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Abstract—The relevance of the service interfaces’ granular-
ity and its architectural impact have been widely investigated
in literature. Existing studies show that the granularity of
a service interface, in terms of exposed operations, should
reflect their clients’ usage. This idea has been formalized in
the Consumer-Driven Contracts pattern (CDC). However, to
the best of our knowledge, no studies propose techniques to
assist providers in finding the right granularity and in easing
the adoption of the CDC pattern.

In this paper, we propose a genetic algorithm that mines
the clients’ usage of service operations and suggests Façade
services whose granularity reflect the usage of each different
type of clients. These services can be deployed on top of the
original service and they become contracts for the different
types of clients satisfying the CDC pattern. A first study shows
that the genetic algorithm is capable of finding Façade services
and outperforms a random search approach.

Keywords-SOA; services; granularity; genetic algorithms;

I. INTRODUCTION

One of the key factors for deploying successful services

is assuring an adequate level of granularity [9], [4], [16],

[8], [15]. The choice of how operations should be exposed

through a service interface can have an impact on both per-

formance and reusability [9], [16]. This level of granularity

is also know in literature as functionality granularity [8]. For

the sake of simplicity we refer to it simply as granularity

throughout this paper. Choosing the right granularity is

not a trivial task. On the one hand, fine-grained services

lead their clients to invoke their interfaces multiple times

worsening the performance [9], [4]. On the other hand,

coarse-grained services can reduce reusability because their

use is limited to very specific contexts [9], [4]. To find a

trade-off between fine-grained and coarse-grained services

the Consumer-Driven Contracts (CDC) pattern has been

proposed [4]. This pattern states that the granularity of a

service interface should reflect their clients’ usage satisfying

their requirements and becoming a contract between clients

and providers.

In literature several studies have investigated the impact of

granularity (e.g., [9], [4], [16], [8], [15]), have classified the

different levels of granularity (e.g., [8]), and have proposed

metrics to measure them (e.g., [13], [3]). However, to the

best of our knowledge, there are no studies proposing

techniques to assist service providers in finding the right

granularity and adopting the CDC pattern. This task can be

expensive because many clients invoke a service interface

in different ways. Providers should, first, analyze the usage

of many clients and, then, design a service interface that

satisfies all the clients’ requirements.

In this paper, we propose a genetic algorithm to assist

service providers in finding the adequate granularity and

adopting the CDC pattern. This algorithm mines the clients’

usage of a service interface and it retrieves Façade services

[14] whose interfaces have an adequate granularity for each

different type of clients. These Façade services become

contracts that reflect clients’ usage easing the adoption of

the CDC pattern. Moreover, providers can deploy them on

top of the existing service making this approach actionable

without modifying it.

The contributions of this paper are as follows:

• a genetic algorithm designed to infer Façade services

from clients’ usage that represent contracts with the

different types of clients.

• a study to evaluate the capability of the genetic algo-

rithm compared to the capability of a random search

approach.

The results show that the genetic algorithm is capable

of finding Façade services and it outperforms the random

search.

The remainder of this paper is organized as follows.

Section II presents the problem and the proposed solution.

Section III shows the proposed genetic algorithm. Section IV

presents the study, its results, and discusses them. Related

work is presented in Section V while in Section VI we draw

our conclusions and outline directions for future work.

II. PROBLEM STATEMENT AND SOLUTION

In this section, first, we introduce the problem of finding

the adequate granularity of service interfaces presenting the

Consumer-Driven Contracts pattern. Then, we present our

solution to address this problem.

A. Problem Statement

Choosing the adequate granularity of a service is a rel-

evant task and a widely discussed topic [9], [4], [16], [8],
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[15].

On the one hand, fine-grained services can lead to service-

oriented systems with inadequate performance due to an

excessive number of remote calls [9]. Consider for instance

the fragment of a service interface to order an item shown

in Figure 1. Figure 1a shows a fine-grained design for

this service that exposes methods to set shipment and

billing information for ordering an item. This design is

efficient if the methods’ invocation happens in a local

environment (e.g., in a software system deployed on a

single machine) [9]. In a distributed environment (e.g., in

a service-oriented system) a client needs to invoke three

methods (i.e., setBillingAddress(), setShippingAdress(), and

addPriorityShipment()) to set the needed information. This

causes a significant communication overhead since three

methods needs to be invoked over a network.

On the other hand, the coarse-grained OrderItem (shown

in Figure 1b) exposes only one method (i.e., setShip-
mentInfo()) to set all the information related to the shipment

and the billing. In this way clients invoke the service only

once reducing the communication overhead. However, if the

services are too coarse-grained they can limit the reusability

because their use will be limited to very specific contexts

[9], [16], [4]. In our example in Figure 1, the clients of

the coarse-grained service (Figure 1b) are constrained to

set the billing address, the shipping address, and to add

the priority shipment details. The service is not suitable

for contexts where, for instance, priority shipments are not

allowed. Maintenance tasks are needed to adapt coarse-

grained services to different contexts. Hence, finding the

adequate granularity of a service requires finding a trade-

off between having a too fine-grained or a too coarse-

grained service. This allows to publish a service with an

acceptable communication overhead and an adequate level

of reusability.

OrderItem
<<FineGrained>>

-setBillingAddress()

-setShippingAddress()

-addPriorityShipment()

(a) Fine-grained version exposing
different methods for setting each
different needed information.

OrderItem
<<CoarseGrained>>

-setShipmentInfo()

(b) Coarse-grained version expos-
ing a method to set all the needed
information.

Figure 1: An example of fine-grained and coarse-grained

service interfaces to set the shipping and the billing data for

ordering an item.

To find such an adequate level of granularity the

Consumer-Driven Contracts (CDC) has been defined for

service interfaces [4]. The CDC pattern states that a ser-

vice interface should reflect their clients needs through its

granularity. In this way the service interface is considered a

OrderItem
<<FineGrained>>

1-setBillingAddress()

2-setShippingAddress()

3-setPriorityShipment()

5-addWishCardType()

4-addPaymentDetails()

6-addWishCardMsg()
7-trackShipmentByApp()
8-trackShipmentByEmail()
9-trackShipmentBySMS()
10-notifyArrivalTime()

Client1

Client2

Client3

Client4

Figure 2: An example of a service interface to order an

item for an e-commerce system. The rectangles represent

independent methods that are invoked by a client.

contract that satisfies the clients’ requirements.

Applying the CDC pattern is not a trivial task. A ser-

vice has usually several clients with different requirements

invoking its interface differently. To deploy a service with

an adequate granularity (using the CDC pattern) providers

should know all these requirements. Within an enterprise or a

corporate environment providers know their clients and they

can understand how clients expect to use a service. However,

clients are usually not known a priori and they bind a service

only after it has been published and advertised. Moreover

the number of clients and their different requirements can

be huge and change over time.

B. Solution

Our solution to the aforementioned problem consists in

applying a cluster analysis. This analysis consists in cluster-

ing the set of methods in such a way that methods in the

same cluster are invoked together by the clients. The goal

of our cluster analysis is to find clusters that minimize the

number of remote invocations to a service.

To better understand the cluster analysis for the granular-

ity problem consider the example in Figure 2. The OrderItem
extends the service shown in Figure 1a exposing further

methods to 1) add payment details (addPaymentDetails()),
2) add a wish card to an order (addWishCardType() and

addWishCardMsg()), and 3) to track the shipment (track-
ShipmentByApp(), trackShipmentByEmail(), trackShipment-
BySMS(), and notifyArrivalTime()). Imagine this service

has four clients (Client1, Client2, Client3, and Client4).

These clients invoke different sets of independent methods

denoted in Figure 2 by rectangles (e.g., Client1 invokes

setBillingAddress(), setShippingAddress(), and setPriority-
Shipment()). These methods are considered independent

because the invocation of one method does not require the

invocation of the other ones [20]. In total there are 13 remote

invocations: 3 performed by Client1, 3 by Client2, 3 by

Client3, and 4 by Client4.

In this example we can retrieve three clusters (shown in

Figure 3a) that minimize the number of remote invocations:

• Cluster1 (i.e., Shipment): consists of setBillingAd-
dress(), setShippingAddress(), and setPriorityShip-
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OrderItem
<<FineGrained>>

1-setBillingAddress()

2-setShippingAddress()

3-setPriorityShipment()

5-addWishCardType()

4-addPaymentDetails()

6-addWishCardMsg()
7-trackShipmentByApp()
8-trackShipmentByEmail()
9-trackShipmentBySMS()
10-notifyArrivalTime()

Client1

Client2

Client3
Client4

Shipment

-setShipmentInfo()

WishCard

-setWishCard()

TrackShipment

-setTrackingShip()

<<Cluster1>>

<<Cluster2>>

<<Cluster3>>

(a) The Shipment, WishCard, and TrackShipment have been
introduced. This design has 9 local invocations and 6 remote
invocations.

OrderItem
<<FineGrained>>

1-setBillingAddress()

2-setShippingAddress()

3-setPriorityShipment()

5-addWishCardType()

4-addPaymentDetails()

6-addWishCardMsg()
7-trackShipmentByApp()
8-trackShipmentByEmail()
9-trackShipmentBySMS()
10-notifyArrivalTime()

Client1

Client2

Client3
Client4

Shipment

-setShipmentInfo()

Client2

-setClient2Details()

TrackShipment

-setTrackingShip()

<<Cluster1>>

<<Cluster2>>

<<Cluster3>>

(b) The Shipment, Client2, and TrackShipment have been
introduced. This design has 10 local invocations and 6 remote
invocations.

Figure 3: Two possible refactorings of the service interface shown in Figure 2 using the proposed cluster analysis and using

the Façade pattern. Black arrows indicate local invocations while non-black arrows indicate remote invocations.

ments().
• Cluster2 (i.e., WishCard): consists of addWishCard-

Type() and addWishCardMsg().
• Cluster3 (i.e., TrackShipment): consists of trackShip-

mentByApp() trackShipmentByEmail(), trackShipment-
BySMS() and notifyArrivalTime().

Once we know the clusters we can combine the fine-

grained methods belonging to a cluster into a single coarse-

grained method. These coarse-grained methods can be ex-

posed through Façade services [14] as shown in Figure 3a.

Façade services (i.e., Shipment, WishCard, and TrackShip-
ment in our example) have been defined to provide different

views of lower level services (i.e., OrderItem in our exam-

ple). Since the invocations from Façade services to lower-

level services are local invocations (shown with black arrows

in Figure 3), the total number of remote invocations (shown

with non-black arrows in Figure 3) has been reduced from 9

to 6. Moreover, adopting this design choice allows to keep

public the fine-grained OrderItem that can be still invoked

by current clients without breaking their behavior.

Choosing the clusters that minimize the number of remote

invocations can lead to multiple solutions. Imagine for

instance that we change Cluster2 adding the method addPay-
mentDetails() as shown in Figure 3b. This cluster is optimal

for Client2 that should perform only one remote invocation.

However, Client3 cannot invoke anymore the Façade service

associated to the Cluster2 because it contains a method

(i.e., addPaymentDetails()) in which it is not interested. The

number of remote invocations is still equal to 6. At this

point an engineer should decide which architectural design

is more suitable for her specific domain. The decision might

be influenced by three different factors:

• Cohesion of Façade services: the design in Figure 3a

might be preferred because the WishCard service is

more cohesive than the Client2 service since it exposes

related methods (methods related to the wish card

concern).

• Number of local invocations: the design in Figure 3a

might be preferred because it has 9 local invocations

while the design in Figure 3b has 10 local invocations.

• Relevance of different clients: the service provider

might want to give a better service (e.g., upon a higher

registration fee) to Client2 and, hence, adopt the design

in Figure 3b.

C. Contributions

In this paper we propose a search-based approach to

retrieve the clusters of methods that minimize the number

of remote invocations. As explained previously, the methods

belonging to the same cluster can be exposed through a

Façade service whose granularity reflects clients’ usage and,

hence, satisfies the CDC pattern.

A first approach to find these clusters consists in adopting

brute-force search techniques. These techniques consist of

enumerating all possible clusters and checking whether they

minimize the number of invocations. The problem of these

approaches is that the number of possible clusters can

be prohibitively large causing a combinatorial explosion.

Imagine for instance to adopt this approach for finding

the right granularity of the AmazonEC2 web service. This

web service exposes 118 methods in the version 23 [18].

The number of 20-combinations of the 118 methods in

AmazonEC2 are equal to:

(
118
20

)
=

118!

20!98!
≈ 2 ∗ 1021

This means that for only evaluating all the clusters with

20 methods the search will require executing at least 2 ∗
1021 computer instructions, which will take several days on

a typical PC. Moreover, we should evaluate clusters with

size ranging from 2 to 118 causing the number of computer

instructions to further increase.

To solve this issue we propose a genetic algorithm (shown

in Section III) that mimicking the process of natural selec-

tion finds optimal solutions (i.e., cluster that minimize the

number of remote invocations) in acceptable time without
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requiring special hardware configurations (e.g., the use of

supercomputers).

Moreover, we perform a first study aimed at investigating

the capability of the proposed approach in finding Façade

services that is presented in Section IV.

In this paper we do not cover the problem of mining

independent methods because it has already been subject of

related work [20] that can be integrated in our approach.

Furthermore, related work [20] shows that 78.1% of the

methods in their analyzed web services are independent.

This percentage shows that most of the methods can be

clustered into coarse-grained methods,further motivating the

need of performing this task with a proper approach.

III. THE GENETIC ALGORITHM

Genetic Algorithms (GAs) have been used in a wide range

of applications where optimization is required. Among all

the applications GAs have been widely studied to solve

clustering problems [11].

GAs mimic the process of natural selection to provide

a search heuristic able to solve optimization problems. A

generic GA is shown in Figure 4 and consists of seven

different steps.

In the fist step, the GA creates a set of randomly generated

candidate solutions (also known as chromosomes) called

population (step 1 in Figure 4). In the second step, the

candidate solutions are evaluated through a fitness function

(step 2). This function measures the goodness of a candidate

solution. Then, the population is evolved iteratively through

evolutionary operators (steps 4, 5, and 6) until some condi-

tions are satisfied (e.g., reaching the max number of fitness

evaluations in step 3 or achievement of the goal). Each

evolution iteration is performed through a selection operator

(step 4), a crossover operator (step 5), and a mutation
operator (step 6). The selection operators selects a pair of

solutions (parents) from the population. The parents are

used by the crossover operator to generate two offspring

solutions (step 5). The offspring solutions are generated in

such a way that combine features from the two parents. The

mutation operators (step 6) mutate the offspring in order

to preserve the diversity. The mutated solutions are added

to the population replacing solutions with the worst fitness

scores. Finally, the GA outputs the best solutions when the

evolution process terminates (step 7).

To implement the GA and adapt it to find the set of

clusters that minimize the number of remote invocations

we have to define the fitness function, the chromosome (or

solution) representation, and the evolutionary operators (i.e.,
selection, crossover, and mutation) that are shown in the

following sub-sections.

A. Chromosome representation

The chromosomes are represented with a label-based
integer encoding widely adopted in literature [11] and

Create initial population of 

chromosomes

Evaluate fitness of each 

chromosome

Select next generation

(Selection Operator)

Perform reproduction

(Crossover operator)

Perform mutation

(Mutation operators)

Max

Evaluations
Output

best chromosomes

1

2

4

5

6

3

7

Figure 4: Different steps of a genetic algorithm.

ClientID InvokedMethods
Client1 1;2;3
Client2 4;5;6
Client3 5;6;7
Client4 7;8;9;10

Table I: Data set containing independent methods invoked

by each different client in Figure 2.

shown in Figure 5. According to this encoding, a solution

is represented by an integer array of n positions, where

n is the number of methods exposed in a service. Each

position corresponds to a specific method (e.g., position 1

corresponds to the method setBillingAddress() in Figure 2).

The integer values in the array represent the cluster to

which the methods belong. For instance in Figure 5, the

methods 1,2, and 10 belong to the same cluster labeled

with 1. Note that two chromosomes can be equivalent even

though the clusters are labeled differently. For instance the

chromosomes [1,1,1,1,2,2,2,2,3,3] and [2,2,2,2,3,3,3,3,1,1]

represent the same clusters. To solve this problem we apply

the renumbering procedure as shown in [5] that transforms

different labelings of equivalent clusterings into a unique

labeling.

1 1 2 3 2 4 5 3 6 1
1 2 3 4 5 6 7 8 9 10

Figure 5: Chromosome representation of our candidate so-

lutions.

B. Fitness

The fitness function is a function that measures how

”good” a solution is. Our fitness function counts for each

chromosome the number of remote invocations needed by

the clients. Imagine that the clients’ usage information of

Figure 2 are saved in the data set shown in Table I.

In this data set, each row contains the id of the client

(i.e., ClientID) and the set of independent methods invoked

by it (i.e., InvokedMethods). The InvokedMethods are sets

of methods where each integer value corresponds to a

different method in the service. We label the methods in the

OrderItem (shown in Figure 2) from 1 to 10 depending on

the order they appear in the service (e.g., setBillingAddress()

517517481



is labeled with 1, setShippingAddress() is labeled with 2,

etc.).
Once we have this data set, we compute the fitness

function as the sum of the number of remote invocations

required to invoke each InvokedMethods set in the data

set. If the methods (or a subset of methods) in an In-
vokedMethods set belong to a cluster containing no other

methods, the methods in this cluster account for 1 invocation

in total. Otherwise each different method accounts for 1.

Consider for instance the chromosome [1,1,1,1,2,2,2,2,3,3].

This chromosome clusters together the methods 1, 2, 3,

and 4 (i.e., cluster 1), the methods 5, 6, 7, and 8 (i.e.,
cluster 2), and the methods 9 and 10 (i.e., cluster 3). In

this case the number of remote invocations to execute the

InvokedMethods of Client1 (i.e., 1;2;3) is 3 because the

cluster 1 contains the method 4 that is not needed by it.

Hence, Client1 cannot invoke the Façade service represented

by the cluster labeled 1 and invokes the methods of the

original service OrderItem. If we change the chromosome

into [1,1,1,2,2,2,2,2,3,3], the total number of invocations is

equal to 1 because Client1 can execute the single operation

declared in the Façade service represented by the cluster

1. If the chromosome becomes [1,1,2,2,2,2,2,2,3,3] then the

total number of remote invocations is equal to 2. The client

invokes once the method of cluster 1 to invoke the methods

1 and 2. Then it invokes method 3 in the original service.

C. The Selection Operator

To select the parents we use the Ranked Based Roulette

Wheel (RBRW) operator. This operator is a modified roulette

wheel selection operator that has been proposed by Al

Jadaan et al. [1]. RBRW ranks the chromosomes in the

population by the fitness value: the highest rank is assigned

to the chromosome with the best fitness value. Hence,

the best chromosomes have the highest probabilities to be

selected as parents.

D. The Crossover Operator

The two parents (ParentA and ParentB) are then used to

generate the offspring. The crossover operator is applied

with a probability Pc. To perform the crossover we use

the operator defined for clustering problems by Hruschka

et al. [11]. Consider the example shown in Figure 6 from

[11]. The operator first selects randomly k (1≤k≤n) clus-

ters from ParentA, where n is the number of clusters in

ParentA. Assume that the clusters 2 and 3 are selected from

ParentA (marked in red in Figure 6). The first child (ChildC)

originally is created as copy of the second parent ParentB
(step 1). As second step, the selected clusters (i.e., 2 and

3) are copied into ChildC. Copying these clusters changes

the clusters 1, 2, and 3 in ChildC. These changed clusters

are removed from ChildC (step 3) leaving the corresponding

methods unallocated (labeled with 0). In the forth step the

unallocated methods are allocated to the cluster with the

nearest centroid.

The same procedure is followed to generate the second

child ChildD. However, instead of selecting randomly k
clusters from ParentB, the changed clusters of ChildC (i.e.,
1,2, and 3) are copied into ChildD that is originally a copy

of ParentA.

1 1 2 3 2 4 5 1 2 5 4 2 1 2 3 3 2 1 2 4

4 2 1 2 3 3 2 1 2 4

ParentA ParentB

ChildC

1: copy ParentB into ChildC

4 2 2 3 2 3 2 1 2 4ChildC

2: copy clusters 2 and 3 from 

ParentA to ChildC

4 0 2 3 2 0 0 0 2 4ChildC

3: remove changed methods 

from B (i.e., 1,2,3)

4: unallocated objects are allocated to the cluster 

with the nearest centroid

Figure 6: Example of crossover operator for clustering

problems [11].

E. The Mutation Operators

Finally, the offspring is mutated through the mutation

operator with a probability Pm. This step ensures genetic

diversity from one generation to the next ones. We perform

the mutation selecting one of the following cluster-oriented

mutation operators (randomly selected) [5], [11]:

• split: a randomly selected cluster is split into two

different clusters. The methods of the original cluster

are randomly assigned to the generated clusters.

• merge: moves all methods of a randomly selected

cluster to another randomly selected cluster.

• move: moves methods between clusters. Both methods

and clusters are randomly selected.

F. Implementation

We implemented the proposed genetic algorithm on top

of the JMetal1 framework. JMetal is a Java framework

that provides state-of-the-art algorithms for optimization

problems. We calibrated the genetic algorithm as follows:

• the population is composed by 100 chromosomes. The

initial population is randomly generated;

• the crossover and mutation probability is 0.9;

• the maximum number of fitness evaluation (step 3 in

Figure 4) is 100,000.

These parameters were chosen following the JMetal de-

fault values.

IV. STUDY

The goal of this study is to evaluate the capability of

our approach in finding Façade services that minimize the

1http://jmetal.sourceforge.net
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number of remote invocations and reflect clients’ usage. The

perspective is that of service providers interested in applying

the Consumer-Driven Contracts pattern using Façade ser-

vices with adequate granularity. In this study we answer the

following research question:

To which extent is the propose GA capable of identifying
Façade services that minimize the number of remote

invocations and reflect clients’ usage?

In the following subsections, first, we present the analysis

we performed to answer our research question. Then, we

show the results and answer the research question. Finally,

we discuss the results and the threats to validity of our study.

A. Analysis

To answer our research question we run the genetic

algorithm (GA) defined in Section III to find the Façade

services for the working example shown in Figure 2. To

measure the performance of our GA we register the number

of GA fitness evaluations needed to find the Façade services

shown in Figure 3. Also, we compare the GA with a random

search (RS), in which the solutions are randomly generated

but no genetic evolution is applied. Both the GA and RS are

executed 100 times and the number of fitness evaluations

required to find the Façade services are compared through

statistical tests. We use a random search as baseline because

this comparison is considered the first step to evaluate a

genetic algorithm [19]. Comparisons with other search-based

approaches (e.g., local search algorithms) will be subject of

our future work.

First, we use the Mann-Whitney test to analyze whether

there is a significant difference between the number of

fitness evaluations required by the GA and the ones required

by the RS. Significant differences are indicated by Mann-

Whitney p-values ≤ 0.01. Then, we use the Cliff’s Delta

d effect size to measure the magnitude of the difference.

Cliffs Delta estimates the probability that a value selected

from one group is greater than a value selected from the

other group. Cliffs Delta ranges between +1 if all selected

values from one group are higher than the selected values

in the other group and -1 if the reverse is true. 0 expresses

two overlapping distributions. The effect size is considered

negligible for d < 0.147, small for 0.147≤ d < 0.33,

medium for 0.33≤ d < 0.47, and large for d ≥ 0.47.

We chose the Mann-Whitney test and Cliff’s Delta effect

size because they do not require assumptions about the

variances and the types of the distributions (i.e., they are

non-parametric tests).

Moreover, to analyze the capability of the GA in finding

Façade services for bigger services, we increase stepwise

the number of methods declared in OrderItem keeping

unchanged the original methods (i.e., 1-10), their clients,

and the clients’ usage (as shown in Figure 2). In this way

we enlarge the search space and we analyze whether the GA

#Methods GA RS
10 100% 82%
11 100% 70%
12 100% 65%
13 100% 35%
14 100% 20%
15 100% 10%
16 100% 0%

118 100% 0%

Table II: Percentage of successful executions in which GA

and RS find the Façade services shown in Figure 3.

GA10 RS10 GA11 RS11 GA12 RS12 GA13 RS13 GA14 RS14 GA15 RS15 GA16 RS16

0e
+
00

4e
+
06

8e
+
06

#
E
v
a
lu
a
ti
o
n
s

Figure 7: Box plots showing the number of fitness evalua-

tions (#Evaluations) required by GA and RS. GAX and RSX

label the box plots for the OrderItem with X methods.

is able to find the same Façade services. For each different

size of the OrderItem we perform the same analysis: 1) we

execute 100 times the GA and RS, 2) we register the number

of fitness evaluations needed for finding the Façade services

shown in Figure 3, and 3) we perform the Mann-Withney

and Cliff’s Delta test to analyze statistically the differences

between the distributions. We increment the size of the

service up to 118 methods, that is the size of the biggest

WSDL interface (AmazonEC2) analyzed in our previous

work [18].

B. Results

Table II shows the percentage of executions in which GA

and RS find the right Façade services shown in Figure 3. The

results show that, while the GA is always capable of finding

the Façade services, the capability of the RS decreases with

an increasing number of methods. For services with 16 or

more methods the RS is not capable to find the Façade

services.

The number of fitness evaluations required by the GA

and RS are shown in the form of box plots in Figure 7. The

median number of fitness evaluations for the OrderItem with

118 methods required by the GA (not shown in Figure 7)

is equal to 5754 (with a median execution time of 295

seconds2). Comparing it to the median number of fitness

evaluations for the service with 10 methods (i.e., 1049 fitness

evaluations with a median execution time of 34.5 seconds)

shows that GA scales well with an increasing number of

methods.

2Execution times has been evaluated on a MacBook Pro Mid 2010,
processor 2.66 GHz Intel Core i7, memory 4 GB 1067 MHz DDR3, OS
10.8.5.
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#Methods MW p-value Cliff d
10 < 2.2e-16 1
11 < 2.2e-16 1
12 < 2.2e-16 1
13 < 2.2e-16 1
14 < 2.2e-16 1
15 < 2.2e-16 1

Table III: Mann-Whitney p-values (MW p-value) and Cliff’s

Delta d (Cliff d) between the distribution of #Evaluations

required by the GA and RS.

Moreover, the distributions of the number of fitness

evaluations required by the GA and the RS is statistically

different as shown by the Mann-Whitney p-values (<0.01)

in Table III. The magnitude of these differences is always

large as shown by Cliff’s Deltas d (=1) in Table III. All

the distributions, except RS12 in Figure 7, are not normally

distributed (normality has been tested with the Shapiro test

and a confidence level of 0.05). As a consequence the non-

parametric tests used in our analysis are the most suitable

for these distributions.

Based on these results, we can answer our research

question stating that the GA is capable to find Façade

services and outperforms the RS approach.

C. Discussions

The results of this study show that the proposed GA,

differently to the RS, is capable to assist service providers in

applying the Consumer-Driven Contracts pattern. Running

the GA, providers can retrieve the Façade services that

reflect the usage of their clients and minimize the number

of remote invocations. Once the set of Façade services is

retrieved, they should manually select the most appropriate

Façade services as discussed in Section II. These Façade

services can be deployed on top of the existing service

without modifying it and preserving the compatibility of

existing clients. Furthermore, since this approach is semi-

automatic, it can be executed over time to monitor the

evolution of clients’ usage. This allows service providers

to co-evolve the granularity of their services reflecting the

evolving usage of their clients.

The main threats to validity that can affect our study are

the threats to external validity. These threats concern the gen-

eralization of our findings. We evaluated our approach with a

small working example. However, to best of our knowledge,

there are no available data sets that contain service usage

information suitable for our analysis. In literature different

data sets are available for research on QoS (e.g., [2], [21]).

However, these data sets do not contain information about

the operations invoked but only the service names and their

url. As a consequence they are not suitable for our analysis.

V. RELATED WORK

Granularity of services. The closest work to ours is the

study developed by Jiang et al. [12]. In this study the authors

propose an approach to infer the granularity of services

by mining the activities of business processes. The main

idea consists of using frequent pattern mining algorithms to

analyze the invocations to service interfaces. Our approach

differs to theirs because it can mine the granularity of every

kind of services and not only services involved in business

processes. Furthermore, we have not used the proposed

frequent pattern mining algorithm because they require a

special tuning of the support and confidence parameters that

are problem specific. Moreover, these parameters, together

with other relevant details, are not reported in [12] making

the replication of this study not possible. To the best of

our knowledge we are not aware of further studies aimed a

inferring the right granularity of service interfaces.

Related work have mostly proposed classifications for

different levels of granularity and have investigated met-

rics for measuring the granularity. Haesen et al. [8] have

proposed a classification of three service granularity types

(i.e., functionality, data, and business value granularity). For

each of these types they have discussed the impact on a set

of architectural attributes (e.g., performance, reusability and

flexibility). In our paper we adhered to their functionality
granularity that has been referred to as granularity for the

sake of simplicity. Haesen et al. confirm that the functional-
ity granularity can have an impact on both performance and

reusability as stated in [9], [16], [4] and already discussed

in Section II. Many other studies have investigated metrics

to measure the granularity (e.g., [13], [3]). For instance,

Khoshkbarforoushha et al. [13] measure the granularity

appropriateness with a model that integrates four different

metrics that measure: 1) the business value of a service, 2)

the service reusability, 3) the service context-independency,

and 4) the service complexity. Alahmari et al. [3] proposed

a set of metrics to measure the granularity based on internal

structural attributes (e.g., number of operations, number of

messages, complexity of data types). However, these studies

are limited to measure the granularity and do not provide

suggestions on inferring the right granularity.

Refactoring through genetic algorithms. Over the last

years genetic algorithms, and in general search based al-

gorithms, have become popular to perform refactorings of

software artifacts. For instance, Ghannem et al. [7] found

appropriate refactoring suggestions using a set of refactoring

examples. Their approach is based on an Interactive Genetic

Algorithm which enables to interact with users and integrate

their feedbacks into a classic GA. Ghaith et al. [6] presented

an approach to automate improvements of software security

based on search-based refactoring. O’Keeffe et al. [17] have

constructed a software tool capable of refactoring object-

oriented systems. This tool uses search-based techniques to

conform the design of a system to a given design quality

model. These studies confirm that genetic algorithms are a

useful technique to solve refactoring problems and satisfying

desired quality attributes.
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VI. CONCLUSION & FUTURE WORK

In this paper we have proposed a genetic algorithm

to mine the adequate granularity of a service interface.

According to the Consumer-Driven Contracts pattern, the

granularity of a service should reflect its clients’ usage. To

adopt this pattern our genetic algorithm suggests Façade

services whose granularity reflect the clients’ usage. These

services can be deployed on top of existing services allowing

an easy adaptation of the Consumer-Driven Contracts pattern

that does not require any modifications to existing services.

Our approach is semi-automatic as discussed in Sec-

tion II. The genetic algorithm outputs different sets of

Façade services that should be reviewed by providers. In

our future work, first, we plan to further improve this

approach to minimize the effort required from the user.

Specifically, we plan to add parameters that can guide the

search algorithm towards more detailed goals: giving more

relevance to certain clients, satisfying other quality attributes

(e.g., high cohesion of Façade services, low number of local

invocations), etc. Then, we plan to compare our genetic

algorithm with other search-based techniques (e.g., local

search algorithms). Finally, we plan to improve the genetic

algorithm suggesting overlapping Façade services that allow

a method to belong to different Façade services. However,

an ad-hoc study is needed to investigate to which extent the

methods can be exposed through different Façade services

because it can be problematic for the maintenance of service-

oriented systems.
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