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ABSTRACT
Modern programming languages, such as Java, represent time as
integer variables, called timestamps. Timestamps allow developers
to tacitly model incorrect time values resulting in a program failure
because any negative value or every positive value is not necessarily
a valid time representation. Current approaches to automatically
detect errors in programs, such as Randoop and FindBugs, cannot
detect such errors because they treat timestamps as normal integer
variables and test themwith random values verifying if the program
throws an exception. In this paper, we present an approach that
considers the time semantics of the Java language to systematically
detect time related errors in Java programs. With the formal time
semantics, our approach determines which integer variables handle
time and which statements use or alter their values. Based on this
information, it translates these statements into an SMTmodel that is
passed to an SMT solver. The solver formally verifies the correctness
of the model and reports the violations of time properties in that
program. For the evaluation, we have implemented our approach
in a prototype tool and applied it to the source code of 20 Java open
source projects. The results show that our approach is scalable and
it is capable of detecting time errors precisely enough allowing its
usability in real-world applications.

CCS CONCEPTS
• Software and its engineering → Error handling and recov-
ery; • General and reference→ Verification; • Theory of com-
putation → Program semantics; Abstraction;
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1 INTRODUCTION
The majority of software failures are predictable and avoidable [8].
Typically, errors are detected through testing the software imple-
mentation. When the final version of the implementation passes
all tests, it could be marked as an accepted implementation of the
requirements. However, writing tests that cover all possible scenar-
ios in which the application is used, is impossible. Many tools have
been developed to aid developers to find and correct bugs before
they are released. For example FindBugs [17] performs a static anal-
ysis of the source code and based on some predefined syntactical
patterns, provides hints to the developers about locations of the
code that could suffer from errors. Modern approaches, such as
Randoop [19–22] and Agitator [6], can create automatically unit
tests for a project to stress the application with the purpose to dis-
cover errors and create a regression test suite. The tests it generates
are a random sequence of method and constructor invocations for
the class under test.

Identifying bugs in early stages of the development cycle is chal-
lenging, even more the one related to time. Modern programming
languages, such as Java and C#, allow developers to model time
as timestamps using integer variables. However, all of the afore-
mentioned approaches fail to identify errors that are related to the
usage of time. Those approaches test methods with some random
integer values for the parameters and verify if they throw a runtime
exception. For instance, an integer related exception can be thrown
for a wrong array index access (IndexOutOfBoundsException), when
a number is divided by zero (ArithmeticException) or when it is
malformed (NumberFormatException). Therefore, they miss to iden-
tify time related errors because no runtime exception is thrown as
the chosen parameters are legal integer values. In the timestamp
domain, all negative values cannot be accepted. Positive values
are more subtle because they represent a valid and legal value for
timestamps in principle, however operation between them could
result in an error due to an integer overflow.

Listing 1 shows an example taken from a bug of the Apache
Kafka project. Depending on the value of the input parameter, the
deadline variable, which stores a timestamp value, in line 3 can
be assigned a wrong value. Since the parameter is defined as long
type, some input values for the parameters will go un-noticed by
the tests but will result in a program failure at runtime. In fact,
deadline can be lower than now and this in turn prevents the body
of the while loop to be executed. This case can cause a failure in the
program because developers expect the deadline variable to be
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always greater than now. In the description of the issue, the Kafka
developers state that they found the bug out of the box.

In this paper, we present an approach to automatically and sys-
tematically verify time related errors in Java programs. With a
formal time semantics, we determine which integer variables han-
dle time and which statements use or alter their values. Based on
this information, our approach analyzes this subset of the source
code and when it encounters a branching instruction it creates a
copy of the code to handle every path of the branch in order to ob-
tain a full path coverage. For each copy, it creates a set of constraints
that model the time behavior of the program. Finally, it passes the
set of constraints as input to the Z3 [2, 11] Satisfiability Modulo
Theories (SMT) solver. The SMT solver is the oracle that reports all
cases in which time properties cannot be held in the given model. A
formal semantics of the Java language was introduced by Bogdanas
et al. [5]. On top of their work, we presented [18] an extension that
specifies the time semantics of the Java 8 language that we use in
our approach.

We have implemented our approach in a prototype tool1 and we
performed an empirical study on 20 open source Java projects to
assess to which degree we can correctly identify time related errors.
On these 20 projects, we verified 939861 methods detecting 146
errors. We manually confirmed that these are due to real bugs in
the source code. We also observed 12 errors that are false positives.
The results also show that our tool is able to process on average a
method in 7.02 ms. Our studies show that our approach is fast and
precise allowing its applicability for finding bugs in practice.

The remainder of the paper is organized as follows: Section 2
presents the motivating example taken from a bug of the Apache
Kafka project. Section 3 presents the details of our approach for
verifying time related errors in Java programs. In Section 4 we
evaluate our approach and we discuss results and threats to validity
in Section 5. Section 6 gives an overview of related work and we
conclude the paper in Section 7.

2 MOTIVATING EXAMPLE
This section presents an example to motivate why a semantic ap-
proach is necessary to identify a bigger spectrum of errors, such
as related to time. Modern programming languages, for instance
Java and C#, offer APIs to handle time related operations, e.g., the
java.time.Clock class. However, these APIs encode time values as
integer values from the domain of Z and allow developers to explic-
itly manipulate time as integer, e.g., with calls to System.current-
Millis(). We focus on this representation because time by mean-
ing of timestamps has a problem with their representation using
integer variables. Timestamps allow developers to tacitly model
incorrect time values resulting in a program failure since not every
value represent a correct time value. In the next paragraphs, we
present an example taken from a real world bug, namely KAFKA-
42902, where the manipulation of timestamps led to a critical error.

Listing 1 shows the source code of the method poll that is
responsible for the reported issue. If the method is called with
(i) any negative number or (ii) a big enough positive number, its
execution will cause a failure in the program. The source of the

1https://github.com/rtse-project/automatic-error-detection
2https://issues.apache.org/jira/browse/KAFKA-4290

1 public void poll(long timeout) {
2 long now = time.milliseconds ();
3 long deadline = now + timeout;
4 while (now <= deadline) {
5 if (coordinatorUnknown ()) {
6 ensureCoordinatorReady ();
7 now = time.milliseconds ();
8 }
9 if (needRejoin ()) {
10 ensureActiveGroup ();
11 now = time.milliseconds ();
12 }
13 pollHeartbeat(now);
14 long remaining = Math.max(0,
15 deadline - now);
16 client.poll(Math.min(remaining ,

timeToNextHeartbeat(now)));
17 now = time.milliseconds ();
18 }
19 }

Listing 1: Source code of the method poll() from the class
WorkerCoordinator that caused the issue KAFKA-4290.

problem is at line 3, where the value for deadline is computed
by adding together the current time stored in variable now and
a timeout value stored in the parameter timeout. The parameter
specifies the maximum amount of time that the method should
require to terminate. However, it is a common practice to pass,
as parameter, a big enough value to enforce the normal method
termination without preemptively forcing it. Albeit a positive big
number is a valid parameter value, the sum at line 3 might result
in an integer overflow and the JVM neither throws and exception
nor gives an error. This operation will store a negative value in the
deadline variable and make it smaller than the variable now before
entering the while loop. The same problem arises if a negative
value is passed as parameter. The while loop will be never executed
contrary to the developers’ expectations and this causes a failure
in the program.

In the description of this issue, the developers state: "We hit this
case out of the box . . . ". This statement shows a limitation of the
testing approach in which the method is tested only for few values.
Unfortunately, we cannot write tests that cover all the possible
cases and check the correct behavior of a method for all possible
parameters. Modern techniques try to automatically create tests
that check the behavior of the system in different settings. Randoop
[19–22] is a well known example of such a test generation technique.
However, it has no knowledge of what is the intended program
behavior and therefore, it could only verify if, with some randomly
generated values for the input parameters, the method exhibits
an exception. Moreover, it considers timestamp values as normal
integer values and therefore it verifies that the program is safe
according to the integer properties that are not representative for
the timestamp domain. This is the gap that we aim to fill with our
approach.

https://github.com/rtse-project/automatic-error-detection
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3 EXTRACTING THE TIME MODEL
In this section, we present our approach for detecting time errors
in the source code of Java programs. Figure 1 shows an overview of
our approach that consists of three steps. In the first step, the source
code of each method of a Java program is analyzed to determine
the variables that store time and statements that use or alter them.
We call these statements a time slice of a method (all the other
statements are filtered out). For each time slice, we next create
multiple copies of a method based on its branching instructions
that we call a path. Each path of the method is then translated
into an SMT model fed into an SMT solver. The solver verifies the
correctness of the program and reports the errors detected in it.

3.1 Time Slice
Based on the formal time semantics of Java [18], in this step we
create a slice of the original program composed of only those state-
ments that modify and use time. In our previous work, we presented
a formal time semantics for the Java language and a static analysis
approach to identify integer variables that hold time values as time
variables and statements that alter time as time statements. Our
approach is based on a categorization of Java 8 APIs methods into
three different categories:

(1) Return Time: The first category comprises methods that
return an integer value that represents time, e.g., the static
nanoTime() method of the System class returns the current
time in nanoseconds.

(2) Explicit Timeout: The second category comprises meth-
ods that accept as parameter a time value. An example is
the sleep method of the Thread class in which the parame-
ter specifies the maximum amount of time to suspend the
current thread.

(3) Explicit Wait: The last category comprises methods that
can potentially block the execution of a thread forever. An ex-
ample of such a method is the join()method of the Thread
class.

In this step, we apply our static analysis approach to detect
time variables, method calls that return time, and statements that
use or alter time variables. Based on this analysis, we translate the
identified time related statements into four basic types of statements
that implement time-related behavior in programs. We call this
sequence of statements a time slice. All the other statements in the
method are filtered out. We consider the following four statement
types as the main source to introduce time related errors:

(1) Assignment Statements:These statements change the value
of a time variable and might assign it a value conflicting the
time semantics, e.g., any negative value.

(2) Method Calls: Methods might be called with an invalid
time value and it might result in an incorrect data-flow.

(3) While Loops: The guard of a while loop referencing a time
variable in its condition might not be satisfied because of
an invalid time value and it could result in an unexpected
behavior of the loop. In our approach, the various types
of loop statements in Java, such as the for or do-while
loops are rewritten into a while loop without changing the
semantics of the original loop.

(4) Conditional Statements: They model the control-flow of
a program and distinct paths might result in different values
for the time variables. Note, switch-case statements are
rewritten into a sequence of if-statements.

We translate the four basic types of statements into correspond-
ing SMT constraints while preserving the time semantics of the Java
language. Thus, every property discovered with the SMT solver is
assured to be also valid for the given method of the program.

Listing 2 shows an example of the translation of the method
poll from Listing 1 into a time slice. The variables now, timeout,
deadline, and remaining are marked to be time variables and all
statements referencing them are considered time statements. In con-
trast, the method calls coordinatorUnknown() and needRejoin()
inside the two if conditions and the method calls to ensureCoordi-
natorReady() and ensureActiveGroup() are filtered since they
do not reference nor return a time variable. Note, since the bodies
of both if conditions contain a time statement, they are contained
by the time slice.

3.2 Path Generation
This step of our approach creates multiple versions of the extracted
time slice that represent the different execution paths of the method.
The time slice created could have a nondeterministic behavior for
branching statements. This can happen if their conditions are not
time related, e.g., line 4–6 in Listing 2. Therefore, it is necessary
to perform a linearization of the program considering all possible
branches to make it deterministic and translate it into a set of SMT
constraints.

We parse the time slice generated in the previous step into a
control flow graph. Then, for each possible execution path in the
control flow graph that contains a branching statement whose
condition is empty (because it is not time related), we create two
copies of the program, each is called a path of the program: one
in which the condition is evaluated to true and one in which it is
evaluated to false. In this manner, we have a full path coverage.

Referring to the example given in Listing 2, this step creates
the four different Paths a, b, c, and d of the program presented
in Figure 2. The first version, Path a, of the program does not
contain the statements of the bodies of both if statements since
both are evaluated to false. The second version, Path b, contains the
statement of the body of the first if statement since it is evaluated
to true. The third version, Path c, contains the statement of the
body of the second if statement. Finally, the fourth version, Path d,
contains the statements of both if statements. Note, the while loop
is contained in all versions since its conditional expression is time
related, i.e., not empty.

3.3 SMT Translation and Verification
The last step of our approach generates the constraints for the
SMT solver for each path of the program created in the previous
step, and incrementally verifies them as depicted by Algorithm 1.
For the verification, we use Z3 [4, 10] with its particular extension
called Z3opt [3], a state-of-the-art SMT solver that extends the Z3
language to solve linear integer problems.

The translation of a program into a Z3opt model is performed
according to the following set of rules:
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Figure 1: Overview of our approach for detecting time property violations. Time Slice slices the program keeping only the
statements that alter and use time variables. Path Generation generates multiple execution paths of the slice based on its
control flow. SMT Translation translates each path into SMT constraints. Each model of SMT constraints is fed into an SMT
solver to check for violations of time properties in the source code.

1 now = time.milliseconds ();
2 deadline = now + timeout;
3 while (now <= deadline) {
4 if () {
5 now = time.milliseconds ();
6 }
7 if () {
8 now = time.milliseconds ();
9 }
10 pollHeartbeat(now);
11 remaining = Math.max(0, deadline - now);
12 client.poll(Math.min(remaining ,

timeToNextHeartbeat(now)));
13 now = time.milliseconds ();
14 }

Listing 2: Time slice of the source code of themethod poll()
of the issue KAFKA-4290. Statements that do not use or alter
time variables are filtered.

Time Variables. For each time variable encountered in the pro-
gram, our algorithm creates a corresponding SMT variable and
two constraints to bound its possible values to be inside the in-
teger domain of Java allowing overflows (lines 5–7 in Algorithm
1). An example of this translation for the time variable timeout is
presented in Listing 3 in the lines 9–11.

Assignment Statements. Each assignment statement is trans-
lated into an SMT assertion that fixes the left-hand-side variable
to be equal to the expression of its right-hand-side (line 9 in Al-
gorithm 1). Line 17 in Listing 3 shows the result of translating the
assignment statement deadline = now + timeout.

Conditional Statements/While Loops. Each condition remain-
ing in a program can be a guard in an if- or while-statement that
references time variables. They represent time constraints and there-
fore can be directly translated into an SMT assertion expressing
the condition. The translation of conditions is also handled by line
9 in Algorithm 1. In addition, whenever the condition belongs to a
while-loop statement, we obtain the list of time variables referenced

Algorithm 1: Incrementally translate a program P into an SMT
model and verify its correctness
1 VerifyProgram (P )

inputs :A program P to verify
output :A report to identify the error

2 V t ← дetTimeVariables (P );
3 St ← дetStatements (P );
4 C ← ∅;
5 foreach vt ∈ V

t do
6 buildConstraint (C,vt );
7 end
8 foreach st ∈ S

t do
9 buildConstraint (C, st );

10 if isMethodCall (st ) then
11 exprt ← дetTimeExpression(st );
12 foreach et ∈ exprt do
13 verify(C, et );
14 end
15 end
16 if isLoop (st ) then
17 vart ← дetTimeGuardVars (st );
18 foreach vt ∈ vart do
19 verify(C,vt );
20 end
21 end
22 end

23 verify (C, expr )
inputs :An expression expr to maximize and minimize

with the set of constraints C
output :A report to identify the error

24 min ←minimize (C, expr );
25 max ←maximize (C, expr );
26 if min < 0 ∨max > MAX_VAL then
27 reportError (expr );
28 end



Modeling Time in Java Programs for Automatic Error Detection FormaliSE’18, June 2018, Gothenburg, Sweden

Figure 2: The four different execution Paths a, b, c, and d of the method poll created during the Path Generation step. Each
path considers a different linearization of the method depending on the execution path taken. The code on the left represents
the time slice from Listing 2.

1 (declare−const max_val () Int)
2 (declare−const over_max_val () Int)
3 (declare−const min_val () Int)
4 (declare−fun milliseconds () Int)
5 (assert (= max_val 9223372036854775807))
6 (assert (= over_max_val 9223372036854775808))
7 (assert (= min_val (− 9223372036854775808)))
8 (assert (and (>= milliseconds 0) (<= milliseconds max_val)))
9 (declare−const timeout Int)
10 (assert (<= min_val timeout))
11 (assert (>= over_max_val timeout))
12 (declare−const now Int)
13 (assert (= now milliseconds))
14 (assert (<= now over_max_val))
15 (assert (>= now min_val))
16 (declare−const deadline Int)
17 (assert (= deadline (+ now timeout)))
18 (assert (<= deadline over_max_val))

19 (assert (>= deadline min_val))
20 (push)
21 (maximize now)
22 (check−sat)
23 (pop)
24 (push)
25 (minimize now)
26 (check−sat)
27 (pop)
28 (push)
29 (maximize deadline)
30 (check−sat)
31 (pop)
32 (push)
33 (minimize deadline)
34 (check−sat)
35 (pop)
36 . . .

Listing 3: Excerpt of the SMT Model generated from the poll()method as presented in Path a of Figure 2.

in the condition (line 17 in Algorithm 1) and for each one, the verify
function is called (lines 18–20 in Algorithm 1).

Method Calls. The translation of method calls, of which at
least one argument represents a time expression, is performed in
lines 9–15 of Algorithm 1. The algorithm collects each time-related
argument (line 11 in Algorithm 1) and for each one, it executes the
verify function to check whether the method is called with valid
time values.

SMT Expressions. The buildConstraint function in line 9 of
Algorithm 1 is responsible for translating Java statements into SMT
constraints. Other than the previous statements, this function has to
handle also the different Java expressions that manipulate the time
variables. Those expressions denote method calls or mathematical
expressions that return or alter time. Mathematical expressions
and functions supported by Java are translated one-to-one into the

corresponding function provided by the Z3 language. Furthermore,
eachmethod call that returns time is translated into a corresponding
function in Z3. For instance, the call to the return time category
method time.milliseconds() in line 1 of Listing 2 is translated
into the milliseconds() Z3 function in line 4 of Listing 3. For each
Z3 function created, our algorithm adds SMT assertion statements
to bound its result to be a valid time value, i.e., a value between 0
and the maximum value of a positive integer in the Java language
(max_val defined in line 5 of Listing 3), modeling the behavior
exported by such methods. Line 13 in Listing 3 shows the result of
translating the expression in line 2 of Listing 2, in which the return
value of the call to method time.milliseconds() is assigned to
the variable now.

Verify Function. Lines 23–29 of Algorithm 1 present the verify
function that checks the existence of errors in the constructed
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model. The function is called only when time variables are used
in a while loop condition or a method call is performed with some
time related arguments. In both cases, the function verifies that
the time variable or the expression cannot overflow or be negative.
For this, the algorithm commands the SMT solver to maximize
and minimize the specific time expression given the current set of
translated constraints (see lines 24 and 25 in Algorithm 1). If the
SMT solver shows that the expression reaches an overflow value or
becomes negative (line 26), it records that there is at least one case
in which the program can enter in a state where the time semantic
cannot be held. If such a violation is detected, the algorithm reports
the class, method, time variable, and line of the method call or while
loop in which the error occurs.

Listing 3 shows an excerpt of the SMT model created by our
approach for the first couple of lines of code of Listing 2. Using the
rules above on the first two code lines, our algorithm outputs the
lines 1–19 in Listing 3. Next, our algorithm processes the while loop
in line 3 of Listing 2. Since it is a while loop, our algorithm calls the
verify function for each variable referenced in its guard expression.
Lines 20–27 in Listing 3 show the output for the now variable. Since it
stores the timestamp returned by the call to time.milliseconds(),
the SMT solver verifies it to be correct. On the contrary, in line
29 of Listing 3 the maximization of the time variable deadline
detects an overflow error caused by the sum of now and timeout.
Our algorithm stops here and reports, that method poll() in class
WorkerCoordinator contains an overflow error which makes vari-
able deadline in line 4 to store an invalid time value.

4 EXPERIMENTS
In this section, we present the experiments we have performed to
evaluate our approach. We use two empirical experiments to mea-
sure the precision and runtime performance of our implemented
approach using 20 Java open source projects. In summary, our
evaluation aims to answer the following two research questions:

• RQ1: What is the precision of our approach in detecting time
related erros in source code?
• RQ2: What is the run time that our approach requires for
producing the results?

4.1 Experimental Setup
We design an empirical experiment in RQ1 and RQ2 with 20 open
source Java projects. We selected Java projects that use multi-
threading and distributed components to maximize the presence
of statements that deal with time. The selected projects also differ
in vendor, size, domain of use, and coding convention adopted to
maintain and develop them. We also considered projects that are
stand-alone applications and projects that are frameworks used to
develop applications. Using these criteria resulted in the set of 20
Java projects listed in Table 1. In sum, they comprise 90,908 source
files implementing 125,130 classes containing 939,861 methods and
more than 9.5M SLOCs. We conducted the experiments on a com-
puter with a 2.5GHz Intel CPU with 16GB of physical memory
running macOs 10.12.6.

Table 1: List of Java projects used for the evaluation together
with their number of files, number of classes, number of
methods, and Source Lines of Code (SLOC).

Name File Classes Methods SLOC
activemq 4,434 4,981 41,212 415,976
Activiti 2,002 2,103 15,358 139,672
airavata 1,621 9,320 70,843 711,587
alluxio 1,319 3,364 24,859 233,897
atmosphere 348 500 4,043 35,843
aws-sdk-java 26,416 27,208 205,202 1,795,234
beam 1,696 3,844 20,477 210,960
camel 17,205 20,024 114,938 1,065,292
elastic-job 571 611 2,493 26,418
flume 642 995 6,627 85,750
hadoop 8,063 12,605 99,343 1,271,230
hazelcast 5,696 7,663 58,405 649,789
hbase 3,638 9,535 127,061 1,201,149
jetty.project 2,567 3,781 24,907 342,602
kafka 1,315 1,896 13,669 149,644
lens 845 1,036 8,063 99,523
nanohttpd 87 124 710 7,532
neo4j 6,681 9,158 60,378 680,986
sling 5,336 5,964 36,969 427,779
twitter4j 426 418 4,304 32,436
Overall 90,908 125,130 939,861 9,583,299

4.2 RQ1: What is the precision of our approach
in detecting time related erros in source
code?

The first experiment aims to evaluate the precision of our approach
in detecting the usages of time variables in statements that can
store invalid time values. For this, we run our prototype tool on
the source code of each Java project and collected the reports of
all detected errors. Next, we manually analyzed all the reports and
verified in the source code the reasons that led to the reported error.
For each reported time variable, we manually analyzed its dataflow
and we verified if there is a possibility that the variable could store
an invalid time value when it is used. We computed the precision
by counting the number of correct errors manually found over the
total number of errors reported by our approach. Note, we did not
verify if the reported error results in a true failure of the program,
because we do not have the full set of specifications. We only check
if there is a case in which the variable could store an invalid time
value. For each report we open an issue on the respective project’s
issue tracker.

Table 2 presents the results of our evaluation. Over all projects,
the prototype tool analyzed 939,861 distinct Java methods, out of
which 466,218 contain at least one statement that deals with time.
On average, almost half (49.6%) of the methods deal with time
resulting in a total of 690,008 paths to analyze. In two projects,
aws-sdk-java (127.07%) and hbase (145.92%), the Path Generation
step creates more lines of code to analyze compared to the original
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Table 2: Results of the error detection for the 20 Java projects showing number of analyzed methods (#Methods), number
of methods dealing with time (#T. Methods), number of paths created from time slices (#Paths), number of SLOC for the
paths generated, percentage of SLOC generated compared to the project SLOC (% SLOC), number of detected time related
errors (#Detected), number of true positive errors (#TP), number of false positive errors (#FP), and the precision computed by
#TP/(#TP+#FP).

Name #Methods #T. Methods #Paths SLOC % SLOC #Detected #TP #FP Precision
activemq 41,212 12,583 (30.5%) 16,447 38,430 9.24% 16 13 3 81.250%
Activiti 15,358 6,034 (39.3%) 7,885 15,798 11.31% 0 0 0 -
airavata 70,843 39,858 (56.3%) 70,015 646,626 90.87% 0 0 0 -
alluxio 24,859 13,570 (54.6%) 19,706 84,268 36.03% 0 0 0 -
atmosphere 4,043 1,626 (40.2%) 2,237 3,875 10.81% 1 1 0 100.000%
aws-sdk-java 205,202 150,932 (73.6%) 247,855 2,227,270 124.07% 1 1 0 100.000%
beam 20,477 7,832 (38.2%) 9,489 8,125 3.85% 0 0 0 -
camel 114,938 34,760 (30.2%) 44,960 87,985 8.26% 4 4 0 100.000%
elastic-job 2,493 637 (25.6%) 783 559 2.12% 0 0 0 -
flume 6,627 2,429 (36.7%) 3,614 9,771 11.39% 3 3 0 100.000%
hadoop 99,343 40,173 (40.4%) 54,819 121,523 9.56% 27 26 1 96.296%
hazelcast 58,405 20,741 (35.5%) 25,488 36,626 5.64% 17 14 3 82.353%
hbase 127,061 81,747 (64.3%) 111,069 175,268 145.92% 24 22 2 91.667%
jetty.project 24,907 8,057 (32.3%) 12,779 37,794 11.03% 14 13 1 92.857%
kafka 13,669 5,158 (37.7%) 7,196 13,616 9.10% 13 13 0 100.000%
lens 8,063 3,917 (48.6%) 5,265 10,450 10.50% 0 0 0 -
nanohttpd 710 205 (28.9%) 294 659 8.75% 0 0 0 -
neo4j 60,378 18,595 (30.8%) 24,435 35,425 5.20% 5 4 1 80.000%
sling 36,969 15,489 (41.9%) 23,111 57,342 13.40% 21 20 1 95.238%
twitter4j 4,304 1,875 (43.6%) 2,561 12,663 39.01% 0 0 0 -
Overall 939,861 466,218 (49.6%) 690,008 3,624,073 28.30% 146 134 12 91.781%

project size. On all the other projects, except airavata (90.87%),
alluxio (36.03%), and twitter4j (39.01%), the number of lines of
code to analyze is smaller than 13.40% of the original project size.

In this set of methods, our approach discovered 146 time related
errors. The three projects with most of the errors are hadoop (27),
hbase (24), and sling (21). In 8 out of the 20 projects, our approach
could not detect any errors. In two projects, namely atmonsphere
and aws-sdk-java, our approach detected only one error.

We manually analyzed the source code of each error and con-
firmed 134 of the 146 as true positive errors. For instance for hadoop,
we confirmed 26 out of the 27 detected time related errors. Overall,
only 12 errors reported by our approach were found to be false
positives. This results in a precision of 91.781% on average. For
only three projects, namely: activemq, hazelcast, and neo4j we
obtained a precision below 91%.

Through the manual analysis of the errors in the source code,
we discovered four cases in which developers added a comment to
the code stating that they know that the time properties are not
preserved and they justified why they think that it is not a problem.
We marked these errors as false positives. An example of such a
justification is that they check the correctness of the time variable
later on in the program. In cases where the developers did not
provide an explanation in the source code, we filed a corresponding
bug report in the issue tracker of the project. For one such bug
report, a developer answered with the comment: "Setting a negative
initialDelayTime is an error so an exception should be thrown
indicating this so the value can be fixed". While this response shows

that the developer is aware of the potential error, it also confirms
that our approach is capable of detecting these errors.

4.3 RQ2: What is the run time that our
approach requires for producing the
results?

In addition to the low rate of false positives, it is also important for
the usability of our approach in practice that it returns the results
within a reasonable amount of time. We envision our approach to
be integrated into build environments so that the detection of errors
can be performed in the build and testing stage, or, if performance
allows, even within development environments. In the latter case,
the response time of our approach should be within 60 seconds,
and ideally even within 10 seconds [23].

In our approach, we use the SMT solver Z3 as oracle to formally
verify the correctness of time properties in Java methods. It is well
known that SMT solvers can consume a lot of resources and time
to perform the verification since a huge state space needs to be
explored and usually a timeout is enforced. In our experiments, all
the models that are created do not specify any timeout. In addition,
our approach performs the verification of multiple copies of the
source code generated from a time slice of the program. This means
on the one hand, verifications are performed with a reduced state
space but on the other hand multiple verification runs need to be
performed to cover all possible paths of the program execution.
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Table 3: Runtime of our approach in seconds for parsing the
939,861methods of the 20 Java projects and detecting errors.

Time spent in seconds (s)
Name Total Parsing Detecting ms/method
activemq 243.8 226.5 17.3 5.92
Activiti 137.6 131.4 6.2 8.96
airavata 505.6 460.5 45.1 7.14
alluxio 149.4 130.1 19.2 6.01
atmosphere 24.5 22.3 2.3 6.06
aws-sdk-java 4,515.4 4373.5 141.9 22.00
beam 131.5 125.4 6.1 6.42
camel 1,361.2 1333.1 28.2 4.84
elastic-job 11.5 10.8 0.7 4.62
flume 22.8 20.1 2.7 3.44
hadoop 598.7 542.3 56.4 6.03
hazelcast 281.3 266.3 15.0 4.82
hbase 1,014.0 923.6 90.4 7.98
jetty.project 168.9 158.7 10.2 6.78
kafka 62.1 55.0 7.1 4.55
lens 36.6 32.9 3.7 4.54
nanohttpd 3.7 3.1 0.6 5.25
neo4j 264.4 247.6 16.8 4.38
sling 282.3 268.1 14.2 7.64
twitter4j 26.1 24.3 1.8 6.07
Overall 9,841.4 9,355.6 485.8 (AVG) 7.02

Using the data from the 20 Java open source projects, we eval-
uated the response time of our approach. For each project, we
measured (i) the time required to parse the source code, and (ii)
the time to detect methods that deal with time and analyze them
with respect to the correct usage of timestamps (i.e., the defined
semantics of time in Java 8).

The time for parsing the source code comprises the time that our
approach needs to construct the abstract syntax tree (AST) using the
Eclipse JDT library. The time for detecting the errors comprises the
various steps of our approach to create the time slice, the creation
of the paths, the translation of each path into an Z3opt model,
the incremental verification of these models, and the report of the
results. Table 3 summarizes the results of running our approach
on the 20 projects. The results show that the experiment in total
required 9, 841.4 seconds (∼2.73 hours) to process all the 939,861
Java methods. Overall, the parsing required 9, 355.6 seconds while
the detection only took 485.8 seconds. As expected, the largest
projects, namely aws-sdk-java (4,373.5) and camel (1,333.1), took
the longest to parse. A large extent of the time for the parsing
is dedicated to the resolution of the binding information of the
method calls in Eclipse JDT.

The performance of the steps to detect errors of time properties
is remarkably fast. For instance, it took our approach 141.9 seconds
to detect errors in 205,202 methods of the aws-sdk-java project
which is on average 22.00 ms per method. Over all projects, the
detection takes on average 7.02 ms per method. One reason is
that time slices are only created for methods that contain time
statements which are 49.6% of the methods (see Table 2). Another

reason is that, even though we generate multiple copies of the time
slice, the total number of SLOC to analyze is just 28% of the total
SLOC of the projects source code.

5 DISCUSSION & THREATS TO VALIDITY
This section discusses the results of our study and limitations of
our current approach. Furthermore, we discuss potential threats to
validity in our experiments.

5.1 Discussion
In this section, first we present the theoretical foundation of our
technique ans second, we discuss the results obtained with our
experiments.

From a theoretical point of view, our approach is sound but not
complete. The theoretical foundation of our approach is rooted
in the formal time semantics of Java 8. The soundness of our ap-
proach assures that every detected error is indeed an error w.r.t. our
definition of the formal semantics of timestamps in Java, namely
as integer values. The soundness proof is essentially a structural
induction proof on the structure of time related Java statements
based on the operational semantics of Java [5] and formal semantics
of time [18]. In fact, the time slice extracted by our approach from
a Java method preserves the time semantics of the original source
code. Moreover, the aforementioned semantics are preserved by
the translation of the time slice into the SMT model. However, the
further details of the proof are beyond the scope of this paper.

The completeness of our approach cannot be established mainly
because of the following two reasons. First, our approach may
extract a weak model since we do not consider the full specification
of the program. Second, for extracting the SMTmodels our approach
only considers calls to methods of the category Return Time, while
still the method calls belonging to other categories may alter the
value of a class attribute that represents time. Therefore, we cannot
assure the nonexistence of false positives.

To complement the theoretical foundation of our approach, we
have investigated the precision (computed with the standard for-
mula of true positives over the sum of true positives and false
positives) of our technique with an empirical study. With our eval-
uation we show that we could not reach a perfect precision which
confirms that our approach is not complete. The small amount of
false positives that we found, as we described in Section 4.2, are due
to the light-weight dataflow analysis performed by our approach.
Notwithstanding, we achieved roughly 91, 781% of correct detec-
tion of time related errors with only 12 false positives, therefore
we can provide developers with an automatic tool for effectively
identifying time-related errors in Java programs. Furthermore, at
the moment of writing, developers indicated the usefulness of our
tool. They confirmed the existence of an error that was discovered
with our approach. The other bug reports are still pending to be
verified by the developers of the projects. We did not find errors
in every project because many of those have a long history of de-
velopment and therefore, the critical sections, such as time related
functionalities, are well implemented and mature.

In addition, we want to provide an approach that can be inte-
grated into a development environment. Therefore, the approach
should be scalable and produce the results in a reasonable amount
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of time. The construction of the slices of a Java program with only
time related statements paid off in performance. In fact, our ap-
proach needs to process on average only 28.30% of the source code.
This enables our approach to process a large amount of methods
per second. The prototype tool spent 95% of the time in parsing
the source code and constructing the abstract syntax tree with the
Eclipse JDT library. Only 5% of the time was used to construct the
model of the code and to verify the time constraints with the SMT
solver. The construction of the AST is necessary to every static
analysis technique and we cannot skip this part. Without a process-
able representation of the source code we cannot provide any kind
of analysis of it. Despite this overhead, our approach detects errors
with high degree of rigor requiring on average only 7.02 ms to pro-
cess a method, which other automated error detecting approaches,
such as Randoop, cannot yet achieve, even given indefinite time.

In summary, we showed that our approach can effectively dis-
cover time errors transforming the time semantics of Java programs
into a set of SMT constraints. Furthermore, our approach can be
integrated into other state of the art tools for error discovery, such
as Randoop [19], Agitator [6], or SMACK [7].

5.2 Threats To Validity
In the following section, we discuss threats to the internal and
external validity of our evaluation and how we addressed them in
our experiments.

Internal Validity. The internal validity threat indicates the re-
liability of our prototype implementation and experiments.

One limitation of our approach is the approximated model of the
program, i.e., it may not correctly handle loops because it unrolls
the loop execution for a single iteration only. Our experiment with
the 20 Java open source projects shows that this approximation
works well since we managed to discover multiple errors in loops.
This limitation can be removed by identifying the invariants that
control the number of loop iterations. The identification of invari-
ants with static analysis is, however, a hard problem. Therefore, we
made a trade-off between time/space complexity and completeness
considering a single iteration only. Future works will be devoted
to address this problem, employing dynamic analysis to discover
likely invariants or asking developers to provide them.

Furthermore, our approach currently supports only time APIs of
the Java 8 standard library. We do not consider other Java libraries
providing time APIs, such as Joda-Time.3 However this threat is mit-
igated by our findings, since in our study with the 20 Java projects,
we discovered that none of them uses external libraries for han-
dling time. In addition, with JSR310,4 Java 8 added better date and
time APIs, and most likely, Java developers will stop using external
libraries for implementing time behavior in their programs.

In the second research question, we studied the impact of the
static analysis approach on the runtime of our prototype tool. We
found that in particular the parsing of the source code required 95%
of the time which might have been due to using the parsing library
Eclipse JDT. In future work, we plan to address this threat by using

3http://www.joda.org/joda-time/
4https://jcp.org/en/jsr/detail?id=310

also other parsing libraries for implementing our approach, such
as Java Parser.5

External Validity. The external validity threat concerns the
generalization of the results to other software projects in two di-
mensions: (i) the effect of application of our methodology to new
datasets and (ii) the extendibility of the approach to other languages.

The results of our evaluation can be easily generalized to other
Java projects because our approach is sound with the respect to
the time semantics of the Java programming language. However,
our presented technique is not complete and we mitigated this
threat investigating how much this affects the precision of our
approach. We applied the implementation of approach to 20 open
source Java projects that differ in vendor, size, domain of use, and
coding convention adopted to maintain and develop the system.
Moreover, we considered projects that are stand-alone applications
and also frameworks used to develop other applications.

The implementation of our approach in a prototype tool can
be further applied to other Java projects to extend our study and
validate our findings. Furthermore, our approach can be adapted to
other programming languages, such as C#, that use similar mecha-
nisms to implement timestamps as used by the Java programming
language. This would mainly require the adaptation of our defini-
tion of semantics for time and the change of our parsing library to
support parsing of source code written in other languages.

6 RELATEDWORK
A wide spectrum of related work in literature addresses automated
error detection in programs. They can be divided into three different
approaches: static analysis, testing, and verification.

Static Analysis. Several static analysis tools for various pro-
gramming languages have been developed. Basically, they analyze
the source code of a project and apply specific syntactical rules to
detect problems that could lead to errors. For instance, FindBugs
[17] and PMD [9] are two well know examples that analyze the
source code to find common programming flaws, such as unused
variables, empty catch blocks, and unnecessary object creation.
Similarly, JLint [1] analyzes Java code to detect synchronization
problems.

Testing. Several approaches to automate the generation of (unit)
test cases for (object-oriented) programming languages have been
investigated. Instead of looking for specific patterns in the source
code, those techniques try to identify unexpected behavior of a
given method. For instance, Randoop [19–22] is a well known tool
that, given a program, can be used to find bugs in it and to create
regression tests to warn developers about erroneous changes of the
program behavior. Randoop generates unit tests using feedback-
directed random test generation to create sequences of method/con-
structor invocations for the classes under test. Havrikov et al. [14]
consider the specific domain of XML Schema definition for which
they can create a set of unit tests to achieve high test coverage.
Other commercial tools, such as Agitator [6], first, use dynamic
analysis to discover invariants in the program and then, they cre-
ate unit tests that assert those invariants reaching a coverage of
around 80%. However, all these approaches cannot detect time re-
lated errors because they do not consider the specific semantics of

5https://javaparser.org/

http://www.joda.org/joda-time/
https://javaparser.org/
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the language and they lack of a sound verification background. In
fact, although test coverage is a good metric for the likelihood to
have tested the code in different scenarios, it does not provide any
guarantee that a program has no errors.

Verification. Many approaches exist that verify source code
to detect errors in programs, however, only few of them address
time properties. Most of the existing work is on discovering race
conditions and synchronization problems, looking at the timing
on which different memory accesses occur during the execution
of a program. Java Pathfinder [13] is a tool developed by NASA.
It executes the bytecode of a given program in a special virtual
machine that is capable of verifying properties of the bytecode with
a focus on race conditions. Similarly, Bandera [12] extracts a formal
representation from Java bytecode that is converted into the SPIN
model checker [16] to verify that the time sequence of actions in the
program execution respects the given specification. Walkinshaw
et al. [24] present an extension of state machine inference from
a program execution that accounts for temporal properties of the
system. The work of Henzinger et al. [15] provides a technique
to verify temporal events, such as the correct execution order of
the mutex API. All these existing approaches have in common that
they address time as ordered sequence of events that occur in the
program execution. In contrast, in our work, we address time as
domain that can be altered by statements in the program and not
as sequence of events.

7 CONCLUSION
In this paper, we presented an approach to detect time related errors
in Java programs. We showed the problem through a real world bug
and also showed how existing tools fail to detect it, mainly because
they do not consider the semantics of time.

We presented an approach that automatically identifies time
related errors in Java methods. Our approach uses the formal time
semantics of the Java version 8 language to identify time related
statements and variables in a Java method. These statements and
variables are translated into a set of SMT constraints that then are
formally verified by an SMT solver which detects and reports errors
according to the given time semantics.

We performed two experiments to evaluate the precision and
runtime performances of our approach on 20 open source Java
projects. Our results show a low rate of false positives and appropri-
ate scalability. Our approach benefits developers with an automatic
verification technique that helps them to identify time related prob-
lems. With our study, we show that it is able to correctly identify
time related errors with a precision of 91.781% with only 12 false
positives. Moreover, the implementation of our approach and data
used in our experiments are publicly available.1

Future work will be performed in two directions. First, we plan
to add dynamic analysis to our approach to discover likely invari-
ants. This way, we can better model loop statements. We also plan
to improve our inter-procedural data flow analysis to reduce the
number of false positives detected by our approach. Second, we
plan to integrate our approach into a development environment
and extend our study to other programming languages that use a
time semantics similar to Java.
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