
Communication in Open Source Software
Development Mailing Lists

Anja Guzzi1, Alberto Bacchelli2, Michele Lanza2, Martin Pinzger3, Arie van Deursen1

1: Department of Software and Computer Technology - Delft University of Technology, The Netherlands
2: REVEAL @ Faculty of Informatics - University of Lugano, Switzerland

3: Institute for Informatics Systems - University of Klagenfurt, Austria

Abstract—Open source software (OSS) development teams use
electronic means, such as emails, instant messaging, or forums,
to conduct open and public discussions. Researchers investigated
mailing lists considering them as a hub for project communica-
tion. Prior work focused on specific aspects of emails, for example
the handling of patches, traceability concerns, or social networks.
This led to insights pertaining to the investigated aspects, but not
to a comprehensive view of what developers communicate about.
Our objective is to increase the understanding of development
mailing lists communication.

We quantitatively and qualitatively analyzed a sample of 506
email threads from the development mailing list of a major OSS
project, Lucene. Our investigation reveals that implementation
details are discussed only in about 35% of the threads, and that
a range of other topics is discussed. Moreover, core developers
participate in less than 75% of the threads. We observed that the
development mailing list is not the main player in OSS project
communication, as it also includes other channels such as the
issue repository.

I. Introduction

Open source software (OSS) development teams use elec-
tronic means, such as emails, instant messaging, or forums,
to communicate. Conversations in OSS settings are typically
conducted in an open public manner and are stored for later
reference [8]. For this reason, OSS communication repositories
offer a rich source of historical information, which can be used,
for example, to observe software processes [28], to understand
software developers communication dynamics [27], and to
improve development practices [29].

Mailing lists have been considered—historically—the hub
of project communication at the inception of the first OSS
communities, such as Linux and Apache. For this reason, when
studying OSS developers’ communication, many researchers
focused on development mailing lists: For example, to investi-
gate the handling of patches [7], [24], traceability concerns [3],
or developers’ social networks [8].

These and other studies (e.g., [1], [9], [21], [22], [25], [26])
are mostly based on the conventional wisdom that the role and
usage of the development mailing lists (of the analyzed project)
are similar to that of Linux [23] or Apache [19] in their first
years. This leads to a number of assumptions, such as that
development mailing list “are primarily concerned with the
software under development” [22], and that “communications by
means of [e]mail is the only possible way for [OSS developers]
to interact with each other.” [5]

Nevertheless, there is no clear, updated, and well-rounded
picture of the communication taking place in open source
development mailing lists that supports these assumptions. In
fact, at our disposal, we only have either abstract and outdated
knowledge (e.g., obtained as a side effect of the analysis of
the Linux project), which does not consider the recent shift
of interest to new social platforms (e.g., GitHub and Jira),
or a very specialized understanding (e.g., regarding specific
information, such as the process of code review [25]), which
does not take into account all the information that can be
distilled from development emails.

Our goal is to increase our understanding of development
mailing lists communication: What do participants talk about?
How much do they discuss each topic? What is the role of
the development mailing lists for OSS project communication?
Answering these questions can confirm or cast doubts on the
previous assumptions, and it can provide insights for future
research on mining developers’ communication and for building
tools to help project teams communicate effectively.

To answer these questions, we conducted an in-depth analysis
of the communication taking place in the development mailing
list of one major OSS software system, i.e., the Apache Lucene
project. We set up our study as an exploratory investigation.
We started without hypotheses regarding the content of the
development mailing list, with the aim of discovering the topics
of communication, the prominency of implementation details,
the position of developers, and the role of the development
mailing list as communication channel. To that end, we
manually inspected and classified 506 email threads comprising
over 2,400 messages, we manually resolved the aliasing among
more than 310 email addresses, and focused on gaining a
holistic view on the information exchanged in the mailing list.

In this paper we make the following contributions:
• A coding system that is reusable for analysis of developer

communication in general, and mailing lists in particular
(Section IV).

• An assessment of relative frequency of topics in developer
mailing lists (Section V).

• An assessment of relative participation of developers in
developer mailing lists (Section VI).

• A qualitative evaluation of the role of development mailing
list for project communication (Section VII).

• Two manually created benchmarks: one for email thread
categorization and one for resolving aliases of participants.

978-1-4673-2936-1/13/$31.00 c© 2013 IEEE MSR 2013, San Francisco, CA, USA277

Our results show that, although the declared intent of
development mailing list communication is to discuss project
internals and code changes/additions, only 35% of the email
threads regard the implementation of code artifacts. Instead,
development mailing list communication also covers a number
of other topics, such as social norms and infrastructure. Also,
project developers participate in less than 75% of the overall
threads and they start only half of the discussions. Finally, the
development mailing list is not the sole player in OSS project
communication: It is complemented by other channels (e.g.,
issue repository) from which it is disconnected.

Based on our findings, we analyze and discuss the implica-
tions for researchers and practitioners (Section X).

II. RelatedWork

By analyzing OSS development mailing lists, researchers
provided insight in social aspects of software development.
For example, researchers exploited email metadata (e.g.,
author, date, and time) to conduct quantitative social anal-
yses: Bird et al. proposed techniques to mine email social
networks [8], and investigated social interactions in OSS
projects [9]; Ogawa et al. visualized social interaction among
participants in OSS projects [21]; and Shihab et al. showed
that mailing list activity is related to source code activity [29].
Researchers also quantitatively analyzed the text of emails:
Pattison et al. studied the frequency with which terms of
software entities are mentioned in emails, and correlating it
with the number of system changes [22]; Baysal and Malton
searched for a correlation between discussions and software
releases [5]; and Bacchelli et al. analyzed the correlation
between email discussions and software defects [1].

Most of the aforementioned work is quantitative and based
on the premise that development mailing list communication
mostly regards the implementation of source code artifacts. This
assumption derives from the knowledge about OSS systems
provided by seminal literature such as “The Cathedral and The
Bazaar” [23]. Few studies analyzed the content of OSS mailing
list communications and mostly focused on specific traits of
the communication. Gutwin et al. read mailing list archives
to study group awareness in distributed development [14].
Rigby et al. analyzed mailing lists to study the OSS code
reviewing process (e.g., [25]). Mockus et al. studied the
Apache Server development process finding that the mailing
list play a central role for communication, coordination, and
awareness [19]. We want to obtain a comprehensive knowledge
of communication in development mailing lists of OSS projects.

Our work is also related to data quality: By knowing
what data is available in mailing list repositories, we can
devise better techniques for extracting relevant, unbiased, and
comprehensible information. In this vein, researchers have
studied bug repositories [31] and code repositories [16] to
understand what information is more relevant. They also
analyzed the impact of data quality on mining approaches
and analyses (e.g., [20]). In the context of mailing list data,
Bettenburg et al. showed the risks of using email data without
a proper cleaning pre-processing phase [6].

III. Methodology

To explore and understand the communication taking place
in development mailing lists, we performed an in-depth analysis
of the development mailing list of Apache Lucene, an OSS
information retrieval framework and API.

We chose Lucene for the following reasons: (1) Lucene
is a mature project with a large user base and an established
community of developers. (2) It was started in 1999 by a single
developer, who initially guided it as a “benevolent dictator”.
In 2001, Lucene joined the Apache Software Foundation
and became a foundation, with a well-organized, hierarchi-
cal governance structure and formalized policies1. (3) The
previous work describing the communication occurring in the
development mailing list of OSS projects (e.g., [17], [23])
dates back to the early 2000s, it is high-level and focuses on
Linux, which is more of an exception than the rule in OSS
projects [23]. Lucene’s organizational structure sets it apart
from the benevolent dictatorship of Linux; by choosing Lucene
we aim at having an updated knowledge of contemporary
developers’ communication in the development mailing list
in a more common OSS setting. (4) Lucene has a publicly
archived development mailing list with a declared intent: The
developer discussion dev@lucene list is “ where participating
developers of the Java Lucene project meet and discuss issues
concerning Lucene [...] internals, code changes/additions, etc.”2

A. Research Questions

Our investigation revolves around four research questions:
RQ1: What topics are development mailing list participants

talking about?
RQ2: How often do participants talk about each topic? How

prominent are implementation details?
RQ3: Is the development mailing list just for developers? What

do developers focus on?
RQ4: What is the role of the development mailing lists for

the communication in the OSS at large?

B. Research Method

We followed the approach depicted in Figure 1: (1) we
modeled all the mailing list emails, (2) we reconstructed
threads of discussion (removing auto-generated ones), and
(3) we randomly extracted 1,000 threads. Using open card
sort [4] (see Section III-D), we manually analyzed the threads
and extracted categories of discussion (4). To ensure the
integrity of the extracted categories, we sorted threads several
times and iteratively refined the catalogue (5). During the
cart sort, we took notes about the mailing list, its role, and
the communication occurring in it (6). We validated the
resulting catalogue of categories using closed card sort (7).
We complemented the automatically collected email data by
resolving aliases and by adding information about which
participants were developers (8). Finally, we conducted a
statistical analysis on the obtained categorized threads (9).

1http://www.apache.org/foundation/
2http://lucene.apache.org/core/discussion.html

278

Aliasing and
Developers

Outcome

Data Collection

Commit
Comment

s
Review

Comment
Commit

Comment
s

Discussion
Threads

13,000

Emails
Emails

Emails

111,366

Lucene
website

SVN

Data Analysis

506494

 1,000

3

Sep 2001
Nov 2012

Mailing
list

archive

12

Lucene
committers

8

categories threads

1.1 comprehension 46
1.2 discussion 85
1.3 feature4sugges6on 13
1.4 contribu6on 36
1 implementa1on 180

2.1 bug4tracking 3
2.2 building 19
2.3 documenta6on 22
2.4 mailing4list 3
2.5 programming4language 4
2.6 tes6ng 13
2.7 versioning 10
2.8 website 7
2 technical5infrastructure 81

3.1 planning 16
3.2 release 21
3 project5status 37

4.1 social4norm 3
4.2 contributors 7
4.3 acknowledgment 3
4.4 coordina6on 17
4 social5interac1on 30

5.1 problems4&4bugs 40
5.2 informa6on4seeking 68
5.3 external4project 27
5 usage 135

6.1 automa6cally4generated 24
6.2 trash 9
6.3 turtle 10
6 discarded 43
total 506

replied

74%
80%
54%
75%
76%
100%
84%
59%
33%
100%
77%
80%
86%
75%
88%
71%
78%
33%
71%
0%

35%
40%
58%
68%
59%
63%
33%
33%
60%
40%
67%

with5
developers5

74%
86%
77%
81%
81%
100%
95%
95%
67%
100%
92%
90%
100%
94%
94%
90%
92%
100%
86%
100%
65%
77%
70%
47%
52%
55%
25%
44%
50%
35%
73%

started5by5
developers

43%
68%
54%
33%
54%
67%
53%
86%
67%
75%
92%
80%
100%
78%
88%
90%
89%
100%
71%
100%
59%
70%
35%
4%

41%
21%
21%
44%
30%
28%
50%

with5code5
en11es

unique5
par1cipants

78% 66
78% 87
62% 19
81% 56
77% 155
0% 8

37% 25
45% 33
0% 4

50% 27
62% 21
20% 28
0% 13

36% 76
56% 48
38% 34
46% 63
0% 4

29% 15
33% 3
47% 17
37% 30
80% 53
60% 99
30% 45
60% 164
29% 6
11% 16
40% 19
28% 34
57% 315

developers emails

39% 208
39% 551
53% 35
39% 135
26% 929
88% 24
56% 54
73% 78
75% 4
52% 100
81% 71
61% 76
85% 32
43% 439
54% 233
56% 126
48% 359
75% 6
80% 26
100% 3
47% 29
57% 64
34% 128
24% 210
36% 86
20% 424
50% 156
63% 30
42% 27
44% 213
16% 2428

from5
developers

60%
70%
66%
59%
66%
92%
72%
83%
75%
54%
94%
78%
94%
77%
84%
85%
84%
83%
85%
100%
41%
66%
45%
37%
52%
43%
5%

77%
44%
20%
63%

with5code5
en11es

72%
70%
51%
62%
69%
0%

24%
37%
0%

18%
42%
4%
0%

21%
19%
28%
22%
0%

19%
33%
38%
27%
81%
61%
24%
60%
19%
20%
33%
21%
46%

0"

50"

100"

150"

200"

implementa.on" technical"infrastructure" project"status" social"interac.on" usage" discarded"

4

9

Validation

Catalogue
of

categories

5

50

7

Email
authors

Notes

6

Fig. 1. The mixed approach research method applied.

C. Data Collection

In our previous work, we presented Miler, a toolset to
explore email data [2]. It crawls the website of MarkMail3 an
online service for searching mailing lists. MarkMail has two
drawbacks: It obscures email addresses for privacy reasons,
and it does not always reconstruct email threads. To correctly
recognize participants, their roles, and the discussions threads,
we extended Miler to collect, extract, and model data from
a more complete source than MarkMail: Mbox files. This
implies challenges also mentioned by Bettenburg et al. [6].
Extracting messages: We wrote an Mbox importer tool in
Python to download and model emails. Although the Python
library mailbox4 gives reliable support for loading the different
messages from Mbox files, we had to write an algorithm to
automatically correct wrong date formats.
Reconstructing threads: An email discussion thread is a set
of messages that are logically related, i.e., replies in the same
chain of emails. To reconstruct discussion threads, we use two
complementary heuristics: (1) Whenever possible, we consider
the ‘message-ID’ (a globally unique identifier for emails) and
‘in-reply-to’ (used to specify the ‘message-ID’ of the email that
it is replying to) fields to reconstruct threads. (2) Otherwise,
we consider email subjects. By manually inspecting the Lucene
mailing list, we found that participants are conservative in
keeping the subject consistent with the discussion: When
a thread changes topic, participants accordingly modify the
subject of the subsequent emails. Thus, if two emails have
the same subject, or two slight variations of it (e.g., they are
prefixed by Re:), we place them on the same thread, using the
timestamp for sorting.

3http://markmail.org
4http://docs.python.org/2/library/mailbox.html

Removing automatically generated emails: Many OSS
projects forward a number of special automatically generated
emails to development mailing list, for example, from the
versioning or the issue tracking systems. For the purpose of our
research, aimed at understanding what participants talk about in
a mailing list, we filter out these automatically generated emails,
unless they are answered by a person. Although this filter has
to be customized to the mailing lists under analysis, we used
an approach that can be adapted to other lists. It focuses on the
quantity and the thread subject. In fact, automatically generated
emails often outnumber those manually generated and have
a well defined subject pattern. We aggregated threads with
a subject starting with the same 10 characters and manually
analyzed their distribution. This approach found almost all
generated emails.

D. Card Sort

To group the email threads we used card sort, a technique
used in information architecture to create mental models and
derive taxonomies from input data [4]. We used it to organize
the threads into groups to abstract and describe mailing list
communication. A card sort has 3 steps: (1) preparation (select
card sort participants and create the cards); (2) execution (sort
cards into meaningful groups); and (3) analysis (form abstract
hierarchies to deduce general categories).
Preparation: We created all cards from the sample resulted
from the data collection. Each card (exemplified in Figure 2)
represents a thread and includes: (1) number of emails,
(2) subject, (3) duration, with timestamp of the first and last
emails, (4) the first 15 lines (removing white lines) in the body
of the initial email, (5) email addresses of the participants
involved, and (6) an univocal id for later reference.
Execution phase: The first two authors analyzed the cards
applying open (i.e., without predefined groups, as they emerge
and evolve during the sorting process) card sort, adapting the
guidelines for the analysis of qualitative data with grounded
theory [13]: They avoided information related to Lucene (e.g.,
its website) and the literature closely related to mailing list
communication, as this could have sensitized them to look for
concepts related to existing theory, thus hindering innovation in
organizing the threads. They often interrupted the card sorting
to memo an idea or concept potentially useful for later analysis
(see Section VII). When necessary they consulted the entire
thread online. Since the rigor of the card sorting method is
in its analysis [18], instead of working separately on different
cards, and checking the consistency of the sorting and merging
the cards in a later phase, they used pair-sorting. This requires
significantly more time, but it brings more value to the analysis
as they discussed discrepancies in their thoughts for each card
during the card sorting itself.
Analysis phase: To ensure the integrity of the emerging
categories, the first two authors did a second pass on all the
analyzed cards, starting from small groups that could not be
included in any larger group, and re-categorizing these cards
by redefining some categories. Subsequently, they analyzed the

279

remaining cards to completely describe the catalogue of thread
categories (see Section IV).

5"days,"0:45:03"(10/29/02"17:10"2"11/3/02"17:55)""

(12)"Development"plans"for"Lucene?"
"

"

"

Hi"2"

I"was"just"wondering"what"is"the"current"development"plan"status"for"

Lucene?"I"have"been"monitoring"the"developer's"list"for"some"time,"and"

have"seen"very"little"in"the"way"of"CVS"commits."I"know"that"may"not"be"

an"accurate"barometer"of"development"activity,"but"there"it"is."

Is"there"any"plan"for"continuing"active"development"of"Lucene?"How"many"

people"are"working"on"it?"Why"aren't"there"more,"and"if"so,"how"can"we"

recruit"them?"

I"am"willing"to"help"contribute,"but"without"some"other"active"

developers,"I'm"not"sure"how"useful"it"will"be."

The"frustrating"thing"is"that"from"the"users"list,"we"all"know"that"

there"is"a"significant"amount"of"interest"in"the"product,"and"some"

feature"requests,"etc."

Thanks"

Peter"Mularien!
!

6"="['carlson@bookandhammer.com',"'pmularien@deploy.com',"'brian@quiotix.com',"

'otis_gospodnetic@yahoo.com',"'cmad@lanlab.de',"'cutting@lucene.com']"

"

"

[914]"

!

21
3

4

5
6

Fig. 2. Card Sort: Example Card

We conducted a validation to verify whether the catalogue
was written in a clear and understandable way that was
capturing all the facets of each category (see Section IX).

E. Aliasing and Identification of Developers

Resolving multiple identities (aliases) is fundamental to
prepare mailing list data for the statistical analysis of the
participants [9]. Although a number of approaches to solve
aliasing have been proposed (e.g., [8], [15]), this task cannot
be fully automatized. To avoid bias in our statistical results,
we manually resolved aliasing in our data. We started by
aggregating on email addresses, to resolve cases with multiple
author names. Then, we manually inspected all possible
combinations of names and email addresses. One challenge
we encountered regards a handful of participants using distinct
names and addresses (e.g.,’John: johns@address1.com’, and
‘spacej: spacej@address2.co.uk’). To resolve these cases,
we read the emails sent from these addresses. To answer the
research question regarding developers communicating in the
mailing list participants (i.e., RQ3), we also identified the
official committers of the project: We matched names and
addresses in our sample with the official list of committers5.
We also extracted developer user names from the versioning
system log. Matching developers was time-consuming, as only
few developers use their [user-name]@apache.com address
listed on the Lucene website.

IV. What AreMailing List Participants Talking About?

We extracted email data from the Lucene development
mailing list,6 from its inception (Sep 2001) to Nov 2012,
totaling 111,366 emails. We aggregated them into threads and
removed automatically generated messages. From the resulting
13,019 discussion threads we randomly sampled 1,000 threads

5http://lucene.apache.org/whoweare.html
6org.apache.lucene.java-dev

and printed the corresponding cards for the card sort. After
sorting the first ca. 300 cards, the new threads started merging
in the same groups, reaching a saturation effect [13]. To add
confidence that the saturation point was reached, and to improve
the significance of the subsequent statistical analysis, another
200 cards were sorted, reaching a sample of 506 threads. The
remaining cards were discarded.

Through the card sort 34 groups emerged. During the sorting
process we iteratively gave explanatory names to groups and
reflected on how they could be clustered into higher level
themes. At the end of this phase, we had clustered the 34
groups into 6 categories and 24 subcategories. We now describe
each category and the corresponding subcategories.

A. Implementation
The implementation category covers the threads related to

the implementation of source code artifacts. It comprises topics
spanning from proposing new features to be implemented, to
discussing implementation details, to contributing with patches.
It also includes emails aimed at understanding the system’s
implementation, or the rationale behind an implementation
choice. It comprises four subcategories:
(A.1) Comprehension: Participants start comprehension

threads to understand (parts of) the implementation, to verify
if their knowledge is correct and up-to-date, and to request
clarifications on the rationale behind a particular choice
(e.g., a used pattern or a threshold).

(A.2) Discussion: Participants initiate discussion threads to ask
the opinion of others (e.g., “what do you think about [this]”),
or to propose one or more possible solutions or ideas (e.g.,
“we could do it like [this], or like [that]”). Usually, discussions
revolve around improving an existing code artifact, and start
from the comments on a recent feature implementation, bug
fix, or submitted patch.

(A.3) Feature suggestion: Participants initiate this kind of
threads to describe new features from a high-level perspective.
Often participants requesting a feature on the mailing list
are not directly volunteering to do it: They mostly propose
something for others to do.

(A.4) Code contribution: Participants start these threads to let
the community know that they have working source code
ready to be merged in the system. The code may implement
new features; or it may tackle issues that were found by
the email author or that were reported in the official bug
repository. Contributions are in the form of patches, pull
requests, external links, or attached code.

B. Technical Infrastructure
Most OSS software projects rely on a technical infrastructure

to support development, maintenance, and the building process,
and to facilitate the communication among project contribu-
tors [12]. This category covers email threads related to such
an infrastructure; the topics of discussions are (B.1) building
system (e.g., notification of problems with the building system),
(B.2) documentation (e.g., decisions on the javadoc), (B.3) issue
tracking (e.g., move to a new tracking system), (B.4) mailing

280

lists (not only the development mailing list itself, but also e.g.,
the user mailing list), (B.5) programming language (e.g., the
version of [programming language] to use), (B.6) testing (e.g.,
how to use the continuous testing system), (B.7) versioning
(e.g., discussions on branches), and (B.8) website (e.g., threads
on what content to put in the website). Authors of infrastructure
threads write to the list for different reasons, such as sending
notifications, discussing problems, and posing questions.

C. Project Status

As described in previous work (e.g., [9], [19], [23]), develop-
ment mailing lists are also used to raise awareness on the status
of the project and to discuss future steps. This category regards
these kind of topics, and includes two groups of threads: those
about (C.1) planning the future development of the project, and
those about (C.2) releases. Authors of project status threads
write to the mailing list to announce a new release, to decide
which issues to fix for a milestone, or to discuss the ongoing
activity on the project.

D. Social Interactions

Socializing is an essential ingredient in the long-term survival
of OSS projects [10], and mailing lists play an important role in
this context [12]. Participants write to the mailing list about the
norms, values, and perspectives that are part of the community’s
operational structure, and to coordinate with others. This
category revolves around these social interactions, and threads
are about (D.1) acknowledgement of efforts (e.g., replying to
a code commit to thank the author), (D.2) coordination (e.g.,
raising awareness about an issue in the bug repository, or
notifying a participant’s absence),greetings and suggestions to
(D.3) new contributors, and (D.4) social norms governing
the behavior of mailing list participants (e.g., advices on
successfully submitting a patch). Authors of such threads notify
their absence, welcome new members, thank someone for a
bug fix, and tell everyone about newly submitted issues.

E. Usage

The usage category comprises threads with questions and
problems about the usage of the software being developed by
the programmers enrolled in the development mailing list, and
it also includes threads related to external projects. It comprises
three subcategories:
(E.1) Problems and bugs: Authors ask advice on how to solve

issues they have operating the project, or report a general
problem they have found. Participants may also bring up
a discussion about a problem by forwarding emails sent to
other mailing lists, or by answering automatic messages from
the issue tracking system.

(E.2) Information seeking: Authors write to ask advice on
how to complete an operation (e.g., “How to do [this]?”), on
where to find usage related resources (e.g., documentation,
examples), and on the right approach to choose among
different usage options (e.g., “What is the proper means
to do [this]?”).

(E.3) External projects: Participants write, for example, to
raise awareness about their own, external, software project.
They ask to be included among the online list of applications
using the main project (e.g., “Powered by”). Participants
developing other systems also ask about including their work
as part of the main project.

F. Discarded

This category groups the threads that do not fit into the
categories previously described. They are of three kinds:
(F.1) Auto-generated: Auto-generated threads, such as emails

from the continuous building system or the wiki, that were
not filtered out by our heuristics.

(F.2) Trash: Threads exclusively composed of unreadable
emails (i.e., due to formatting problems), and spam emails
that are not pertaining to the content of the mailing list (i.e.,
unsolicited commercial emails).

(F.3) Turtle: Email threads that are unrelated to any other
thread, or very difficult to classify due to the nature of their
content (e.g., meaningless because out of context).

V. How Often Do Participants Talk About Each Topic?

Figure 3 shows the distribution of the threads among the
different categories (see also column ‘threads’ in Table I).

Implementation
Comprehension

Discussion
Feature Suggestions

Contribution

Technical Infrastructure
Bug Tracking

Building
Documentation

Mailing List
Programming Language

Testing
Versioning

Website

Project Status
Planning
Release

Social Interaction
Social Norm

New Contributors
Acknowledgment

Coordination

Usage
Problems & Bugs

Information Seeking
External Project

Discarded
Automatically Generated

Trash
Turtle

0 20 40 60 80 100 120 140 160 180

Fig. 3. Distribution of threads per category.

281

A. How Are Topics Distributed Among Threads?

Implementation is the most frequently occurring category,
comprising 36% of the threads. Since the declared aim of the
development mailing list of Lucene is to be where “participat-
ing developers [...] meet and discuss issues concerning Lucene
[...] internals, code changes/additions, etc.”, we were surprised
that—in reality—implementation threads only count for just a
little more than a third of the total threads. This is different
from the Linux kernel mailing list (often used for studying
developers’ interaction), where implementation threads “form
the large majority of the traffic on the list.” [14]

In comparison, we found the ratio of usage threads in the
mailing list to be surprisingly high (27%). In particular, half
of these threads regard information seeking (13% overall), in
spite of a note on the Lucene website exhorting participants to
“not send mail to this list with usage questions or configuration
questions and problems”. Moreover, threads regarding problems
and bugs account for 8%. Even considering sampling limitations
(see Section IX), in Lucene these threads would corresponds to
less than half of the bugs reported in Jira (up to one fifth, when
considering other types of issues), meaning that in Lucene the
mailing list may not be the primary channel for discussing and
reporting problems and bugs.

Threads on technical infrastructure total 16%. The less
frequent categories are social interaction and project status. It
was surprising to us that, despite the mailing list always having
been considered the hub for OSS project communication [12],
[23], only 7% of the threads regard the project status, and just
6% regard social interactions among participants.

Finally, there is a not negligible portion (8%) of threads
discarded during the card sorting. Besides 10 threads with
no clear meaning (turtle), and—despite the fact that we
performed an rigorous pre-processing and data cleaning phase
(Section III)—a substantial amount of noise (7% of the total
threads, from automatically generated and trash threads) was
still present our sample. We also notice that these threads
cannot be clearly distinguished from the other categories: a
third of them are replied (e.g., there are threads automatically
generated from the wiki, which all have the same subject
and thus get threaded), almost a third include developers in
the emails (e.g., svn commits initially sent to the mailing list
results as sent by the developer author of the commit), and
finally almost a fourth of these threads contain code (e.g., svn
commits, and change logs from the wiki pages).

B. How Prominent Are Implementation Details?

To better understand how prominent implementation details
are, we analyzed the distributions of threads containing code
entities (e.g., class names). Are mentioned code artifacts an
indication of discussion about implementation details?

In previous work, Bird et al. reported that the mailing list is
made of more than implementation. They distinguish between
process and product, and use the presence of source code
names, such as class names, as classifiers: “Messages that
include these source code names are classified as product
and the rest are classified as process” [9]. We also apply this

distinction to our data and verify whether and how it fits to
our categories. We considered the entities mentioned in all
the releases of Lucene, and we analyzed threads to determine
whether they contained code entities. Results from our analysis
can be seen in the column ‘with code entities’.

Our results show that 57% of all the analyzed threads contain
code entities, and at least a third of threads in each category
contains code entities (except discarded threads, 28%). Of
implementation threads, 77% contains code.

To verify to which degree Bird et al.’s classification fits to
our data, we first need to define which of our own categories
are part of product. According to the description, these would
correspond to our implementation category alone. However,
usage and discarded threads would not fit in either definition:
we decided to include usage as product (since Lucene is an
API, many usage questions regards its code artifacts), while
we consider discarded as process.

Our data shows that when only considering threads contain-
ing code entities, only 76% of these threads would be regarding
product (i.e., implementation and usage), while the remaining
24% would actually be about process. Moreover, we would
only select 70% of all the implementation+usage threads. This
is in contrast with Bird et al. findings, where they estimated a
correct classification in 90% of the cases.

VI. Is the DevelopmentMailing List Only for Developers?

Once our categories were stable, and after performing several
card sort iterations to ensure the integrity of our categories,
we resolved aliasing and determined which participants were
project developers (i.e., those with commit privileges). Table I
shows the statistical information we collected on the sample
of threads categorized in the card sorting process. We include
email granularity for completeness.

A. What Do Developers Focus On?

The overall ratio of threads in which at least one developer
participated (column ‘with developers’) is quite high: Develop-
ers are present in more than 75% of the treads in each category,
except in usage (55%) and discarded (35%). In project status
and technical infrastructure threads, developers are present
in more than 90% of these threads.

Our results also show that in some categories there is
a prevalence of threads ‘started by developers’. However,
overall, only half of all the analyzed threads have been started
by a developer. Developers start the majority of threads in
Project status (89% of the threads in this category), Technical
infrastructure, (78%), and social interaction (70%). Only
54% of the implementation threads are started by a developer.
This may seem surprising, but, if we look at the subcategories,
we can see that only a third of contribution threads were started
by developers. This is also due to the OSS structure in general,
where a person can be a contributor without committing rights.
Participants write to the mailing list offering their contributions,
hoping that a developer might integrate it in the project.
Moreover, users occasionally write to the development mailing
list with program comprehension questions or feature requests.

282

TABLE I
Categorization of email threads.

categories threads replied with
developers

started by
developers

with code
entities

unique
participants

developers emails from
developers

with code
entities

A.1
A.2
A.3
A.4
A

B.1
B.2
B.3
B.4
B.5
B.6
B.7
B.8
B

C.1
C.2
C

D.1
D.2
D.3
D.4
D

E.1
E.2
E.3
E
F.1
F.2
F.3
F

Comprehension 46 74% 74% 43% 78% 66 39% 208 60% 72%
Discussion 85 80% 86% 68% 78% 87 39% 551 70% 70%
Feature Suggestion 13 54% 77% 54% 62% 19 53% 35 66% 51%
Contribution 36 75% 81% 33% 81% 56 39% 135 59% 62%
Implementation (36%) 180 76% 81% 54% 77% 155 26% 929 66% 69%
Bug Tracking 3 100% 100% 67% 0% 8 88% 24 92% 0%
Building 19 84% 95% 53% 37% 25 56% 54 72% 24%
Documentation 22 59% 95% 86% 45% 33 73% 78 83% 37%
Mailing List 3 33% 67% 67% 0% 4 75% 4 75% 0%
Programming Language 4 100% 100% 75% 50% 27 52% 100 54% 18%
Testing 13 77% 92% 92% 62% 21 81% 71 94% 42%
Versioning 10 80% 90% 80% 20% 28 61% 76 78% 4%
Website 7 86% 100% 100% 0% 13 85% 32 94% 0%
Technical Infrastructure (16%) 81 75% 94% 78% 36% 76 43% 439 77% 21%
Planning 16 88% 94% 88% 56% 48 54% 233 84% 19%
Release 21 71% 90% 90% 38% 34 56% 126 85% 28%
Project Status (7%) 37 78% 92% 89% 46% 63 48% 359 84% 22%
Social Norm 3 33% 100% 100% 0% 4 75% 6 83% 0%
Contributors 7 71% 86% 71% 29% 15 80% 26 85% 19%
Acknowledgment 3 0% 100% 100% 33% 3 100% 3 100% 33%
Coordination 17 35% 65% 59% 47% 17 47% 29 41% 38%
Social Interaction (6%) 30 40% 77% 70% 37% 30 57% 64 66% 27%
Problems & Bugs 40 58% 70% 35% 80% 53 34% 128 45% 81%
Information Seeking 68 68% 47% 4% 60% 99 24% 210 37% 61%
External Project 27 59% 52% 41% 30% 45 36% 86 52% 24%
Usage (27%) 135 63% 55% 21% 60% 164 20% 424 43% 60%
Automatically Generated 24 33% 25% 21% 29% 6 50% 156 5% 19%
Trash 9 33% 44% 44% 11% 16 63% 30 77% 20%
Turtle 10 60% 50% 30% 40% 19 42% 27 44% 33%
Discarded (8%) 43 40% 35% 28% 28% 34 44% 213 20% 21%
Total 506 67% 73% 50% 57% 315 16% 2428 63% 46%

Furthermore, we notice that only 21% of the usage threads
were started by a developer, and, in particular, only 4% of
the information seeking threads. It is not very surprising that
these threads are not started by Lucene developers. However,
developers also start external project threads: They often have
side projects, built on top of Lucene, they want to mention in
the mailing list (e.g., announcing a new release).

B. Dynamics of Interactions

By analyzing the population of mailing list participants, we
found that only 16% of the participants are official committers
(column ‘developers’). Thus, the vast majority of participants
in the development mailing list are not Lucene developers.
We asked ourselves: How are participants interacting via the
mailing list? Do developers have a particular position?

The column ‘Unique participants’ indicates the number of
individual people participating to discussions threads. When
the number of participants is lower than the number of threads,
this means that people are participating in more than one thread
(e.g., this is the case in the implementation category). Similarly,
a higher number of participants than the number of discussion
threads indicates “one-timers” (we observe this in the usage
and project status categories).

To better understand where participants interact, we counted
threads that are replied to (i.e., with more than one email).
The analysis of the replied threads by category gives an idea
of the responsiveness of the mailing list and the “rhytm” of
talks within each category. Interestingly, the threads that are
responded the least are those about the social interaction (40%
overall). We also analyzed multi-email threads in terms of first-
response rate (i.e., how long before the first reply). Threads are

answered within a day: technical infrastructure and social
interaction threads get faster reactions (first reply within two
hours), while implementation and usage threads might take up
to 21 hours to be replied to. We also measured if there was a
difference in responsiveness depending on who sent the first
email (i.e., a developer or not): We did not find a statistically
significant difference.

C. The Overall Picture

Figure 4 puts all the threads in our sample in a nutshell: It
shows, by category, how many threads are with vs. without
code entities (left vs right side), with vs. without participating
developers (top vs bottom bar), and how many of the latter
have been initiated by a developer (light vs dark color). The
exact amount of threads is reported for each “type”.

We see a large amount of threads without developers in the
usage category compared to other categories, a prevalence of
developers on implementation and technical infrastructure,
and a large amount of threads without developers in the usage
category compared to other categories.

VII. What Is the Role of the DevelopmentMailing List?

By answering the previous research questions, we found that
the official description of the aim of the development mailing
list does not correspond to its real usage. Our fourth research
question seeks to understand the role of development mailing
lists for the communication in OSS at large. We attempt to
achieve this by triangulating the information that we obtained
by reading the 506 threads during the card sort, by analyzing
the statistical data on the categories, and by searching more
facts in the rest of the mailing list.

283

with code

5 2
1 13 8 1

23 5
1 7 5 2

4 1
10 38 25 3

3
17 16 1

0

10
8 23 74 41

34
11 9 19 35

27

40 20 20 40 60 80 1000 12060

Implementation (35%)

Technical (16%)

Project Status (7%)

Social Interaction (8%)

Usage (27%)

Discarded (8%)

Infrastructure

 without developers

 with developers

 initiated by a developer

24

without code

Fig. 4. Thread types distribution: gives an idea of the distribution of threads
and the different “shapes” of our categories.

A. Is in the Mailing List Where All the Communication Occurs?

Previous literature stated that mailing lists are “the bread
and butter of project communications” [12], and in particular
that “the developer mailing list is the primary communication
channel for an OSS project” [14]. Reading the analyzed emails,
however, makes it clear that the development mailing list is
just one of the communication channels used in a OSS project;
in fact, other channels also play an important role:

Issue Repository: Many threads provided evidence that a
significant amount of communication takes place in the Jira
issue repository: Participants often reference Jira issues in
emails, or omit details because already mentioned in the issue
discussions. Altough project members started using Jira only
in mid 2005, in our entire population of emails (Sep 2001 to
Nov 2012), we found 69,632 (63%) messages automatically
forwarded from discussions taking place in Jira, still showing
a clear increasing trend in its usage.

IRC: Participants talk about the project and implementation
details also on the development IRC channel (created in Apr
2010): “I propose that we chat on irc at #lucene-dev [...]. I’d
like to discuss the core elements of the Spatial Strategy API,
namely makeQuery, [...], and SpatialOperation.” The channel
was created in Apr 2010.

User Mailing List: The user mailing list also plays a role in
the project and developers’ communication. Developers monitor
it, for example, to understand the usage of the system (e.g., “I
am wondering if TermVectorsWriter is still used [...]. The reason
I am asking is the java-user [email subject]”), to improve the
documentation (e.g., “about the exposure of FieldCache in
the documentation [...] see for instance this discussion in the
user list”), and to forward interesting discussions to other
developers.

In person: We found evidence that developers also have a
number of in person meetings where they discuss about project
details (e.g., “[Developer] and I talked a little bit about this at
the ApacheCon”).

B. Is the Mailing List for Driving Coordination?

Previous work reported that a portion of the communication
taking place in the mailing list regards coordination between
developers as they work together on the software [9], [23].
Surprisingly we found a very small amount (3%) of coordi-
nation threads, with an average of less than two emails per
thread; moreover, most of these threads were not for fostering
collaboration on the implementation, but for raising awareness
on already accomplished work.

By reading emails, we found evidence that developers,
instead of using the mailing list, prefer to coordinate through
items in the issue tracking system. For example, one developer
who sent an email with: “If you can help, please coordinate here
on this thread, so that we don’t stomp on each other.” afterwards
corrected himself in a second message: “Sorry, should have
said, please coordinate on the Jira issue”. Another developer,
who was guiding a newcomer through the coordination norms
in the project, wrote: “You will not fall out of sync in short
order, especially if you work with Jira so others know what
you are doing.”

In addition to the issue tracking system, developers also
coordinate in the IRC channel: “As we discussed on IRC
yesterday, the number of people [...] qualified to write [code]
will still be very small”; or in person: “I talked about this with
[list of developers] in Berlin, and they all like this proposal.”
Moreover, developers remain coordinated by keeping track of
code changes. They do this by reading emails generated by
the versioning system, sometimes forwarding these emails to
the development list along with their comments.

C. Is the Mailing List Used for Peer Code Review?

Rigby et al. reported that OSS mailing lists are also used
for submitting patches and performing peer code reviews [25].
We indeed found that most patches led to a purely technical
discussion, while some others also led to a discussion of project
objectives, scope, or politics.

The vast majority of threads with patches in our sample was
sent earlier than the introduction of the Jira issue tracking
systems: After mid 2005, we saw the number of patches
drastically diminishing. Reading emails, we found additional
evidence that patches, nowadays, are not sent anymore to the
mailing list, but they are sent, discussed, peer-reviewed, and
approved/rejected in the issue tracking system. For example,
when a contributor asked to go to the issue repository to review
a patch: “[issue id] Did anyone try out or took a look at my
redesign [...]? I’d love some feedback.” A senior developer
explained: “You should submit *all* patches you want to commit
to Jira first to give others the chance to review and possibly
vote against the patch.” This finding is inline with the project
website: “How to contribute: [...] Finally, patches should be
attached to a bug report in Jira.”

D. Is the Mailing List the Hub of Project Communication?

Although other researchers also found that the development
mailing list is not the only channel of communication in OSS
projects (e.g., [9], [26]), it has always been considered the hub

284

of project communication. For example, Mockus et al. reported
that developers use “email lists exclusively to communicate with
each other” and that “due to some annoying characteristics of
the [issue tracking system], very few developers keep an active
eye on [it].” [19].

When more communication repositories exist, the policy
of most OSS projects is to transfer all the official decisions
and useful discussions to the mailing list [12], so that they
can be later retrieved. These traceability links between the
development mailing list and other communication repositories
must be manually created and updated. We found some cases in
which the traceability link was established, but, more often and
in line with the findings of Sarma et al. [26], we found a clear
disconnection among repositories, which led to coordination
issues and duplicated/lost information. For example, because
of multiple communication repositories, developers need to
raise inter-repository awareness (e.g., “I submitted a patch for
[Jira issue] a month ago, [...] it hasn’t been picked by anybody
yet”), ask where a discussion takes place (e.g., “were there
emails about it or it has been discussed on IRC?”), and go back
and forth between the same discussion taking place in more
venues (e.g., “We would like to implement [this], which was
discussed in Jira”). Overall, our study provides evidence that
the communication channels work in parallel and they remain
disconnected between one another, and that the development
mailing list does not play (anymore) the role of a hub.

VIII. Implications

From our investigation, we found that the role of the
development mailing list, previously considered as the place
for discussing code artifact implementation and as the hub of
all project communication, has changed. In the following we
describe some of the subsequent implications.

On Communication. The development mailing list is no
longer the hub of OSS project communication: communication
is scattered among repositories. This once again underlines the
importance of adopting a holistic view and considering software
repositories as a whole, not only in research but also in practical
development. In fact, even project developers have problems
in maintaining awareness of each other’s work in the current
situation. Automatically recovering traceability links among
communication repositories would free developers from the
task of recovering scattered traces of previous communication,
and would help researchers having a more complete picture of
the development process. More tools for maintaining awareness
would be also necessary to improve developers’ productivity.
Since the advent of better issue tracking systems led to a shift in
the habits of OSS participants toward different communication
means, we should investigate the features in issue tracking
systems that produced this change of direction.

On Data Quality. We found that a number of different
communication topics take place in the development mailing
list; to extract valuable information we have to take this
into account. First, we have to improve our methods for
removing noise (8% of our sample, even after a careful pre-
processing phase), then there are the premises for future work

on automatic classification of threads of discussions, so that
only the relevant categories could be taken into account for
analysis. We underlined the importance of a correct aliasing
resolution, which still cannot be fully automatized. We provide
our complete aliasing and thread categorization to used to
benchmark novel automatic techniques. Nevertheless part of the
communication data is going to be lost, because communication
takes place in unrecorded places, even in OSS systems. We
have to take this into account in our statistical analyses.

On Software Development. We found that not only com-
mitters respond to the development mailing list, but also other
people are very active. We could consider techniques for finding
code experts not only among active contributors, but also among
active respondents of the mailing list. Moreover, considering
the shift to other communication repositories, mailing list may
not be the right venue for studying code review anymore. In
this context we can further investigate the role of issue tracking
systems and social coding websites such as GitHub.

IX. Limitations

One potential criticism is that a case study with one project
may provide little value. Historical evidence shows otherwise:
Flyvbjerg gave many examples of individual cases contributing
to discoveries in physics, economics, and social science [11].
To understand mailing list communication we read emails
spanning 11 years of mailing list usage, and written by 155
diverse participants. To answer our research questions, we also
analyzed data from the code repository, the project website,
and email threads external to our sample.

To ensure that the thread categories emerged from the
card sort were clear and accurate, and to judge whether our
set of category provides an exhaustive and effective way to
organize mailing list communication, we conducted a validation
phase that involved three people external to the pair-card sort.
Three software engineering researchers conducted a closed card
sort on 50 cards (10%) randomly selected from our sample.
They observed that the 6 main categories were clear and
covered all thread topics. We measured inter-rater agreement:
The Fleiss’ Kappa value for the four ratings of the random
sample was 0.657 (i.e., substantial agreement) for the six
categories, and 0.505 (i.e., moderate agreement) for the 24
sub-categories (which were more difficult to be all recalled by
participants). To verify whether there was a systematic error
in our catalogue, we also measured the inter-rater agreement
among the three experiment participants. Their agreement was
0.592 for the main categories, and 0.458 for sub-categories
(both corresponding to a moderate agreement, suggesting there
was no systematic misinterpretation).

Threats to validity—Concerning internal threats, the sample
size (506) of threads provides a 98% confidence level and 5%
error on subsequent estimations of proportions [30]. Concerning
external threats, other OSS projects use communication tools
similar to Lucene, for example, 87 other Apache projects are
also using the Jira issue tracking system and have IRC channels.
However, team dynamics may differ and our research should
be repeated in other contexts.

285

X. Conclusions

Conventional wisdom on OSS communication is that de-
velopment mailing lists are central to the entire development
process and serve as the hub for project communication. This
knowledge derives from the first analyses of very successful
OSS projects, such as Linux or Apache. Nevertheless, in the
years, a number of other successful OSS projects driven by
different communities emerged, other communication means
appeared, and there has been a shift of interest to new
social platforms that support project development. Despite
this scenario, most of the research work related to mailing list
communication builds on the conventional wisdom generated
by early work. Moreover, prior work focused on specific aspects
of emails (e.g., code review, traceability concerns, or social
networks), which led to insights pertaining to the investigated
aspects, but not to a comprehensive view of what developers
communicate about.

We conducted a case study on Lucene to gain a more
comprehensive and updated view of OSS development mailing
list communication. Our results show that email threads cover
a wide range of topics and implementation details are only in a
portion of them, that code artifacts are also mentioned in topics
not related to implementation, and that project developers are
not the majority of the participants. Moreover, our case study
provides evidence that the development mailing list is only one
of the communication channels used in an OSS project, and
that there has been a shift in the communication habits toward
an increased usage of issue repositories. In addition, some
of our findings cast doubts on assumptions made in previous
work, for example that development mailing lists are only for
programmers discussing implementation details.

Although based on a single OSS system, we hope that the
insights we have discovered will lead to a more comprehensive
analysis of communication repositories and to improved tools
for aiding developers communicate.

The entire dataset used in the experiment, including the
cards, the categorized threads, the resolved aliases, and the
detailed statistical results, can be found online on the website
supporting this paper.7

Acknowledgment

Bacchelli gratefully acknowledges the Swiss National Sci-
ence foundation’s support for the project “SOSYA” (SNF
Project No. 132175).

References

[1] A. Bacchelli, M. D’Ambros, and M. Lanza. Are popular classes more
defect prone? In Proc. of FASE’10, pages 59–73, 2010.

[2] A. Bacchelli, M. Lanza, and M. D’Ambros. Miler: A toolset for exploring
email data. In Proc. of ICSE’11, pages 1025–1027, 2011.

[3] A. Bacchelli, M. Lanza, and R. Robbes. Linking e-mails and source
code artifacts. In Proc. of ICSE’10, pages 375–384. ACM Press, 2010.

[4] I. Barker. What is information architecture? http://www.steptwo.com.au/,
May 2005.

7http://www.st.ewi.tudelft.nl/∼guzzi/oss-communication

[5] O. Baysal and A. J. Malton. Correlating social interactions to release
history during software evolution. In Proc. of MSR’07, page 7. IEEE
CS, 2007.

[6] N. Bettenburg, E. Shihab, and A. E. Hassan. An empirical study on the
risks of using off-the-shelf techniques for processing mailing list data.
In Proc. of ICSM’09, pages 539 –542. IEEE CS, 2009.

[7] C. Bird, A. Gourley, and P. Devanbu. Detecting patch submission and
acceptance in OSS projects. In Proc. of MSR’07, pages 26–29. IEEE
CS, 2007.

[8] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan. Mining
email social networks. In Proc. of MSR’06, pages 137–143. ACM, 2006.

[9] C. Bird, D. Pattison, R. D’Souza, V. Filkov, and P. Devanbu. Latent
social structure in open source projects. In Proc. FSE’08, pages 24–35.
ACM, 2008.

[10] N. Ducheneaut. Socialization in an open source software community: A
socio-technical analysis. CSCW, 14(4):323–368, 2005.

[11] B. Flyvbjerg. Five misunderstandings about case-study research.
Qualitative inquiry, 12(2):219–245, 2006.

[12] K. Fogel. Producing Open Source Software. O’Reilly Media, 2005.
[13] B. G. Glaser and A. L. Strauss. The Discovery of Grounded Theory:

Strategies For Qualitative Research. Aldine, 1967.
[14] C. Gutwin, R. Penner, and K. A. Schneider. Group awareness in

distributed software development. In Proc. of CSCW’04, pages 72–81,
2004.

[15] A. Guzzi, A. Begel, J. K. Miller, and K. Nareddy. Facilitating enterprise
software developer communication with cares. In Proc. of ICSM’12,
pages 527–536, 2012.

[16] D. Kawrykow and M. P. Robillard. Non-essential changes in version
histories. In Proc. of ICSE’11, pages 351–360, 2011.

[17] K. Kuwabara. A bazaar at the edge of chaos. First Monday, 5(3), 2000.
[18] B. Martin and B. Hanington. Universal Methods of Design. Rockport,

2012.
[19] A. Mockus, R. T. Fielding, and J. D. Herbsleb. A case study of open

source software development: the apache server. In Proc. of ICSE’00,
pages 263–272, 2000.

[20] T. H. D. Nguyen, B. Adams, and A. E. Hassan. A case study of bias in
bug-fix datasets. In Proc. of WCRE 2010, pages 259 –268. IEEE CS
Press, 2010.

[21] M. Ogawa, K.-L. Ma, C. Bird, P. T. Devanbu, and A. Gourley. Visualizing
social interaction in open source software projects. In Proc. of APVIS07,
pages 25–32, 2007.

[22] D. Pattison, C. Bird, and P. Devanbu. Talk and Work: a Preliminary
Report. In Proc. of MSR’08, pages 113–116. ACM, 2008.

[23] E. Raymond. The Cathedral and the Bazaar - Musings on Linux and
Open Source by an Accidental Revolutionary. O’Reilly, 1999.

[24] P. C. Rigby, D. M. German, and M.-A. Storey. Open source software
peer review practices: a case study of the Apache server. In Proc. of
ICSE’08, pages 541–550. ACM, 2008.

[25] P. C. Rigby and M.-A. Storey. Understanding broadcast based peer
review on open source software projects. In Proc. of ICSE’11, pages
541–550. ACM, 2011.

[26] A. Sarma, L. Maccherone, P. Wagstrom, and J. Herbsleb. Tesseract:
Interactive visual exploration of socio-technical relationships in software
development. In Proc. of ICSE’09, pages 23–33. IEEE CS Press, 2009.

[27] A. Schröter, J. Aranda, D. Damian, and I. Kwan. To talk or not to talk:
factors that influence communication around changesets. In Proc. of
CSCW’12, pages 1317–1326, 2012.

[28] C. B. Seaman. Qualitative methods in empirical studies of software
engineering. IEEE TSE, 25:557–572, 1999.

[29] E. Shihab, N. Bettenburg, B. Adams, and A. E. Hassan. On the central
role of mailing lists in open source projects: An exploratory study. In
JSAI-isAI Workshops, pages 91–103, 2009.

[30] M. Triola. Elementary Statistics. Addison-Wesley, 2006.
[31] T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, A. Schroter, and

C. Weiss. What makes a good bug report? IEEE TSE, 36(5):618–643,
2010.

286

