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Abstract—Build systems are an essential part of modern
software engineering projects. As software projects change con-
tinuously, it is crucial to understand how the build system changes
because neglecting its maintenance can lead to expensive build
breakage. Recent studies have investigated the (co-)evolution of
build configurations and reasons for build breakage, but they did
this only on a coarse grained level.

In this paper, we present BUILDDIFF, an approach to extract
detailed build changes from MAVEN build files and classify them
into 95 change types. In a manual evaluation of 400 build
changing commits, we show that BUILDDIFF can extract and
classify build changes with an average precision and recall of
0.96 and 0.98, respectively. We then present two studies using
the build changes extracted from 30 open source Java projects
to study the frequency and time of build changes. The results
show that the top 10 most frequent change types account for
73% of the build changes. Among them, changes to version
numbers and changes to dependencies of the projects occur most
frequently. Furthermore, our results show that build changes
occur frequently around releases.

With these results, we provide the basis for further research,
such as for analyzing the (co-)evolution of build files with other
artifacts or improving effort estimation approaches. Further-
more, our detailed change information enables improvements
of refactoring approaches for build configurations and improve-
ments of models to identify error-prone build files.

Keywords-Maintenance, Build Systems, Software Quality

I. INTRODUCTION

Large software projects use build tools, such as MAVEN,

GRADLE, or ANT, to automate the assembling and testing

process of their software products. The configuration of such

build systems can often be complex [1], which also compli-

cates their maintenance. Seo et al. [2] showed that up to 37%

of builds at Google fail, stating neglected build maintenance

as the most frequent cause. The development team is then

blocked and obliged to fix the build first. Kerzazi et al. [3]

found a similar ratio of up to 18% of build breakage and

estimated the total costs for the breakages in their study to be

more than 336 man-hours.

As a software system evolves, changes are applied to the

source code. Developer teams also need to maintain the build

and hence, subsequent changes need to be applied to the build

configuration. Adams et al. [4] and McIntosh et al. [1] found

evidence of a co-evolutionary relationship between source and

build code. Hence, omitting changes to the build configuration

that are needed to remain synchronized with the source code,

can lead to build breakage. To that end, it is important to

know when build changes should be applied. McIntosh et al.
[5] and Macho et al. [6] studied this problem and found that

their models can predict whether a source code change should

have an accompanying build change. However, both studies

lack detailed information about the type of build change that

is needed.
In this study, we investigate changes to the build con-

figuration in detail. We are interested in which types of

changes are typically made to the build configuration and

when they are performed. Prior studies [5] consider the build

configuration to be changed if the build file changes but do

not investigate the detailed type of the change. We claim

that a more detailed view on build configuration changes can

improve studies of the build system and its configuration.

Thus, we introduce BUILDDIFF, an approach to extract build

changes from MAVEN build files. Our approach is inspired by

ChangeDistiller [7], [8], which extracts source code changes

from Java source files. To the best of our knowledge, we are

the first to investigate build changes in this granularity. We

also propose a taxonomy of build changes consisting of 95

build change types and 5 categories that our approach can

extract. We evaluate BUILDDIFF in a manual investigation of

400 randomly selected build changing commits and find that

it yields an average precision and recall of 0.96 and 0.98,

respectively.
Armed with an approach to extract build changes from

MAVEN build files, we extract build changes from 30 open

source Java projects from different vendors, of different sizes,

and with different purposes. We study the extracted data in

two ways. First, we study the frequency of build changes.

We explore which change types are the most frequent ones

and which change types are rarely applied. We analyze the

frequencies also in terms of change categories. Second, we

study the time at which build changes have been recorded and

investigate whether build changes are equally distributed over

a project or if there are periods in the projects where they

occur more frequently. With the two studies, we address the

following two research questions:

(RQ1) Which build change types occur the most fre-
quently?
The most frequent build change type is PAR-

ENT VERSION UPDATE followed by PROJECT -

VERSION UPDATE, and DEPENDENCY INSERT.

The most frequent build change category is General
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Changes, directly followed by Dependency
Changes, and Build Changes. Changes to ver-

sion properties and to dependencies can be found

frequently among the top 10 most frequent change

types. The top 10 change types account for 73% of

all of the changes.

(RQ2) When are build changes recorded?
Build changes are not equally distributed over the

projects’ timeline. There are particular phases that con-

tain significantly more build changes than others. We

observe that especially around releases, the frequency

of build changes is high.

This work makes the following contributions: (1) an ap-

proach and a corresponding prototype implementation to ex-

tract fine-grained build changes from MAVEN build files, (2) a

dataset containing historical build changes of 30 open source

Java projects, (3) an evaluation of the performance of this

tool, (4) two empirical studies of the frequency and time of

build changes, and (5) a replication package that contains

supplementary material.1

The remainder of the paper is organized as follows: Sec-

tion II situates the paper with respect to the related work.

Section III presents our BUILDDIFF approach. Section IV

describes the data that we used for this study and evaluates

the performance of BUILDDIFF, and discusses its strengths

and weaknesses. Section V presents the first study on the

frequency of build changes and Section VI shows the second

study on when build changes occur. Section VII discusses the

implications of our results and threats to validity. Section VIII

concludes the paper.

II. RELATED WORK

Build Maintenance. Related work on build maintenance

includes the co-evolution of build systems with other artifacts

of the development process. For instance, Adams et al. in-

troduced MAKAO [9], a framework for re(verse)-engineering

build systems, and studied the co-evolution of the Linux build

system [4] using MAKAO. They found that the build system

itself evolves and its complexity grows over time. Furthermore,

they identified maintenance as the main factor for evolution.

McIntosh et al. investigated the evolution of the ANT build

system [10] from a static and a dynamic perspective. They

defined a metric for measuring the complexity of build systems

and found that the complexity of ANT build files evolves over

time, too. In follow-up work, McIntosh et al. investigated Java

build systems and their co-evolution with production and test

code [1]. The results of a large-scale study showed a relation-

ship between build technology and maintenance effort [11].

In addition to these studies, Hardt and Munson developed

Formiga, a tool to refactor ANT build scripts [12] [13].

Concerning the co-evolution of build configurations with

other software artifacts, existing studies investigated models

to predict build co-changes based on various metrics. For

instance, McIntosh et al. [5] used code change characteristics

1https://figshare.com/articles/BuildDiff Supplementary Material/4786084

to predict build co-changes within a software project. Xia et
al. [14] extended this study by building a model for predicting

build co-changes across software projects. Macho et al. [6]

showed that they can improve both studies by using fine-

grained source code changes. Furthermore, Xia et al. [15]

investigated missing dependencies in build files using link

prediction. They showed that their algorithm outperforms

state-of-the-art link prediction algorithms for this problem.

Change Extraction. Many previous studies used changes

that were extracted from different versions of source files

to investigate various aspects of the evolution of software

systems. Miller et al. [16] and Myers et al. [17] performed

their studies on the level of text simply by counting the number

of added or deleted lines of text. One advantage of these

approaches is that they do not need a parser or a grammar

to output the differences between the different versions of

source files. However, one important shortcoming is that these

approaches have difficulty mapping the changed lines of text

to actual changes in source files, such as the change of the

return type of a method or the addition of an else branch.

Modern approaches overcome this issue by performing the

differencing on the level of Abstract Syntax Trees (ASTs).

For instance, Hashimoto and Mori [18] developed Diff/TS,

which is working on the raw AST created from parsing two

versions of a source file. The most prominent approach in

this area is ChangeDistiller of Fluri et al. [7]. Their approach

extracts differences from two consecutive versions of a Java

file and maps the differences to 48 change types [19]. Falleri

et al. [20] improved the differencing algorithm by applying a

combined method for matching equal subtrees and showed that

their approach outperforms ChangeDistiller. Concerning build

changes, Désarmeaux et al. [21] mapped line-level changes

to MAVEN lifecycle phases and investigated the maintenance

effort of each phase. They found out that the compile phase

accounts for most of the maintenance.

In summary, we find that several approaches exist to study

build maintenance, build systems, and their configuration.

However, these studies are primarily based on coarse-grained

metrics. Previous work showed that for programming lan-

guages, such as Java, the usage of a finer granularity of

changes can help to improve prediction models [22], [23], [24],

[25] or support the understanding of (co-)evolution [26]. To

that extent, it is important to also investigate build changes on

a fine-grained level. To the best of our knowledge, we are the

first to present an approach to extract detailed changes from

MAVEN build files.

III. EXTRACTING BUILD CHANGES WITH BUILDDIFF

In this section, we describe our approach to extract build

changes from build files. Currently, we focus on the extraction

of MAVEN build files. MAVEN build files are named pom.xml
following the naming convention of MAVEN. First, we define

a taxonomy of build changes and provide our rationale for

the defined changes. Second, we describe BUILDDIFF, our

approach to extract build changes of two consecutive MAVEN

build file revisions.
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A. Taxonomy

MAVEN build files are specified using a special type of

XML. Hence, we can easily read, parse, and transform their

content into a tree that corresponds to the MAVEN schema2

that defines the various XML elements and attributes used

for configuring a MAVEN build. Having the content of a

MAVEN build file represented as a tree, we then can use

tree differencing algorithms, such as ChangeDistiller [7] or

GumTree [20], to extract differences between two build files.

We use the modified version of the GumTree implementation

of Dotzler et al. [27] to extract edit operations that transform

one tree into the other. In the remainder of the paper, we refer

to this implementation as GumTree. We describe the extraction

procedure in more detail in Section III-B.

Similar to ChangeDistiller, we defined the change types

of our taxonomy based on the edit operations extracted by

the tree differencing algorithm whereas the structure of the

tree and its different elements correspond to the MAVEN

schema. For defining the taxonomy, we started with the top

level elements of the MAVEN schema and moved down the

schema until we reached the bottom-most child elements.

For each element (i.e., XML tag), we defined change types

for inserting (* INSERT), deleting (* DELETE), and up-

dating (* UPDATE) that element. For some particular tags,

such as artifactId and groupId, we only created the

* UPDATE change type because they are mandatory for the

definition of particular tags, such as dependency, and we

assume that they are inserted and deleted with their parent

tag. This is further described in detail in Section III-B. The

resulting taxonomy currently comprises 95 that we validated

with two expert developers using MAVEN.

We also grouped the change types into categories. We

retrieved the categories and the respective change type as-

signments by performing card sorting [28]. First, we gave the

list of change types to the two developers who validated the

changes types separately and asked them to group the change

types. Second, we asked the developers to assign names to

the created groups. In a third step, we asked both developers

to discuss their categories and assignments to arrive at a

common categorization. If the developers assigned a change to

different categories they discussed with one another to arrive

at a consensus.

The two developers developed the following 5 categories:

(1) Dependency Changes contain all changes that are

related to dependencies of the project, (2) Build Changes
cover the changes that directly affect or modify the build

process, (3) Team Changes comprise all modifications to

the list of team members, (4) Repository Changes hold

changes that are performed to the distribution and repository

locations, and (5) General Changes contain changes that

are made to the general items of a MAVEN project. Table I

shows an excerpt of the taxonomy with examples of change

types for each category. The full taxonomy can be found online

in the supplementary material.1

2http://maven.apache.org/xsd/maven-4.0.0.xsd

TABLE I
EXCERPT OF OUR TAXONOMY OF BUILD CHANGES

Category Change Types (Excerpt)

Dependency Changes
DEPENDENCY INSERT
DEPENDENCY VERSION UPDATE
MANAGED DEPENDENCY DELETE

Build Changes
PLUGIN INSERT
PLUGIN CONFIGURATION UPDATE
TEST RESOURCE DELETE

Team Changes
DEVELOPER INSERT
CONTRIBUTOR DELETE

Repository Changes
PLUGIN REPOSITORY INSERT
DIST SNAPSHOT REPOSITORY UPDATE
REPOSITORY DELETE

General Changes
MODULE INSERT
PARENT VERSION UPDATE
GENERAL PROPERTY DELETE

In the following, we provide two examples of frequently oc-

curring build changes. The first example depicted in Listing 1

(old version of the build file) and Listing 2 (new version of

the build file) shows a change of the version of a dependency

to the spring-core library from 4.2.5.RELEASE to

4.2.6.RELEASE. This change is extracted and classified by

BUILDDIFF as DEPENDENCY VERSION UPDATE.

Listing 1
DEPENDENCY VERSION UPDATE - OLD VERSION

<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring-core</artifactId>
<version>4.2.5.RELEASE</version>
</dependency>

Listing 2
DEPENDENCY VERSION UPDATE - NEW VERSION

<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring-core</artifactId>
<version>4.2.6.RELEASE</version>
</dependency>

The second example depicted in Listing 3 (old version of

the build file) and Listing 4 (new version of the build file)

shows the insertion of the maven-jar-plugin plugin.

This change is extracted and classified by BUILDDIFF as

PLUGIN INSERT.

Listing 3
PLUGIN INSERTION - OLD VERSION

<build>
<plugins>
</plugins>
</build>
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Listing 4
PLUGIN INSERTION - NEW VERSION

<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-jar-plugin</artifactId>
<version>2.6</version>
</plugin>
</plugins>
</build>

B. Approach

This section presents our BUILDDIFF approach to extract

95 types of changes from MAVEN build files. Our approach is

mainly motivated and inspired by the work of Gall et al. [8]

and Fluri et al. [7], who showed that detailed information on

source code changes can aid in understanding the evolution

of software projects, and the work of Macho et al. [6], who

showed that this information can be used for computing mod-

els to predict when build configurations should be updated.

Concerning changes in build configuration files, in particular

MAVEN build files, the finest level of analysis that has been

performed was on line level. Désarmeaux et al. [21] mapped

lines of a MAVEN pom.xml to the respective build lifecycle

phase. To the best of our knowledge, we are the first to present

an approach to extract changes in MAVEN build files on the

level of MAVEN configuration elements, that we refer to as

fine-grained build changes.

BUILDDIFF first reads two versions of a MAVEN build file

(i.e., pom.xml) and represents each version as a tree. Then, it

uses the GumTree [20] implementation of Dotzler et al. [27]

to extract the differences between the two trees in terms of

edit operations to transform one tree into the other. The list of

edit operations is then mapped to the 95 change types that are

defined in our taxonomy. In the following, we present each

step in detail:

Preprocess Build Files. The first step of BUILDDIFF

preprocesses the two versions of a MAVEN build file.

MAVEN build files are descriptive, meaning that the order

of the elements in the file can be changed without chang-

ing its semantics. We observed that GumTree can match

elements of the same level more accurately if they are

sorted. Hence, BUILDDIFF first sorts the elements on the

same level according to their content.3 For example, the

tag <module>MySubmodule</module> appears before

<module>TheModule</module>. Furthermore, BUILD-

DIFF removes comments and attributes. Attributes, such as

combine.children and combine.self for plugin con-

figuration inheritance, affect the build configuration at exe-

cution time. We only analyze the build configuration from a

static point of view and hence, we remove attributes.

Extract Edit Operations. Next, BUILDDIFF parses the two

preprocessed versions of a MAVEN build file into two trees and

passes them to the GumTree differencing algorithm. GumTree

3Strings are sorted alphabetically and numbers in ascending order

provides a TreeGenerator for XML files. Unfortunately, this

implementation does not handle values of tags in XML doc-

uments. Therefore, we implemented our own TreeGenerator

that transforms XML files into GumTree trees. We use the

prominent Java XML library jdom to read the XML file, and

methods provided by GumTree to create the tree.

GumTree then uses a Matcher instance to find mappings

between two trees. BUILDDIFF extends the GumTree’s default

matcher by adding a mechanism to ensure that only tags with

the same name will be matched, and by modifying the similar-

ity calculation of two nodes. Tags that have a child tag named

id are matched if the Levenshtein similarity of the id value

exceeds a threshold t. The matcher chooses the node with

the highest similarity exceeding the threshold. Tags that have

the MAVEN triplet (groupId, artifactId, version) as

child nodes are matched by applying the Levenshtein distance

for groupId and artifactId. Two nodes are matched if

the Levenshtein similarity exceeds a threshold t. The matcher

chooses the node with the highest similarity exceeding the

threshold. Experiments with different t values suggest that

t = 0.65 yields the best performance.

Given the matcher, GumTree outputs a list of tree edit opera-

tions comprising added, deleted, updated, and moved elements

in the tree that transform the source tree (previous version of

the MAVEN build file) into the target tree (subsequent version

of the MAVEN build file).

Sort Edit Operations. BUILDDIFF considers a particular

order to process the changes in MAVEN files. We process

the operations of the edit script in a top down order ac-

cording to their level in the build file (parent nodes first).

BUILDDIFF applies this order to prevent the extraction of

additional changes that result from the insertion and deletion of

composite MAVEN tags that also insert or delete their children

at the same time. For instance, when a new dependency is in-

serted, BUILDDIFF only records a DEPENDENCY INSERT,

skipping the insertion of the child tags of that dependency

(e.g., groupId, artifactId, and version).

Map Build Changes. In this step, BUILDDIFF maps the

tree edit operations that are generated by GumTree to the

95 change types of our taxonomy. We consider insertions,

deletions, and updates. We do not consider moves, since

MAVEN build files are descriptive, meaning that the order of

the elements in the file can be changed without changing its

semantics.

To map edit operations to change types, BUILDDIFF iterates

over the sorted edit operations mapping each edit operation

to at most one change type. Changes to child elements are

handled by first checking whether the change is part of

an insertion, deletion, or update of its parent. In that case,

the change to the child element is not mapped, since it is

already part of the parent change. For instance, the insertion

of a dependency is mapped only to the change DEPEN-

DENCY INSERT while the insertions of its child elements

groupId, artifactId, and version are skipped.

As a result, BUILDDIFF outputs a list of build changes that

have been performed between two versions of a MAVEN file.
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IV. EVALUATING BUILDDIFF

In this section, we describe the evaluation of BUILDDIFF.

First, we describe how we selected the projects and how

we extracted the data that we used for the evaluation of

BUILDDIFF and the experiments. Second, we present the

evaluation of our prototype implementation of the BUILDDIFF

approach in terms of precision and recall. Finally, we discuss

examples of correctly and incorrectly extracted changes.

A. Data Preparation

The projects that we selected for our experiments stem from

two origins. First, we selected the list of projects that Macho

et al. used in their prior study [6] because they cover a wide

range of different vendors, project sizes, and purposes. Second,

we extended this list with popular projects from GitHub to

improve the variety of the selected projects. We retrieved a

list of Java projects ordered by their star rating4 and removed

projects that do not use MAVEN as build system and projects

with less than 3500 commits in the repository or rated with

less than 1000 stars. We calculated a ranking metric by adding

the number of commits and the star rating to evenly balance

the user rating and the number of commits of a project. Then,

the list of projects was sorted according to the ranking value

in a descending order. From this list, we selected the top 20

projects and added them to our list of projects. Table II shows

the full list of selected projects and several descriptive statistics

of commits and build changes.

For each project, we extracted the build changes as follows:

First, we cloned the repository and iterated over each commit,

including commits on branches. Second, we checked for

modifications in MAVEN build files (pom.xml) indicated by

Git. For each of the modified build files, we determined its

preceding version and provided both versions to BUILDDIFF

to extract MAVEN build changes. The extracted changes were

stored in a database called the ChangeDB. Due to its size,

we provide the database for other researchers on request. If a

commit was a merging commit (e.g., pull requests that were

merged into the master branch), we did not extract the changes

of this commit because we already extracted these changes in

the respective commits of the branch.

B. Evaluation

We evaluated BUILDDIFF in two ways: first, we used

extensive JUnit testing to check whether our approach can

detect each single build change type. Second, we performed a

manual evaluation with 400 build-changing commits that were

randomly selected from the build files of the 30 open source

Java projects.

1) JUnit Tests: For each build change type, we first con-

structed a pom.xml pair that contains exactly one instance

of a particular change type and the corresponding JUnit test

case. In addition, we selected subsequent versions of actual

pom.xml files from open source Java projects that contain

multiple changes and created JUnit tests for those as well.

4as of January 2017

These pairs have been selected by an expert with more than

7 years of MAVEN experience to cover changes that are often

performed in practice. In total, we developed 250 JUnit tests

showing that BUILDDIFF is capable of correctly extracting

and classifying each single build change in isolation, as well

as co-occurring build changes.

2) Manual Investigation: To show that BUILDDIFF is also

working on real world projects and that it can extract build

changes as they are understood by software developers, we

invited two PhD students to evaluate 400 build-changing

commits. Both students are studying software engineering and

have more than 4 years of experience with MAVEN. They

received the same set of 400 pom.xml pairs containing 745

build changes. Prior to the experiment, we briefly explained

our taxonomy of build changes to them. In the experiment, we

asked each student to label the changes in the pom.xml pairs

according to our change taxonomy and compared the output

among the participants and with the output of BUILDDIFF.

Data Selection. Table II shows the list of open source Java

projects from which we randomly selected 400 commits that

contained changes to a pom.xml build file. We calculated

the sample size based on a population size of 66,984 commits

that contain build changes (Table II, sum of column #BCC),

with a margin of error of 5% and a confidence level of

95%. The minimum sample size is 382 commits5 and we

finally decided to randomly select 400 commits to exceed the

minimum sample size.

The total amount of build changes in the data set is 641,056.

By randomly selecting the commits for the evaluation, we

missed to evaluate 37 of the 95 change types (or 44%).

However, the analysis of these missing change types in our

subject systems showed that these changes only represent 0.9%

of the total build changes (5,760 out of 641,056). Hence, we

can safely assume that our sample set sufficiently covers the

majority of build changes in our data set.

Evaluation. For each of the 400 commits, we provided the

study participants with the original and modified version of the

build file. We asked each participant to go through all of the

selected commits and assign each change to the corresponding

change type from our taxonomy. We then compared the

changes that were assigned by the participants with the list of

build changes extracted by BUILDDIFF. With the results from

each participant, we calculated precision and recall to measure

the performance of our approach. Following the approach

of Fluri et al. [7] used for evaluating ChangeDistiller, we

calculated precision and recall as:

precision =
#relevant changes found

#changes found

recall =
#relevant changes found

#changes expected

Precision measures how many of the changes that were

extracted by our approach were also detected by a study

participant. Recall measures how many of the changes that

5https://www.checkmarket.com/sample-size-calculator/
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TABLE II
LIST OF JAVA PROJECTS USED FOR EVALUATING BUILDDIFF AND FOR STUDYING THE EVOLUTION OF BUILD FILES PLUS DESCRIPTIVE STATISTICS OF

BCC (COMMITS WITH BUILD CHANGE), BCCR (RATIO OF BCC), NBCC (COMMITS WITHOUT BUILD CHANGE), NBCR (RATIO OF NBCC), BC
(BUILD CHANGES), AND #R (NUMBER OF EXTRACTED RELEASES)

Vendor Name Rank Stars #Commits #BCC BCCR #NBCC NBCR BC #R

neo4j neo4j 49,663 3,344 46,319 9,684 0.21 36,635 0.79 78,551 170
hazelcast hazelcast 24,995 1,850 23,145 1,306 0.06 21,839 0.94 7,914 126
SonarSource sonarqube 23,989 1,431 22,558 1,746 0.08 20,812 0.92 18,332 109
Alluxio alluxio 23,545 2,787 20,758 1,694 0.08 19,064 0.92 12,973 25
languagetool-org languagetool 21,949 1,021 20,928 285 0.01 20,643 0.99 5,027 17
netty netty 21,443 8,637 12,806 1,395 0.11 11,411 0.89 7,791 160
orientechnologies orientdb 20,458 2,769 17,689 1,326 0.07 16,363 0.93 8,866 94
spring-projects spring-boot 20,356 9,312 11,044 2,922 0.26 8,122 0.74 29,699 68
h2oai h2o-2 19,071 2,116 16,955 74 0.00 16,881 1.00 194 324
google guava 18,643 13,676 4,967 221 0.04 4,746 0.96 850 64
deeplearning4j deeplearning4j 16,891 5,044 11,847 1,097 0.09 10,750 0.91 7,454 42
stanfordnlp CoreNLP 16,688 2,685 14,003 847 0.06 13,156 0.94 3,365 0
eclipse jetty 16,357 1,148 15,209 2,965 0.19 12,244 0.81 82,153 272
Graylog2 graylog2-server 15,822 2,600 13,222 1,465 0.11 11,757 0.89 5,464 141
prestodb presto 15,052 5,455 9,597 1,069 0.11 8,528 0.89 10,832 178
apache storm 14,055 3,791 10,264 1,244 0.12 9,020 0.88 9,945 25
apache flink 13,466 1,869 11,597 1,343 0.12 10,254 0.88 11,022 25
druid-io druid 12,427 4,215 8,212 1,947 0.24 6,265 0.76 20,329 391
naver pinpoint 11,976 2,864 9,112 1,012 0.11 8,100 0.89 5,950 11
google closure-compiler 11,899 2,948 8,951 60 0.01 8,891 0.99 168 75
apache activemq - - 11,135 1,754 0.16 9,381 0.84 12,988 51
apache camel - - 35,649 8,003 0.22 27,646 0.78 110,150 107
apache hadoop - - 48,582 2,395 0.05 46,187 0.95 25,057 240
apache hbase - - 29,097 2,161 0.07 26,936 0.93 10,059 538
apache karaf - - 15,953 5,853 0.37 10,100 0.63 54,655 60
apache wicket - - 31,456 1,527 0.05 29,929 0.95 13,322 243
hibernate hibernate-search - - 5,976 1,177 0.20 4,799 0.80 6,251 105
jenkinsci jenkins - - 26,286 4,551 0.17 21,735 0.83 28,138 483
spring-projects spring-roo - - 6,440 675 0.10 5,765 0.90 10,173 35
wildfly wildfly - - 23,370 5,186 0.22 18,184 0.78 43,384 74

Sum - - 543,127 66,984 - 476,143 - 641,056 4,253
Average - - 18,104 2,233 0.12 15,871 0.88 21,369 141.77

a study participant has found have also been found by our

approach. Similar to the evaluation of Dintzner et al. [29], we

are able to evaluate the correctness and the completeness of

our approach with these performance measures. The results

of the evaluation show a high precision and recall of 0.9513

and 0.9796, respectively for Participant 1. For Participant 2,

the results show a precision of 0.9601 and a recall of 0.9844.

Averaging the values of both participants, we obtain a mean

precision of 0.9557 and a mean recall of 0.9820. The detailed

results of the evaluation are provided in the supplementary

material.1

We also evaluated the errors per build change type ac-

cording to our taxonomy. We used the classification of the

two manual evaluations to calculate precision and recall per

change type. We found that 36 out of the 58 change types

could be detected among the randomly selected evaluation

commits with precision and recall of 1. This group contains

changes, such as DEPENDENCY VERSION UPDATE and

GENERAL PROPERTY INSERT. 9 change types showed a

precision and recall between 0.80 and 1. The other 13 change

types that were contained in the evaluation scored lower

than 0.80, e.g., PLUGIN UPDATE. We found that especially

PLUGIN UPDATE is a change type that is difficult to detect

properly by our approach, because it is tightly coupled with

PLUGIN CONFIGURATION UPDATE.

Besides the quantitative evaluation, we performed a quali-

tative evaluation to find out in which scenarios BUILDDIFF

shows a good performance and in which it does not. We

present an example where BUILDDIFF did not achieve a

proper change extraction compared to a human evaluation.

We refer the interested reader to the supplementary material1

to find more types of wrong classification. The example is

taken from the flink project6 where a dependency defini-

tion was changed. Listing 5 shows the dependency in the

old version and Listing 6 shows the updated version of

the dependency. BUILDDIFF extracted two changes, DEPEN-

DENCY DELETE and DEPENDENCY INSERT. In fact, this

is an update of the same dependency where the groupId and

the artifactId changed simultaneously. Hence, the cor-

rect classification would be a DEPENDENCY UPDATE. Our

approach could not detect this change correctly because we

use a distance measure to match the nodes of two build files.

In this case, the measure indicated that the two dependency

definitions are not close enough to be considered the same

6http://goo.gl/rWPFDy
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dependency and consequently, BUILDDIFF extracted the two

changes wrongly.

Listing 5
EXAMPLE OF AN INCORRECT CLASSIFICATION - OLD VERSION

<dependency>
<groupId>com.typesafe.akka</groupId>
<artifactId>akka-testkit_${scala.binary.

↪→ version}</artifactId>
<scope>test</scope>
</dependency>

Listing 6
EXAMPLE OF AN INCORRECT CLASSIFICATION - NEW VERSION

<dependency>
<groupId>com.data-artisans</groupId>
<artifactId>flakka-testkit_${scala.binary.

↪→ version}</artifactId>
<scope>test</scope>
</dependency>

In conclusion, we observe that:

BUILDDIFF is capable of extracting changes from MAVEN

build files with an average precision of 0.96 and an average

recall of 0.98. DEPENDENCY VERSION UPDATE and

GENERAL PROPERTY INSERT are among the change

types that achieve the best performance, whereas PLU-

GIN UPDATE is among the change types with the highest

rate of error.

V. BUILD CHANGE FREQUENCY (RQ1)

Our first experiment investigates the frequency of build

changes. We aim to gain knowledge of which change types

are frequently performed in projects and how often they

are performed. This information can help to understand the

evolution of build files similar to the study of Gall et al. [8].

With this experiment, we aim to answer RQ1: Which build
change types occur the most frequently?

Approach. First, we checked the projects for their number

of build changes. The projects h2o-2 (last commit: Nov

4, 2014), guava (last commit: Jan 1, 2017, only 11 build

changing commits in 2016), and closure-compiler (last

commit: Nov 15, 2016, only 4 build changing commits in

2016) contain less than 1000 build changes each. Hence,

we excluded them from the experiment because we assume

that they do not use MAVEN actively and only keep the

MAVEN configuration in the source code management system

for legacy reasons.

Second, starting with the change data stored in the

ChangeDB, we iterated over the remaining 27 projects and

counted the occurring changes. We counted the number of each

change type per project and aggregated the numbers also per

change category. As depicted in Table II, the selected projects

differ in their size, and hence, contain a different amount of

total build changes (column BC). Given this variance in the

number of build changes, we normalized the change counts

to allow a fair comparison between the studied projects.

We divided each aggregated change count by the number

of total build changes in the project. For example, project

spring-roo contains a total amount of 9,534 build changes

and 222 instances of the change type MODULE INSERT. We

calculated the relative occurrence of this change type with

222/9534 = 2.33% and used this relative value instead of

the absolute value for our experiment. We then analyzed this

data in two ways. First, we analyzed the relative occurrence of

each build change type, and second, we analyzed the number

of build changes per change type category.
Results. The most frequently occurring change type is

PARENT VERSION UPDATE with a relative frequency of

0.41 on average, meaning that on average 41% of the build

changes are of this type. The second most occurring change

type is PROJECT VERSION UPDATE having an average

relative frequency of 0.08. We observe a large drop (0.33)

in the relative frequency of those two types of changes

underlining that PARENT VERSION UPDATE is the most

frequently occurring change type by far. These two change

types are followed by DEPENDENCY INSERT (0.06) and

GENERAL PROPERTY UPDATE (0.03).
We see that the top 10 most frequent change types consist

of four change types that modify dependencies, and two

change types concerning version changes, plugin changes and

changes to properties, respectively. This indicates that the

dependency management system, which is a core part of the

build system, is changed frequently. We also observe that

the configurations of plugins are frequently changed which

indicates the importance of this part of the build configuration.

Furthermore, we observe that the top 10 change types account

for 73% of all changes. Figure 1 shows boxplots of the top

10 most frequent change types.

Fig. 1. Boxplots of the relative build change frequency for the top 10 most
frequent change types (sorted by median).

The next step of the analysis deals with the frequencies

of build changes per change category that we have defined

in Section III-A. Figure 2 shows the relative frequencies of

the build changes per build category. We observe that the

General Changes category accounts for 0.64 (64%) of

all changes on average. We argue that this ratio is as expected

because changes to the properties, parent changes, and changes

to the project metadata, such as project version, are aggregated

in this category.
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Furthermore, we can see that Dependency Changes are

the second most frequent change category (0.24). This is in

line with the observations of the single change types. As

mentioned above, the dependency management system is a

core part of the build system and is frequently updated. The

third most frequently occurring category contains the changes

to the Build Changes category (0.11). Lastly, changes to

the Repository Changes and to the Team Changes
are rare (0.008 and 0.004, respectively).

Fig. 2. Boxplots of the relative frequency of build changes per change type
category.

With these results, we can answer research question RQ1:

Among the top 10 most frequently occurring change

types, we find version changes and dependency

changes frequently. The most frequent change type is

PARENT VERSION UPDATE followed by PROJECT -

VERSION UPDATE, and DEPENDENCY INSERT. The

most frequently occurring change category is General
Changes directly followed by Dependency Changes,

and Build Changes.

VI. WHEN ARE THE CHANGES RECORDED (RQ2)

In this section, we investigate when the build changes occur.

We suppose that build changes are not equally distributed over

the project, but have phases in which they occur significantly

more frequently than in other phases. Hence, we used the

build change data that we extracted using BUILDDIFF to check

whether our hypothesis holds and answer RQ2: When are build
changes recorded?

Approach. We started with the aggregated change data that

we created in Section V. This data contains for each commit of

a project the number of changes per change type that have been

performed in the commit. For this research question, we added

the date on which the commit was performed and summed up

all build changes to a single value per day, i.e., one row of

our dataset contains the ID of the commit, the number of build

changes that were performed in that commit, and the date of

the commit. Based on this information, we investigated the

data in two ways, as a single day value and with a sliding

window approach.

The first investigation treats each day as a single data point,

and hence, adds the number of build changes of commits that

were made on the same day. For example, if exactly two

commits were made on 23th June 2016 with 10 and 15 build

changes, respectively, we created a single data point with 25

build changes. The second investigation uses this data and

applies a sliding window approach, similar to the approach of

Maarek et al. [30]. We summed the number of build changes

of k days to increase the context of the build changes.

As our hypothesis for this research question states, we

suppose that build changes are not equally distributed over

the project, but occur more frequently in some time periods

of the project. We further suppose that one special period in

the project that shows a significantly higher amount of build

changes, is the time around releases. Thus, we extracted the

release data of each of the studied projects provided by the

GitHub API. In particular, we extracted the commit ID of the

release, the day of the release, and its name. Column #R of

Table II shows the number of releases per project that we

could extract. We can see that for the project CoreNLP, we

could not retrieve release data. Hence, we also excluded this

project and performed the experiment with the remaining 26

projects.

To substantiate our claim, we will show that days that are

close to a release contain statistically significantly more build

changes than days that are not close to a release. We consider

a single day as well as a sliding window approach. To that

extent, we consider a day to be close to a release if it is in

between k days before the release. For the analysis on a daily

basis, we consider k = 1 and for the sliding window approach,

we consider k ∈ {5, 7, 9} days. We choose different values

for k to investigate the influence of the size of the window on

the results. We did not try with larger window sizes because

we argue that changes that happen more than 9 days before

a release should not be considered close to a release. This

argumentation is in line with the release data that we used

because the average number of days between two consecutive

releases is 14 days. Hence, selecting larger k values would

possibly cover more than one release. We performed the study

with all of the k values and the results were similar. Thus, we

only present results for k = 7 in the paper. The results for

k ∈ {5, 9} can be found in the supplementary material.1

Next, we checked if the distributions are significantly

different with a Mann-Whitney-Wilcoxon test (α < 0.01)

and calculated the effect size d using Cliff’s Delta [31].

We used Mann-Whitney-Wilcoxon and Cliff’s Delta since

the number of build changes is non-normal distributed. The

effect size is considered negligible for d < 0.147, small for

0.147 ≤ d < 0.33, medium for 0.33 ≤ d < 0.47, and large

for d ≥ 0.47 [32].

Results. Figure 3 shows the distribution of build changes

across the project spring-roo. We refer the reader to the

supplementary material1 for the figures of all of the studied

projects. The black line depicts the number of build changes

according to the sliding window approach (k = 7). Each

vertical red line indicates a release. We can see that most of the

peaks of the black line (number of build changes) appear near

a vertical red line (release). This suggests that our hypothesis

is correct.
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Fig. 3. Number of build changes over time in spring-roo using a sliding window (k = 7). Releases are depicted as vertical red lines.

Fig. 4. Boxplots showing the distributions of the counts of near release and
non-near release build changes of spring-roo as computed with the single
day approach and sliding window approach using k = 7.

Furthermore, looking at the distribution of the number of

build changes in days near releases and comparing it with the

distribution of build changes in days that are far from releases,

we can see that the distributions appear to be different.

Figure 4 shows the boxplots for both approaches and both

distributions. The left two boxplots represent the single day

approach whereas the right two boxplots represent the sliding

window approach using k = 7. In each of the two plots, the

respective boxplot on the left depicts the distribution of build

changes on days near a release whereas the respective boxplot

on the right depicts the distribution of build changes on days

that are not near a release.

Table III presents the p-value (p) of the Mann-Whitney-

Wilcoxon test and Cliff’s Delta d for each project and approach

in detail. The p-values show that the frequency of build

changes near and not near a release differ significantly (all

p < 0.01). Furthermore, the effect size can be considered

large in all projects except hadoop (small) and wicket
(medium). The jenkins project achieves a large effect size

with the single day approach but only shows a small effect

size with the sliding window approach. The presto project

also shows a large effect size with the single day approach but

only a medium effect size with the sliding window approach.

We find that these lower effect sizes are caused by the release

information. hadoop and wicket show a dense release plan

in the beginning of the data and this can influence the sliding

window approach. Similarly, the changes of the jenkins and

TABLE III
RESULTS OF THE MANN-WHITNEY-WILCOXON TEST (P: P-VALUE) AND

CLIFFS DELTA d OF THE DISTRIBUTIONS OF THE NUMBER OF BUILD

CHANGES NEAR AND NON-NEAR RELEASES USING THE SINGLE DAY

APPROACH AND SLIDING WINDOW APPROACH WITH k = 7.

Project
Single Day Sliding (k = 7)

p d p d
activemq 2.73E-35 0.75 3.31E-15 0.64
alluxio 3.17E-15 0.79 7.93E-06 0.52
camel 3.03E-57 0.89 1.20E-29 0.64
deeplearning4j 1.33E-34 0.96 2.00E-17 0.77
druid 8.57E-225 0.97 2.42E-92 0.68
flink 8.78E-21 0.89 3.59E-10 0.73
graylog2-server 2.47E-117 0.84 3.21E-21 0.47
hadoop 1.43E-26 0.30 1.21E-16 0.30
hazelcast 1.53E-58 0.61 1.86E-25 0.54
hbase 1.49E-194 0.63 2.38E-102 0.57
hibernate-search 1.14E-177 0.98 3.53E-42 0.76
jenkins 5.28E-235 0.86 5.10E-08 0.15
jetty 2.17E-200 0.96 8.73E-72 0.66
karaf 1.79E-48 0.98 1.34E-26 0.80
languagetool 2.26E-99 0.94 3.27E-24 0.94
neo4j 2.07E-68 0.70 1.23E-34 0.55
netty 1.55E-203 0.94 2.05E-50 0.69
orientdb 8.71E-93 0.94 2.68E-28 0.66
pinpoint 1.94E-14 0.95 6.59E-07 0.86
presto 1.27E-145 0.98 2.07E-23 0.46
sonarqube 8.37E-85 0.93 1.46E-25 0.59
spring-boot 2.81E-50 0.97 3.45E-26 0.76
spring-roo 8.27E-42 0.78 8.57E-17 0.77
storm 9.55E-15 0.70 4.20E-06 0.53
wicket 1.19E-59 0.37 3.94E-29 0.41
wildfly 2.61E-45 0.93 9.97E-26 0.71

presto projects are performed on the release day and hence,

the inclusion of additional days, as done by the sliding window

approach, lowers the effect size.

With these results, we can answer research question RQ2

as follows:

Build changes are not equally distributed over the projects’

timeline. There are particular phases which show signifi-

cantly higher build change frequencies than others. Espe-

cially around releases, a high build change frequency is

observed.

VII. DISCUSSION

In this section, we first discuss a number of implications of

our results on recent and ongoing research of build systems
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and their configuration. Next, we discuss implications for

developers who use MAVEN as build system. Finally, we

discuss the threats to the validity of our results.

A. Implications of the Results

On Research. First, compared to the state-of-the-art our

fine-grained build changes enable a more detailed analysis

of the co-evolution of source code and build files. Second,

studies on effort estimation, such as that from Sarro et al. [33],

can be refined by taking into account our 95 types of build

changes. Third, refactoring approaches, such as MAKAO [9]

and Formiga [12] can be applied to MAVEN build files and

enriched with our detailed change information to improve the

refactoring process of MAVEN build files. Fourth, studies of

build complexity [1] can also benefit from our detailed analysis

of build changes by including dynamical information, such as

our detailed build change information, to the calculation of

the metrics. Finally, our build changes can be used to improve

the models to predict bug-prone build files [22] or suggest

potentially missing changes to build configurations [6] that

might lead to a build breakage.

On Development. We observed that build changes occur

more frequently near releases. This observation can help

developers to avoid build breakage by increasing the awareness

that each change to the build configuration can possible break

the build. Furthermore, project managers can use this finding

to consider the peak of build changes near releases in their

planning of releases and work load. We also give insight into

the type of build changes that are frequently made. This can

be used by developers, for instance, to identify and refactor

plugins that often change their configuration.

B. Threats to Validity

Regarding the validity of our results, we identified the

following threats to construct, internal, and external validity.

Construct Validity. One threat is that our taxonomy may

not cover all possible change types or change categories that

could be theoretically made to a build file. We mitigated this

threat in two ways. First, we compared the taxonomy with

the XML schema of MAVEN build files to cover all important

changes. Second, we asked two experienced MAVEN users

to verify the taxonomy and create the categories, including a

discussion if necessary. Furthermore, we retrieved the release

data of the 30 open source Java projects from GitHub as

the only resource. To that extent, we could miss possible

releases if they are not covered by the GitHub data. However,

we mitigated this threat by manually checking if the data

is compliant with the data provided by the source code

management system.

Internal Validity. A threat to internal validity concerns

whether BUILDDIFF can extract the changes to a build con-

figuration file accurately. We mitigated this threat by covering

all changes of the taxonomy with JUnit tests and a manual

evaluation comparing against the opinions of two experienced

MAVEN users. Concerning the evaluation of BUILDDIFF, a

threat is that the randomly selected commits do not include

all change types. We mitigated this threat by calculating the

proportion of actually missed changes due to the selection. We

observed that we only miss 0.9% of the changes and hence,

we can safely assume that the majority of the changes will be

covered by BUILDDIFF.

External Validity. The main threat to external validity

stems from the selection of projects that we used in our study.

We mitigated this threat by selecting 30 open source Java

projects of different vendors, sizes, and purposes. However,

additional experiments with projects using other build systems

and from industrial settings are needed to further generalize

our results. Another threat to external validity is that our

taxonomy is tailored for MAVEN build configurations. While

we designed the taxonomy to be usable for other build tools

as well, the taxonomy may not generalize to all other build

systems.

VIII. CONCLUSIONS

Build systems are an essential part in the engineering pro-

cess of modern software systems. In this paper we introduced

BUILDDIFF, an approach for extracting fine-grained build

changes from MAVEN build files. In a manual evaluation,

we showed that BUILDDIFF is capable of extracting build

changes with an average precision and recall of 0.96 and

0.98, respectively. With the build changes extracted from 30

open source Java projects we performed two empirical studies

to investigate the frequency and time of build changes. The

results of the two studies showed:

• (RQ1) The most frequent change type is PARENT VER-

SION UPDATE followed by PROJECT VERSION
-

UPDATE, and DEPENDENCY INSERT. The most fre-

quent change category is General Changes directly

followed by Dependency Changes, and Build
Changes. The top 10 change types account for 73%

of all changes.

• (RQ2) Build changes are not equally distributed over

the projects’ timeline. We observed that especially near

releases build changes occur more frequently.

Our results benefit research on build configurations and

developers using MAVEN as their build system.

Future Work. We plan to extend BUILDDIFF to support

other build systems, such as Gradle,7 and compare them with

MAVEN. Furthermore, we will investigate build changes to

find frequent change patterns among commits and work items

that affect the build result. Finally, we plan to perform a more

detailed analysis of the co-evolution between build changes

and source code changes.
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[7] B. Fluri, M. Würsch, M. Pinzger, and H. C. Gall, “Change distilling:
Tree differencing for fine-grained source code change extraction,” Trans-
actions on Software Engineering, vol. 33, no. 11, pp. 725–743, 2007.

[8] H. C. Gall, B. Fluri, and M. Pinzger, “Change analysis with evolizer
and changedistiller,” IEEE Software, vol. 26, no. 1, pp. 26–33, 2009.

[9] B. Adams, H. Tromp, K. D. Schutter, and W. D. Meuter, “Design
recovery and maintenance of build systems,” in Proceedings of the
International Conference on Software Maintenance. IEEE, 2007, pp.
114–123.

[10] S. McIntosh, B. Adams, and A. E. Hassan, “The evolution of ANT
build systems,” in Proceedings of the International Working Conference
on Mining Software Repositories. IEEE, 2010, pp. 42–51.

[11] S. McIntosh, M. Nagappan, B. Adams, A. Mockus, and A. E. Hassan, “A
large-scale empirical study of the relationship between build technology
and build maintenance,” Empirical Software Engineering, vol. 20, no. 6,
pp. 1587–1633, 2015.

[12] R. Hardt and E. V. Munson, “An empirical evaluation of ant build main-
tenance using formiga,” in Proceedings of the International Conference
on Software Maintenance and Evolution, 2015, pp. 201–210.

[13] ——, “Ant build maintenance with formiga,” in Proceedings of the
International Workshop on Release Engineering. IEEE, 2013, pp. 13–
16.

[14] X. Xia, D. Lo, S. McIntosh, E. Shihab, and A. E. Hassan, “Cross-
project build co-change prediction,” in Proceedings of the International
Conference on Software Analysis, Evolution, and Reengineering. IEEE,
2015, pp. 311–320.

[15] X. Xia, D. Lo, X. Wang, and B. Zhou, “Build system analysis with link
prediction,” in Symposium on Applied Computing. ACM, 2014, pp.
1184–1186.

[16] W. Miller and E. W. Myers, “A file comparison program,” Software:
Practice and Experience, vol. 15, no. 11, pp. 1025–1040, 1985.

[17] E. W. Myers, “Ano (nd) difference algorithm and its variations,” Algo-
rithmica, vol. 1, no. 1-4, pp. 251–266, 1986.

[18] M. Hashimoto and A. Mori, “Diff/TS: a tool for fine-grained structural

[18] M. Hashimoto and A. Mori, “Diff/TS: a tool for fine-grained structural
change analysis,” in 2008 15th Working Conference on Reverse Engi-
neering. IEEE, 2008, pp. 279–288.

[19] B. Fluri and H. C. Gall, “Classifying change types for qualifying change
couplings,” IEEE International Conference on Program Comprehension,
vol. 2006, pp. 35–45, 2006.

[20] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus,
“Fine-grained and accurate source code differencing,” in Proceedings
of the International Conference on Automated Software Engineering.
ACM, 2014, pp. 313–324.

[21] C. Désarmeaux, A. Pecatikov, and S. McIntosh, “The Dispersion of
Build Maintenance Activity across Maven Lifecycle Phases,” in Inter-
national Conference on Mining Software Repositories. ACM, 2016,
pp. 492–495.

[22] E. Giger, M. Pinzger, and H. C. Gall, “Comparing Fine-grained Source
Code Changes and Code Churn for Bug Prediction,” in International
Working Conference on Mining Software Repositories. ACM, 2011,
pp. 83–92.

[23] ——, “Can we predict types of code changes? an empirical analysis,”
in Working Conference of Mining Software Repositories. IEEE, 2012,
pp. 217–226.

[24] E. Giger, M. D’Ambros, M. Pinzger, and H. C. Gall, “Method-level
bug prediction,” in International Symposium on Empirical Software
Engineering and Measurement. ACM, 2012, pp. 171–180.

[25] D. Romano and M. Pinzger, “Using source code metrics to predict
change-prone Java interfaces,” in Proceedings of the International Con-
ference on Software Maintenance. IEEE, 2011, pp. 303–312.
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