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Abstract— Since its beginnings ten years ago, the Robot
Operating System (ROS) has created a huge community of
developers and researchers and is now the most widespread
open-source framework for robotics development. It is used
in research, prototyping but also in commercial products and
supports a wide range of robotic platforms, sensors and high-
level data processing functions. While for a research platform,
quality of the software developed with it is typically of lower
importance, ROS is gradually moving towards industrial appli-
cations making software quality a premier topic. In this paper,
we want to gain insights on how ROS is used in practice, how
high the quality of the ROS packages and applications is, and
where potential pitfalls in the use of ROS lie. To achieve this, we
have analyzed several thousands of open-source ROS packages
found on GitHub and Bitbucket for their quality and their inter-
dependencies. Our results include packages on the rosdistro
index and, more importantly, packages that are not. From our
results we show common issues in ROS-applications, quality
implications, and also which packages of what quality are
particularly popular.

I. INTRODUCTION

The Robot Operating System (ROS) [1] is the most

popular software framework for building robotic applications

to date. Despite its already broad use, it is expected to grow

even stronger in the coming years along with the boom

in intelligent robotics. This also requires the ROS-based

software to be of high quality and sufficient robustness.

ROS has an avid community of students, researchers

and - amongst others in the form of the ROS Industrial

Consortium1 - industry partners alike creating and publishing

open-source software intended to control manipulators and

build complex robotic-systems based on a publish/subscribe

architecture.

Due to this community being comprised of a large number

of developers from different backgrounds, researchers have

questioned the code quality of community-created ROS

packages for quite some time. The use of these packages in a

high-risk environment, such as robotics, further complicates

the issue. In such environments, lack of software-testing and

other formal verification methods implies increased risk of

property damage, or worse, injury and loss of life.

*The work reported in this article has been supported by the Austrian
Research Promotion Agency in the program ”ICT of the Future” (grant
no. 861264) and by the Austrian Ministry for Transport, Innovation and
Technology (BMVIT).

1https://rosindustrial.org/

Aside from potentially dangerous effects caused by a lack

of tests, many community-developed ROS-based applica-

tions have suffered from unclear dependencies to third-party

packages. While ROS tries to counteract this problem by

offering a dependency manager - rosdep - we will show

that many developers do not use it correctly; causing the

experience of someone unfamiliar with the project compiling

these packages to be tedious and time-intensive.

In order to get an overview on which ROS packages

are predominantly in use, the ROS community constantly

maintains a list of open-source packages. With this list,

some efforts have been undertaken to provide an overview

of the ROS landscape in form of the ROS-Wiki.2 However,

many open-source packages are not being indexed and doc-

umented, possibly skewing the big picture in terms of code-

quality, making deficiencies in ROS applications as a whole

look less apparent and therefore safer than they actually are.

While others have examined code-quality, and provided

static-analysis methods to measure them [2], we want to

provide a conservative estimation of how many ROS-based

applications actually exist. To this end, we try to compile a

list of repositories available to the public, with repositories

that are on the index acting as a starting point. Taking off

from that, we collect more data and set out to find non-

indexed packages on various social coding sites, namely

GitHub and Bitbucket.

As an example, consider iiwa stack, a software stack

developed by researchers at the TU Munich. It is currently

not listed as a package in the ROS distribution, but available

for use under BSD-License on GitHub.3 In its original use-

case, it has been proposed to be used to acquire ultrasound

data on humans using a KUKA LBR iiwa lightweight

collaborative robot [3]. At the time of writing, this repository

had 97 forks, and has been starred by 105 distinct users.

However, taking a closer look at the repository reveals that

it does neither contain unit- nor integration-tests. Since the

robot itself provides safety features specifically for use in

human-robot-collaboration, in this case, the risk a human

would be exposed to is relatively small; in other instances

however, this might not be the case.

Furthermore, due to the fact that unlisted packages do

not provide an easy way to check their dependencies the

2http://wiki.ros.org/
3https://github.com/IFL-CAMP/iiwa_stack/
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same way listed packages do, the risk of having a lower

quality package somewhere in the dependency graph grows

as well. While some packages could be well tested, they

might require the proper operation of an untested package,

possibly rendering the testing efforts ineffective.

The contributions in this paper are threefold. First, we

present an overview on the dependency structure of ROS

packages and point out conclusions we draw from that.

Second, we define quality metrics for ROS packages and

categorize their code repositories as a first approximation

to how quality propagates through the dependency graph.

Finally, we provide a tool for developers to inspect the de-

pendency graph and the repository quality of ROS packages.

This paper is structured as follows: Section II discusses

related work on this issue. In Section III we present our

approach to mapping the ROS-Landscape, as well as an

overview on how the subsequently analyzed data has been

collected. Section IV presents our analysis results and dis-

cusses their possible causes, and Section V wraps up the

paper and provides an outlook on future work.

II. RELATED WORK

Quality of robotic software has received some attention

in research already. As argued by Reichardt et al. [4],

robotic frameworks should foster good software design by

exhibiting certain design elements themselves, which then

tend to be adopted by developers using the frameworks.

With the broader use of ROS in applied research and also

product development, also the research interest in the quality

of ROS and ROS-based software has recently increased.

While some works are mainly concerned with ROS itself,

e.g., concerning runtime verification [5] or security [6], [7],

also work regarding the quality of software using ROS has

been presented.

Recently, Santos et al. have presented a tool called

HAROS [2], which is a custom code quality analysis frame-

work for ROS packages. The authors draw interesting con-

clusions concerning the quality of important ROS packages.

In a follow-up work, they present how the ROS primitives

like publish/subscribe or services are used in real imple-

mentations [8]. HAROS is also the official tool of the ROS

software quality working group. In [9], static source code

analysis is used to generate the message flow and thus,

analyze component dependencies based on this. From this

data, a model of the application can be generated which

describes the temporal context of communication between

nodes. Also the work of Cortesi et al. [10] shows the use of

static code analysis to improve software quality in robotics.

Recently, HAROS has been extended by static analysis

methods to extract the ROS graph and use this as basis for

property-based testing [11].

Sharma et al. propose a method to determine the impact of

code changes to the outgoing data rate of ROS nodes [12].

This helps developers to isolate the reason of regressions or

changed behavior in components.

Ore et al. have demonstrated that the message definition

and the use of those messages in source code sometimes

exhibit inconsistencies which leads to problems in the ap-

plication execution [13]. An approach to formal verification

has been proposed in [14]. Here, timed-automata are used

to identify inconsistent states, which during execution can

result in hard to trace errors.

A very strict approach to implementing algorithms us-

ing the SPARK language is presented in [15]. The re-

implementation of navigation algorithms in this language,

which is specifically tailored for reliable software, showed

that significant improvements in resulting quality can be

achieved.

While existing work mainly focused on the small-scale

analysis of a couple of ROS packages, we provide a large-

scale analysis of several quality attributes of ROS packages

available to the public.

III. A MAP OF ROS PACKAGES

In this section, we discuss how ROS manages package

dependencies followed by the five research questions that

we aim to answer. Then, we present the approach we took

to collect the data for our analysis as well as the approach

to conduct the analysis.

A. ROS concepts for dependency management

A ROS application is typically composed of multiple

packages. This increases the re-usability and scalability of

applications. Each package can declare dependencies, which

it needs to function. Dependencies can be either other ROS

packages or system dependencies (i.e., libraries or tools

which must be installed such as boost or openCV).

As an example, the package openni camera has

(amongst others) system dependencies to the logging frame-

work log4cxx and the libopenni-dev library and

depends on the ROS package sensor msgs, which defines

the message data types (information from the indigo-develop

branch4).

ROS defines multiple types of dependencies like build

and run dependencies describing what the current package

requires to be built or executed. The various dependencies of

different types are defined for each package separately either

in the package.xml file used by the catkin build system

or in the manifest.xml file of the legacy buildsystem

rosbuild.

Further, rosdep is the dependency management tool for

ROS. It reads the required dependencies for a package and

installs them. A backend git repository contains descriptive

files, which enable rosdep to find a specified dependency.

rosdep can resolve dependencies in various ways like using

the system’s package management (e.g., apt or yum).

One of the official repositories, rosdistro5, contains a

community-maintained list of packages available for every

distribution of ROS. Distribution lists may contain version

information on every listed package, as well as links to

the source code, release and documentation repositories.

4https://github.com/ros-drivers/openni_camera/
5https://github.com/ros/rosdistro/
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These repositories are then in turn used to update the ROS-

Wiki with information about dependencies, distribution-

compatibility, maintenance status, and it provides the de-

velopers with documentation on the package, if available.

In addition to the distribution lists, the repository also

contains multiple YAML files used by rosdep. These files

specify aliases for system dependencies that allow them

to be independent from the target platform. For instance,

apt-repositories on Ubuntu use a different naming scheme

as yum-repositories on Fedora. This benefits the package’s

portability by eliminating the need to go through the pack-

ages documentation in hopes of finding a list of dependencies

there.

Dependencies which are not listed in rosdistro must

be manually installed to satisfy a dependency, or cloned

from remote repositories by means of a rosinstall file.

A rosinstall file contains links to remote repositories

that need to be cloned into the current workspace and

compiled on the developer’s machine, in order to satisfy the

dependency.

B. Research questions

With our analysis we aim to answer the following five

research questions:

RQ1: How extensive is ROS’ index of packages?
RQ2: Does quality of indexed and non-indexed ROS-
Packages significantly differ, and how do common errors
look like?
RQ3: How many packages and system-dependencies
are currently unaccounted for?
RQ4: Does the popularity and the quality of ROS
packages correlate?
RQ5: Do high quality repositories tend to depend on
packages of high quality?

RQ1 aims to investigate, which portion of widely refer-

enced packages are actually resolvable via rosdep. In addi-

tion, continuous monitoring of this number gives indications

how active and large the ROS community actually is.

From answering RQ2, we can conclude if it is beneficial

to the quality of a certain package to be listed in the official

ROS index. While there are no guidelines or checks to

fulfill to get a package on this list, it could be motivating

for developers to increase the quality due to the increased

visibility and more frequent use of such a package. In looking

for answers to RQ2, we are able to assess the maturity of the

ROS ecosystem. Additionally, in a large system like ROS, it

is easy to use it in a way it was not intended to. By finding

out common errors in the usage of ROS (and its tools), this

can provide indications where it should be improved.

RQ3 complements RQ1 by concluding if all important

dependencies can already be found or if there are valuable

packages missing. This might lead to further insights on the

workflow which brings a package into rosdistro.

RQs 4 and 5 deal with the quality of the repository that

hosts a ROS package. This is a very important indication on

the popularity and on the developers’ working habits. A well

maintained repository is assumed to contain well-defined and

higher-quality code.

IV. APPROACH

In this section, we present the approach to answer our

research questions, what metrics we use, and how we retrieve

and analyze the representative data.

We first look at the total number of packages in the

rosdistro index and compare it to the total number of

packages, which can be found on popular social coding

platforms, such as GitHub. The difference enables us to

find out whether there is a large number of important

packages not present in the official ROS package index.

For classifying the importance of a package, we consider

counting the number of packages that depend on it. We

assume that the more packages depend on a package, the

more important it is. Regarding the software quality, we

consider two dimensions. First, we use standard static code

analysis, namely Google’s cpplint to check for defects

in the code. Second, we consider several quality indicators

of the source code repositories that host the code of each

package. They are described in the following.

A. Code repository quality

To make the analysis of dependencies more meaningful,

we want to approximate the quality of packages that ROS

applications depend on. Our approach includes the collection

of a number of properties and metrics from the code repos-

itories of those packages. The broken window theory [16]

tells us that a house that is already damaged is more likely

to receive more damage than an intact house in the same

neighbourhood. Transferred to software development, this

means that a well-maintained repository is more likely to

contain high-quality software than an ill-maintained one [17].

Furthermore, researchers in other areas have shown that

the success of software also depends on the quality of the

underlying libraries/frameworks that they use. For instance,

Bavota et al. [18] and Linares Vasquez et al. [19] showed

that the change and fault proneness of an API used by an

Android app is related with the app rating, i.e., high-rated

apps depend on more stable and reliable libraries. Therefore,

we use the maintenance quality of a repository to indirectly

conclude towards the work habits of developers and their

resulting code quality.

Since we mainly look at GitHub and Bitbucket, we

also use the information available on such social coding

platforms. As an example, Github stars are an indica-

tion for popular repositories. In addition, modern software

development–especially in open-source domains–tends, to

follow commonly-accepted rules in what a repository should

contain. For instance, it is common that a repository on

GitHub or Bitbucket contains readme files and uses a pull-

request and/or branches to structure the development. In the

field of empirical software engineering, mining open source

repositories is an accepted approach to generate statistical

evidence on how software is developed [20]. In [21] a large

study on the use of GitHub is performed where it is also
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TABLE I

METRICS FOR ASSESSING THE QUALITY OF SOURCE CODE

REPOSITORIES.

Metric Type Description
Number of
stars

Integer
The number of times users have marked a
repository with a star.

Readme Boolean
Indicates that a readme file of a minimum
length is present

Changelog Boolean
Indicates that a changelog file of a mini-
mum length is present

Contributors Integer
The number of people contributing to this
repository

Issue dura-
tion

Float
The average time between opening and
closing an issue in seconds

Number of
issues

Integer The total number of open and closed issues

Number
of pull
requests

Integer
The total number of open and closed pull
requests

Branches Integer The number of branches in the repository

shown that users judge the quality of a project from its

community status (stars, forks . . . ).

Motivated by the existing work on open source reposito-

ries, we come with a set of metrics to assess the quality

of repositories hosting the source code of ROS packages

and a tool to mine them. The metrics are shown in Table I.

We use the number of stars as indication for the repository

popularity. Combined with the number of issues and pull

requests, it indicates if a repository has an active community.

The presence of readme and changelog files are indications

of good open-source development culture. The number of

contributors is used to categorize repositories into single-

person and team efforts. The average duration of resolving

issues can be used to assess the involvement of the repository

contributors with their community. The existence of pull-

requests and branches indicates that the developers adhere

to modern collaborative development principles.

In addition based on these metrics, we classify each

repository into one of the following four classes.

1) one-person show
2) lone wolf
3) good team effort
4) improvable team effort

In general, we distinguish single-person and team efforts.

We assume that single repositories that are maintained by a

single person suffer from a higher risk of being abandoned

than repositories with contributions from multiple develop-

ers.

The one-person show categorizes repositories that are

maintained by a single person but generally have a high

quality and are popular with the community. Members of

this class have at least 10 stars, readme and changelog files,

multiple branches, and open or closed issues. The rationale

for introducing this class is to find out if there are popular

high-quality ROS packages that are maintained by a single

person.

The lone wolf class categorizes repositories that are main-

tained by a single person but do not achieve the quality

requirements for a one-person show. We use this class to

find out if ROS packages depend on repositories that are

maintained by a single person but are of low quality.

The good team effort is equal in its quality requirements to

the one-person show but has two or more contributors. The

comparison to the one-person show in terms of popularity

and number of dependents will show if teams achieve a wider

use of their packages than a single person.

The improvable team effort is the complement class to

the good team effort and just as the lone wolf marks those

repositories that do not achieve high quality and do not

have a strong community. Also here, we want to find out

whether many ROS packages depend on such repositories of

potentially questionable quality.

B. Data retrieval

To answer the question how extensive ROS’s index is, we

start by examining the information that is provided by a stan-

dard ROS installation. The rosdistro repository provides

a list of all packages that are on the ROS dependency index.

To find the packages not listed on the index, we follow the

hypothesis that the majority of such packages are shared on

GitHub and Bitbucket. We considered also packages hosted

on GitLab servers that are accessible to the public while we

excluded packages on self-hosted Git- or SVN-Servers.

We developed a tool suite to mine the information on

potential ROS packages on the aforementioned hosting plat-

forms. Regarding GitHub, we use GitHub’s search API

to compile a list of packages associated with the ROS-

Framework. This search returned 1102 repositories. To ex-

tract a list of repositories from Bitbucket, we used its online

search feature (since Bitbucket does not provide a search

API). This search resulted in 572 repositories. We also

mined several public accessible GitLab servers, however we

excluded these repositories since a manual check showed

that the results contain a large number of false positives, i.e.,

repositories that did not contain any ROS-related content.

Then, we merged the list of repositories obtained from

GitHub and Bitbucket with the list of repositories from

the official ROS dependency index removing all duplicates.

Counting this merged list, this resulted in a total of 4394

repositories that comprise 80.4 GB. In contrast, the reposito-

ries extracted from all distribution lists combined only made

up 2795 repositories. Furthermore, some of these repositories

were not reachable because their hosts did not exist anymore,

or because they have been converted to private repositories.

Next, we used GitHub’s and Bitbucket’s APIs to mine for

each repository the number of stars and the number of issues

and pull-requests. Concerning the issues, we calculated the

average duration from opening to closing an issue. Since

Github’s API considers pull-requests as issues, we differen-

tiated between issues and pull-requests while retrieving the

data. Furthermore, because the concept of stars does not exist

on Bitbucket, we used Bitbucket’s watchers as the closest

compatible concept to the GitHub stars.
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Fig. 1. Distribution of indexed and non-indexed packages in our analysis.

C. Data analysis

In general, ROS is used with two build systems: the

legacy build system rosbuild and the current build system

catkin. The latter handles package descriptions in form

of package.xml files, they contain the package-name,

and its different types of dependencies, such as build-

or run-dependencies. The manifest.xml files used by

rosbuild serve the same purpose, with the difference

that the package-name is determined by the folder-name.

Since every ROS-Package is mandated to have such a file,

it serves as a starting point for our analysis, and allows us

to ignore packages that do not use ROS in a classical sense.

Our analysis therefore does not include applications based

on rosbridge, a system used to communicate with ROS

outside of it’s usual scope, such as via Websocket. However,

these systems are not considered pure-ROS programs since

they do not specify dependencies, and only communicate

with the system via its JSON API.

To generate a complete dependency graph (showing

which package depends on which others), we extracted all

package.xml and manifest.xml files, and analyzed

them by matching package names to the names of all

dependent packages specified in the files. Since all source

code and version control information is available in the

cloned repositories, we also conducted a search of how many

packages exist that have not been updated in the last year,

and can therefore be assumed to be not maintained anymore.

This allows us to find maintained packages that depend on

unmaintained packages, which might affect the quality of

that package.

To answer, which errors are common in indexed and non-

indexed packages, as well as in an effort to answer how

quality of these packages differs, we analyzed the source

code of the ROS packages with Google’s cpplint6 and

modified rules to better fit the ROS-Styleguide.

V. EVALUATION

In this section, we present the results of our analysis of

ROS packages and the answers to the five research questions.

6https://github.com/google/styleguide/tree/
gh-pages/cpplint

A. Package dependencies and quality evaluation

Our analysis of the indexed and non-indexed ROS pack-

ages resulted in 4225 indexed and 2887 non-indexed pack-

ages, in total 7111 packages. 6670 packages are using

catkin while 441 packages are using rosbuild that have

not been upgraded to catkin, yet. An overview of the

relation between indexed an non-indexed packages is given

in Figure 1. With regards to RQ1, we conclude that while

the ROS index is substantial, an extensive set of non-indexed

packages, namely 2887, could be found on the social coding

platforms GitHub and Bitbucket with reasonable effort.

Table II gives an overview of the top five most refer-

enced packages overall, indexed packages, and non-indexed

packages. By comparing the columns one and two, we

observe that the ROS core packages are the most frequently

referenced ones. Furthermore, the number of references is

much higher for packages that are listed on the ROS index.

This leads us to the conclusion that while non-indexed

packages contribute to the overall ROS landscape, ROS

packages primarily depend on indexed packages.

The dependency analysis of all gathered repositories re-

sulted in 8293 packages and system-dependencies. This num-

ber originates from the 7111 packages that we extracted from

the repositories, and the number of package-names found af-

ter scanning those packages for dependencies, which resulted

in 1182 ”other” packages that have not been analyzed by us.

After cross-referencing these 1182 package-names with the

available rosdep-rules, we found that 678 packages were

missing - 325 of them stem from indexed packages and 353

stem from non-indexed packages. In summary and answering

RQ3, by extracting the depedants to missing packages from

the list of dependencies, eliminating duplicates and counting

them we find that for indexed packages, 387 (9.1%) depend

on missing packages, while the same is the case for 286 (a

slightly higher 9.9%) of non-indexed packages.

Manually inspecting random samples of these packages,

many missing dependencies originate from one of the fol-

lowing three errors:

1) The package cannot be found anymore via online

search

2) Incorrect rosdep use: using system-dependencies that

are not part of any rosdep rule

3) Typo in the specification of the rosdep-rule

While incorrect rosdep use and spelling mistakes were

mostly prevalent in non-indexed packages, indexed pack-

ages suffered mainly from missing packages that were not

available anymore, for instance because the service hosting

the package, such as Google Code, was not available any

more. With respect to answering RQ2, this indicates that a

more correct use of rosdep rules might improve the overall

quality of non-indexed ROS packages. Additionally a lower

entry-barrier for adding rosdep-rules might allow more

developers to add their suggestions to the list and increase

the number of available rosdep-rules.

All packages combined show 49024 dependencies between

each other. By dividing this number with the total number
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TABLE II

TOP FIVE MOST USED ROS PACKAGES

Overall Indexed Non-indexed
# Package name Dependants Package name Dependants Package name Dependants
1 catkin 6616 catkin 3965 autoware msgs 43
2 roscpp 3105 roscpp 1542 uchile srvs 24
3 std msgs 2366 std msgs 1071 uchile msgs 24
4 rospy 1849 geometry msgs 846 matec msgs 21
5 geometry msgs 1585 rospy 820 matec utils 21

Fig. 2. Use of message or service packages relative to number of packages
analyzed, grouped by indexed (red), and non-indexed (blue) packages

of packages analyzed, we arrive at an average number of

6.89 dependent packages per analyzed package. Non-indexed

packages account for 18315 of these dependencies or an

average of 6.34 dependencies per package. Indexed packages

account for 30709 dependencies, or 7.26 dependencies per

package. A manual investigation of a small sample of non-

indexed packages revealed that, while their average depen-

dency count is lower than the one of indexed packages,

many packages define dependencies that they do not actually

use in their manifest file. For example, packages define

dependencies to both, roscpp and rospy, even though all

of the package’s code is written entirely in C++. Indexed

packages did not show this kind of error. However, on

average indexed packages declared more dependencies per

package. One reason that we observed in our manual analysis

seems to be that non-indexed packages are typically smaller

often containing only one large source file and node.

Out of the 49024 dependencies, 10224 are to separate

message and service packages. They account for 20.8% of all

the dependencies. The number of message packages is only

578 and thus, 20.8% of all dependencies are to only 7.0%

of the packages. This leads us to the positive conclusion,

that the re-use of message packages works well in the

ROS community and that developers rather reuse standard

message packages instead of providing their own. Non-

indexed packages seem to pursue this pattern slightly more

aggressively, since 23.7% of dependencies originating from

these packages are dependencies to messages or services.

As seen in Figure 2, the relative use of message packages

is much higher compared to other packages. The most

frequently referenced message package is std msgs. 22.8%

of the indexed packages depend on it, while 44.2% of the

non-indexed packages depend on it. A similar, though not

so drastic ratio for indexed and non-index packages can

be observed for the other two of the top three referenced

packages, namely geometry msgs and sensor msgs.

For the remaining packages, the differences between indexed

and non-indexed packages is more balanced. One notable

exception is the package diagnostic msgs, for which the

relative usage in indexed packages is almost twice as high

as in non-indexed packages. This suggests that publishing

of diagnostics for troubleshooting is more common within

indexed packages, indicating higher overall quality (RQ2).

Other issues that have been found were malformed XML

in manifest.xml or package.xml files. This is a severe error

that prevents a package from building with catkin. With

regards to RQ2, we found that while none of these errors

were prevalent in indexed packages, they occurred in a small

number of non-indexed packages.

Further regarding RQ2, we checked all retrieved reposito-

ries with cpplint. A check for style-guide-violations and

bad practices revealed that C++ code from indexed repos-

itories contained an average of 261 violations, while non-

indexed repositories contained an average of 862 violations.

This result was reached by ignoring include directories, since

many repositories delivered libraries like Eigen with their

source files in the project, making results appear worse than

they are in practice, since these libraries are not expected

to adhere to the ROS-style-guide. However, often header-

only libraries that were added to the project, were also

available as rosdep-rules. More common than violations

of the ROS-style-guide were issues that are not included

in the ROS-style-guide, but are generally regarded as bad-

practice; these include long lines and whitespace-issues, as

well as more serious issues, such as use of C-style casts in

C++ source code. While white space issues were prevalent in

both, indexed and non-indexed packages, the use of C-Style

casts was more prevalent in indexed packages. Furthermore,

we found that many packages contained source files of more

than 2000 lines of code. This indicates quality issues with

C++ code in both, indexed and non-indexed packages.

B. Repository quality evaluation

Regarding the quality of the source code repositories im-

plementing the analyzed ROS packages, we classified them
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TABLE III

CLASSIFICATION OF THE TOP 100 REPOSITORIES IN TERMS OF STARS

AND DEPENDENCIES

Class Top 100 (stars) Top 100 (dependencies)
Lone-Wolf 2 0
One-person-Show 2 0
Improvable-Team Effort 4 17
Good-Team Effort 92 70
System dependencies 0 13

TABLE IV

CLASSIFICATION OF ALL REPOSITORIES

Class Total number of repositories Percentage
Lone-Wolf 1132 28.27%
One-person-Show 26 0.65%
Improvable-Team Effort 2376 59.34%
Good-Team Effort 470 11.74%

according to the four categories introduced in Section IV-A.

In the following, we present the results of this evaluation.

First, we look at the top 100 repositories in terms of

number of stars and number of dependencies as shown in

Table III. For the ranking according to stars, clearly the

most successful class is the good-team effort with 92 of the

top 100 starred repositories. Four repositories are maintained

by single developers. If ranked according to the number

of dependencies, 70 repositories are of the class good-team

effort while 17 repositories belong to the class improvable-

team efforts.

In contrast to the top 100 starred classes, the overall

numbers show a different picture as shown in Table IV.

By far the biggest portion of repositories according to our

metrics are assigned to the class improvable-team effort.

Combined with the repositories classified as Lone-Wolf they

account for more than 87% of all repositories implementing

ROS packages. This might be attributed to the fact, that

many ROS packages originate from research projects and

hardly ever mature from the prototype status. In addition,

many packages were almost never written with quality in

mind but rather with the aim to complete a specific piece of

research, such as demonstrating that a specific functionality

can be implemented. We argue that especially this practice is

dangerous to the quality of the overall ecosystem because a

package found on Github or Bitbucket may promise to solve

a specific problem but does that only partially and/or at low

quality.

Since a repository can consist of multiple packages, we

also want to look at the number of packages per class.

In Table V we explicitly also show how many system

dependencies there are (i.e., non-ROS packages available via

the system’s package manager) to exclude them since these

packages were not part of our analysis. After subtracting the

percentage of system dependencies and then normalizing the

remaining to make up 100% we see that bad quality packages

make up roughly 80% of all packages. This lower number

is to be expected, since also inspecting samples of high and

low quality repositories seems to indicate that higher quality

repositories (e.g., the official ros comm package) usually

contain more than one package while bad repositories often

only contain one single package. We explain the low number

of one-person show packages with the fact, that a good and

useful package will quickly attract a community and also

potentially collaborators thus elevating the project to a good-

team effort.

Further, we examined how many issues are created for

packages of various classes. In addition, we collected data

on the number of pull requests. Both numbers are strong

indications on the community participation in a repository.

The results are summarized in table VI. It can immediately

be seen that the higher-quality repositories have more issues

and pull requests. We interpret the average number of issues

not as a direct measure for bad quality but argue, that a

repository of higher popularity naturally gets more issues

since more people are using it. On the contrary, a repository

with a low number of issues might carry many undiscovered

bugs and problems.

Looking at the multiple dependencies from good-quality

packages, we can see that 94.49% of dependencies refer to

good-quality packages as well, while 5.51% go to packages

of lesser quality. Of packages with bad quality, only 15.69%

depend on bad quality packages. This seems to indicate that

bad quality packages tend to depend on bad packages three

times more often than their good quality counterparts (RQ4).

Regarding RQ5, we investigated whether or not the quality

of packages correlates with their usage. We found that these

two values are mostly unrelated, this leads us to the conclu-

sion, that packages from all parts of the spectrum might be

used extensively by developers in private repositories.

VI. CONCLUSION AND OUTLOOK

In this paper, we have given an overview of the current

ROS applications landscape. We have shown that packages

on the ROS package index are typically more often refer-

enced by other packages. We have further investigated if

high-quality repositories are more popular and more often

referenced than others.

We found that some often used packages like moveit
or rviz still show many issues that suggest improvable

coding practice. A high number of 261 average style guide

violations or bad practices per indexed package also shows

that improvements in quality are recommended for many

ROS packages. The quality of the project does not seem to

correlate with their usage according to our results. In order

to build high-quality software however, the quality of the

dependencies must be equally high as the quality of the own

software.

On the positive side, at the example of message packages,

it can be seen that the re-use of existing software is very

well fostered by ROS thus.

Based on our result, we formulate the following sugges-

tions to ROS developers and the ROS community:

1) Strengthen the use of quality-improving tools like

roslint to improve code quality.

2) The correct use of rosdep should be made easier and

tools to check the correctness and validity of references
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TABLE V

THE OVERALL NUMBER OF PACKAGES OF A CERTAIN CLASS

Class Total number of packages Percentage Percentage w/o system-dependencies
Lone-Wolf 1016 12.25% 15.39%
One-person-Show 34 0.41% 0.52%
Improvable-Team Effort 3627 43.74% 54.95%
Good-Team Effort 1923 23.19% 29.14%
System-Dependencies 1693 20.41%

TABLE VI

TOTAL AND AVERAGE ISSUES AND PULL REQUESTS PER CLASS.

One-person show Good-team effort Improvable-team effort Lone wolf
Issues Pull Requests Issues Pull requests Issues Pull request Issues Pull requests

Total 262 86 40717 48243 9887 14193 303 258
Average 10.08 3.31 86.63 102.65 4.16 5.97 0.27 0.23

should be developed.

3) Consolidate the ROS package index and remove or

update packages where the sources are not referenced

correctly.

4) Increase the quality and quality-oriented work habits

in the maintenance of repositories.

We think that many of these stated issues could also be

prevented by offering better tool-support for ROS in general.

IDEs like RoboWare Studio that offer automatic management

of package.xml files - adding both to convenience and quality

- are a welcome step in the right direction. In addition,

tools like HAROS, which report on code quality of ROS-

packages are a big step towards the professionalization of

this ecosystem.

We have released the tool for dependency scanning along

with a visualization and an up-to-date data basis for the ROS

community to use 7. We will enhance it with user-selectable

quality metrics and plan to integrate the dependency analysis

into HAROS in future.
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