest API exposes 370 methods. The median

number of clients is 10 with a maximum number of 102,445 of

the API org.apache.commons.lang.builder.EqualsBuilder (out-

lier not shown in Figure 5). The median number of invocations

to the APIs is 17 with a maximum number of 270,569 for the

API org.apache.commons.lang.builder.EqualsBuilder (outlier

not shown in Figure 5).

B. GA and SA Calibration

To calibrate the GA and SA algorithms we followed a trial-

and-error procedure with 10 toy examples. Each toy example

consists of an API with 10 methods and 4 clients. For each

of the 10 toy examples we changed the clients’ usage. Then,

we evaluated the IUC values output by the algorithms with

different parameters. For each different parameter, we ran the

algorithms ten times. We used the Mann-Whitney and Cliff’s

Delta tests to evaluate the difference between the IUC values

output by each run. For the GA we evaluated the output with

the following parameters:

• population size was incremented stepwise by 10 from 10

to 200 individuals.

• numbers of iterations was incremented stepwise by 1,000

from 1,000 to 10,000.

• crossover and mutation probability were increased step-

wise by 0.1 from 0.0 to 1.0.
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We noticed statistically different results only when the pop-

ulation size was less than 50, the number of iterations was

less than 1,000, and the crossover and mutation probability

was less than 0.7. Hence, we decided to use the default values

specified in JMetal (i.e., population of 100 individuals, 10,000

iterations, crossover and mutation probability of 0.9).

Similarly, the output of the SA algorithm was evaluated

with different values for the cooling factor. The cooling factor

was incremented stepwise by 0.1 from 0.1 to 1.0. We did not

register any statistically significant difference and we chose a

starting temperature of 0.0003 and a cooling factor of 0.99965

as proposed in [21]. The number of iterations for the SA and

RND algorithms is 10,000 to have a fair comparison with the

GA.

C. Results

To answer our research questions, first, we compute the

IUC value for each public API using the extracted invocations.

We refer to this value as IUCbefore. Then, we run the genetic

algorithm (GA), the simulated annealing algorithm (SA), and

random algorithm (RND) with the same number of iterations

(i.e., 10,000). For each API under analysis, these algorithms

output the set of sub-APIs into which the API should be split.

Each sub-API will show a different IUC value. Among these

sub-APIs we take the sub-API with the lowest IUC value to

which we refer as IUCafter. We chose the lowest IUC value

because this gives us the lower boundary for the IUC values

of the resulting sub-APIs.

Figure 6 shows the distributions of IUCafter values and num-

ber of sub-APIs output by the different algorithms. The box

plots in Figure 6a show that all the search-based algorithms

produced sub-APIs with higher IUCafter values compared to

the original APIs (ORI). The genetic algorithm (GA) produced

sub-APIs that have higher IUCafter values than the original

APIs (ORI) and the sub-APIs generated by the simulated

annealing algorithm (SA) and by the random algorithm (RND).

The second best algorithm is the random algorithm that

outperforms the simulated annealing.

The higher IUCafter values of the genetic algorithm are

associated with a higher number of sub-APIs as shown in

Figure 6b. These box plots show that the median number of

sub-APIs are 2 for the genetic algorithm and the random al-

gorithm. The simulated annealing generated a median number

of 1 API, meaning that in 50% of the cases it kept the original

API without being able to split it. We believe that the poor

performance of the simulated annealing is due to its nature.

Even though it is an advanced local search approach it is still

a local search approach that can get stuck in a local optimum.

To give a better view of the IUC values of the sub-APIs we

show the distributions of IUC values measured on the sub-

APIs generated by the genetic algorithm in Figure 7. Min
represents the distribution of IUC values of sub-APIs with

the lowest IUC (i.e., IUCafter). Max represents the distribution

of IUC values of sub-APIs with the highest IUC. Q1, Q2, and

Q3 represent respectively the first, second, and third quartiles

of the ordered set of IUC values of the sub-APIs.
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(a) Box plots of IUC values mea-
sured on the original APIs (ORI)
and IUCafter measured on the sub-
APIs output by the genetic algo-
rithm (GA), by the simulated an-
nealing algorithm (SA), and by the
random algorithm (RND).

GA SA RND

1
2

3
4

5
6

7
8

#S
ub

A
P

Is

(b) Number of sub-APIs gener-
ated by the genetic algorithm (GA),
the simulated annealing algorithm
(SA), and the random algorithm
(RND).

Fig. 6: IUC values and number of sub-APIs generated by the

different search-based algorithms.
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Fig. 7: Box plots of IUC values measured on the sub-APIs

output by the genetic algorithm. Outliers have been removed

for the sake of simplicity.

The box plots in Figure 6 already give insights into the

capability of the different search-based algorithms of applying

the ISP. To provide statistical evidence of their capability we

compute the difference between the distributions of IUCbefore

and IUCafter generated by the different algorithms using the

paired Mann-Whitney test [24] and the paired Cliff’s Delta

d effect size [25]. First, we use the Mann-Whitney test to

analyze whether there is a significant difference between the

distributions of IUCbefore and IUCafter. Significant differences

are indicated by Mann-Whitney p-values ≤ 0.01. Then, we use

the Cliff’s Delta effect size to measure the magnitude of the

difference. Cliff’s Delta estimates the probability that a value

selected from one group is greater than a value selected from

the other group. Cliff’s Delta ranges between +1, if all selected

values from one group are higher than the selected values in

the other group, and -1, if the reverse is true. 0 expresses

two overlapping distributions. The effect size is considered

negligible for d < 0.147, small for 0.147 ≤ d < 0.33, medium

for 0.33 ≤ d < 0.47, and large for d ≥ 0.47 [25]. We chose

the Mann-Whitney test and Cliff’s Delta effect size because
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the distributions of IUC values are not normally distributed as

shown by the results of the Shapiro test. The Mann-Whitney

test and Cliff’s Delta effect size are suitable for non-normal

distribution because they do not require assumptions about the

variances and the types of the distributions (i.e., they are non-

parametric tests). The results of the Mann-Whitney test and

Cliff’s Delta effect size are shown in Table I.

The distribution of IUCafter values measured on the sub-

APIs generated by the genetic algorithm is statistically differ-

ent (M-W p-value<2.20E-16) from the original IUC values

(GA vs ORI). The Cliff’s Delta is 0.732 if we consider all

the APIs (ALL) and 1 if we consider only APIs with more

than 2 methods (#Methods>2). In both cases the Cliff’s delta
is greater than 0.47 and, hence, the effect size is considered

statistically large. We obtained similar results comparing the

distributions of IUCafter values of the sub-APIs generated by

the genetic algorithm and the simulated annealing algorithm

(GA vs SA). The Mann-Whitney p-value is <2.20E-16 and

the Cliff’s delta is large (i.e., 0.705 for ALL and 0.962 for

#Methods>2). The distributions of IUCafter values of the ge-

netic algorithms and random algorithm (GA vs RND) are also

statistically different (M-W p-value<2.20E-16). Its effect size

is medium (i.e., 0.339 for ALL and 0.463 for #Methods>2).

Moreover, from the results shown in Table I we notice that

the Cliff’s delta effect size is always greater when we consider

only APIs with more than two methods. This result shows that

the effectiveness of the genetic algorithm, random algorithm,

and simulated annealing algorithm might depend on the num-

ber of methods declared in the APIs, number of clients, and

number of invocations. To investigate whether these variables

have any impact on the effectiveness of the algorithms, we

analyze the Cliff’s Delta for APIs with increasing numbers

of methods, clients, and invocations. First, we partition the

data set grouping together APIs with the same number of

methods. Then, we compute the Cliff’s Delta between the

distributions of IUCbefore and IUCafter for each different group.

Finally, we use the paired Spearman correlation test to in-

vestigate the correlation between the Cliff’s Delta measured

on the different groups and their number of methods. We

use the same method to analyze the correlation between the

Cliff’s Delta and the number of clients and invocations. The

Spearman test compares the ordered ranks of the variables to

measure a monotonic relationship. We chose the Spearman

correlation because the distributions under analysis are non-

normal (normality has been tested with the Shapiro test). The

Spearman test is a non-parametric test and, hence, it does not

make assumptions about the distribution, variances and the

type of the relationship [26]. A Spearman rho value of +1 and

-1 indicates high positive or high negative correlation, whereas

0 indicates that the variables under analysis do not correlate

at all. Values greater than +0.3 and lower than -0.3 indicate a

moderate correlation; values greater than +0.5 and lower than

-0.5 are considered to be strong correlations [27].

The results of the Spearman correlation tests are shown

in Table II. We notice that the Cliff’s Delta between the

distributions of IUCafter values of the genetic algorithm and

the random algorithm (i.e., GA vs RND) increases with larger

APIs. The Cliff’s Delta effect size are strongly correlated (i.e.,
rho=0.617) with the number of methods (#Methods). This

indicates that the more methods an API exposes the more the

genetic algorithm outperforms the random algorithm generat-

ing APIs with higher IUC. Moreover, with increasing number

of clients (i.e., #Clients) and invocations (i.e., #Invocations) the

Cliff’s Delta between the distributions of IUCafter values of the

genetic algorithm and the other search algorithms increases as

well. This is indicated by rho values that are greater than 0.3.

Based on these results we can answer our research questions

stating that 1) the genetic algorithm is able to split APIs into

sub-APIs with higher IUC values and 2) it outperforms the

other search-based algorithms. The difference in performance

between the genetic algorithm and random algorithm increases

with an increasing number of methods declared in the APIs.

The difference in performance between the genetic algorithm

and the other search-based techniques increases with an in-

creasing number of clients and invocations.

D. Discussions of the Results

The results of our study are relevant for API providers.

Publishing stable APIs is one of their main concerns, espe-

cially if they publish APIs on the web. APIs are considered

contracts between providers and clients and they should stay as

stable as possible to not break clients’ systems. In our previous

study [2] we showed empirically that fat APIs (i.e., APIs with

low external cohesion) are more change-prone than non-fat
APIs. To refactor such APIs Martin [1] proposed the Interface

Segregation Principle (ISP). However, applying this principle

is not trivial because of the large API usage diversity [5].

Our proposed genetic algorithm assists API providers in

applying the ISP. To use our genetic algorithm providers

should monitor how their clients invoke their API. For each

client they should record the methods invoked in order to

compute the IUC metric. This data is used by the genetic

algorithm to evaluate the candidate solutions through fitness

functions as described in Section III. The genetic algorithm

is then capable to suggest the sub-APIs into which an API

should be split in order to apply the ISP.

This approach is particularly useful to deploy stable web

APIs. One of the key factors for deploying successful web

APIs is assuring an adequate level of stability. Changes in a

web API might break the consumers’ systems forcing them

to continuously adapt them to new versions of the web

API. Using our approach providers can deploy web APIs

that are more externally cohesive and, hence, less change-

prone [2]. Moreover, since our approach is automated, it can

be integrated into development and continuous integration

environments to continuously monitor the conformance of

APIs to the ISP. Providers regularly get informed when and

how to refactor an API. However, note that the ISP takes

into account only the clients’ usage and, hence, the external

cohesion. As a consequence, while our approach assures that

APIs are external cohesive, it currently does not guarantee

other quality attributes (e.g., internal cohesion). As part of our
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GA vs ORI GA vs SA GA vs RND
APIs M-W p-value Cliff’s delta Magnitude M-W p-value Cliff’s delta Magnitude M-W p-value Cliff’s delta Magnitude
ALL <2.20E-16 0.732 large <2.20E-16 0.705 large <2.20E-16 0.339 medium

#Methods>2 <2.20E-16 1 large <2.20E-16 0.962 large <2.20E-16 0.463 medium

TABLE I: Mann-Whitney p-value (M-W p-value) and Cliff’s delta between the distributions of IUCafter values measured on

the sub-APIs generated by the genetic algorithm and measured on the original APIs (i.e., GA vs ORI) and on the sub-APIs

generated by the simulated annealing (i.e., GA vs SA) and random algorithm (i.e., GA vs RND). The table reports the results

for all the APIs under analysis (i.e., ALL) and for APIs with more than 2 methods (i.e., #Methods>2).

#Methods #Clients #Invocations
p-value rho corr p-value rho corr p-value rho corr

GA vs ORI 0.6243 0.070 none 5.199E-13 0.446 moderate <2.20E-16 0.541 strong
GA vs SA 0.8458 -0.028 none 8.872E-12 0.429 moderate <2.20E-16 0.520 strong

GA vs RND 8.127E-06 0.617 strong 2.057e-08 0.424 moderate 9.447E-14 0.477 moderate

TABLE II: P-values and rho values of the Spearman correlation test to investigate the correlation between the Cliff’s Delta

and number of methods, clients, and invocations. Values in bold indicate significant correlations. Corr indicates the magnitude

of the correlations.

future work we plan to extend our approach in order to take

into account other relevant quality attributes.

VI. THREATS TO VALIDITY

This section discusses the threats to validity that can affect

the empirical study presented in the previous section.

Threats to construct validity concern the relationship be-

tween theory and observation. In our study this threat can

be due to the fact that we mined the APIs usage through a

binary analysis. In our analysis we have used binary jar files

to extract method calls. The method calls that are extracted

from compiled .class files are, however, not necessarily

identical to the method calls that can be found in the source

code. This is due to compiler optimizations. For instance, when

the compiler detects that a certain call is never executed, it

can be excluded. However, we believe that the high number

of analyzed APIs mitigates this threat.

With respect to internal validity, the main threat is the possi-

bility that the tuning of the genetic algorithm and the simulated

annealing algorithm can affect the results. We mitigated this

threat by calibrating the algorithms with 10 toys examples and

evaluating statistically their performance while changing their

parameters.

Threats to conclusion validity concern the relationship be-

tween the treatment and the outcome. Wherever possible, we

used proper statistical tests to support our conclusions. In

particular we used non-parametric tests which do not make

any assumption on the underlying data distribution that was

tested against normality using the Shapiro test. Note that,

although we performed multiple Mann-Whitney and Spearman

tests, p-value adjustment (e.g., Bonferroni) is not needed as we

performed the tests on independent and disjoint data sets.

Threats to external validity concern the generalization of

our findings. We mitigated this threat evaluating the proposed

genetic algorithm on 42,318 public APIs coming from dif-

ferent Java systems. The invocations to the APIs have been

mined from the Maven repository. These invocations are not

a complete set of invocations to the APIs because they do

not include invocations from software systems not stored in

Maven. However, we are confident that the data set used in

this paper is a representative sample set.

VII. RELATED WORK

Interface Segregation Principle. After the introduction of

the ISP by Martin [1] in 2002 several studies have investigated

the impact of fat interfaces on the quality of software systems.

In 2013, Abdeen et al. [3] investigated empirically the

impact of interfaces’ quality on the quality of implementing

classes. Their results show that violations of the ISP lead to

degraded cohesion of the classes that implement fat interfaces.

In 2013, Yamashita et al. [4] investigated the impact of inter-

smell relations on software maintainability. They analyzed the

interactions of 12 code smells and their relationships with

maintenance problems. Among other results, they show that

classes violating the ISP manifest higher afferent coupling. As

a consequence changes to these classes result in a larger ripple

effect.

In our previous work [2], we showed that violations of the

ISP can be used to predict change-prone interfaces. Among

different source code metrics (e.g., C&K metrics [9]) we

demonstrated that fat interfaces (i.e., interfaces showing a low

external cohesion measured through the IUC metric) are more

change-prone than non-fat interfaces. Moreover, our results

proved that the IUC metric can improve the performance of

prediction models in predicting change-prone interfaces.

The results of this related work show the relevance of

applying the ISP and motivated us in defining the approach

presented in this paper.

Search Based Software Engineering. Over the last years

genetic algorithms, and in general search based algorithms,

have become popular to perform refactorings of software

systems. The approach closest to ours has been presented

by Praditwong et al. [6] in 2011. The authors formulated

the problem of designing software modules that adhere to

quality attributes (e.g., coupling and cohesion) as multi-

objective clustering search problem. Similarly to our work,
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they defined a multi-objective genetic algorithm that clusters

software components into modules. Moreover, they show

that multi-objective approaches produce better solutions than

existing single-objective approaches. This work influenced us

in defining the problem as multi-objective problem instead of

a single-objective problem. However, the problem we solve is

different from theirs. Our approach splits fat API accordingly

to the ISP and uses different fitness functions.

Prior to this work [6], many other studies proposed ap-

proaches to cluster software components into modules (e.g.,
[28], [29], [30], [31], [32], [33]). These studies propose single-

objective approaches that have been proven to produce worse

solutions by Praditwong et al. [6].

To the best of our knowledge there are no studies that

propose approaches to split fat APIs accordingly to the ISP as

proposed in this paper.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we proposed a genetic algorithm that automati-

cally obtains the sub-APIs into which a fat API should be split

according to the ISP. Mining the clients’ usage of 42,318 Java

APIs from the Maven repository we showed that the genetic

algorithm is able to split APIs into sub-APIs. Comparing the

resulting sub-APIs, based on the IUC values, we showed that

the genetic algorithms outperforms the random and simulated

annealing algorithms. The difference in performance between

the genetic algorithm and the other search-based techniques

increases with APIs with an increasing number of methods,

clients, and invocations. Based on these results API providers

can automatically obtain and refactor the set of sub-APIs based

on how clients invoke the fat APIs.

While this approach is already actionable and useful for API

providers, we plan to further improve it in our future work.

First, we plan to evaluate qualitatively the sub-APIs generated

by the genetic algorithm. The higher IUC values guarantee that

sub-APIs are more external cohesive and, hence, they better

conform to the ISP. However, we have not investigated yet

what developers think about the sub-APIs. Hence, we plan

to contact developers and perform interviews to investigate

the quality of these sub-APIs. Next, we plan to extend our

approach taking into account other quality attributes, such

as internal cohesion. Finally, we plan to slightly modify the

genetic algorithm to generate overlapping sub-APIs (i.e., sub-

APIs that share common methods).
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