
DiffViz: A Diff Algorithm Independent
Visualization Tool for Edit Scripts

Veit Frick, Christoph Wedenig, and Martin Pinzger
Software Engineering Research Group

Alpen-Adria-Universität Klagenfurt
Email: {veit.frick, christoph.wedenig, martin.pinzger}@aau.at

Abstract—A number of approaches and tools exist that extract
and visualize the changes between two versions of a file and
thereby help developers to understand them. DiffViz is an inter-
active visualization tool that visualizes the changes independent
from the differencing algorithm. It supports, but is not limited to,
a granularity on the level of abstract syntax trees. Furthermore,
it provides several new features, such as node matching and the
mini-map, to navigate and analyze the changes.
A demo of the installation and example usage of the tool is
available here: https://youtu.be/RF93ey9GYoc

I. INTRODUCTION

Most software systems are evolving and changing systems.
To understand the changes made to such systems it is neces-
sary to understand the changes made to the underlying source
code. Instead of simply comparing two versions of the same
source file, differencing algorithms can be used to analyze
them and detect the changes made.

There exist a multitude of differencing algorithms, focusing
on different programming and markup languages and using
different approaches to generate edit scripts. Textual differenc-
ing algorithms, such as the commonly used diff, based on the
algorithm presented by Hunt et al. [8] and its modifications
[10] [11], compare two files on a purely textual level and
are capable of detecting inserted and deleted lines of text.
Algorithms like GumTree [4] and ChangeDistiller [5] use the
AST representation of source code instead of the text of the
source files as their basis. Hence, they output edit scripts
consisting of changed nodes in the ASTs and are therefore
able to compute more fine-grained results.

Edit scripts alone do not necessarily further the under-
standing of changes, their visualization plays an important
factor as well. Many differencing approaches also provide
tools that are able to visualize the resulting edit scripts by
marking the edits in the corresponding source and destination
files. GitHub, for example, provides a web-view, highlighting
changes between two versions of a file, using a variant of
diff. GumTree provides a tool that is able to produce a web-
view of the edit scripts generated by the GumTree differencing
algorithm.

DiffViz is an edit script visualization tool that provides the
user with an easy-to-use and comprehensive way of generating
and analyzing edit scripts. In comparison to existing tools,
DiffViz is not tied to just one differencing algorithm but can be
used to visualize edit scripts generated by any differencing al-
gorithm that produces an output that can be converted into the

format presented in Section III. As provided, DiffViz already
includes the differencing algorithms GumTree, MTDIFF [3],
and IJM [6], and was also tested with BuildDiffer [9]. Given
the respective differencing algorithm, DiffViz can be used to
visualize changes in any kind of text (e.g., Source Code, XML,
prose). DiffViz is Open Source and can be found on GitHub
(github.com/W3D3/DiffVisualizer).

The remainder of this paper is structured as follows: Section
II describes DiffViz and how it can be used. Section III
gives an overview of the architecture and the requirements
of DiffViz. In Section IV DiffViz is compared to other
visualization approaches. Section V presents the related work.
Finally, Section VI concludes this paper.

II. DIFFVIZ

As edit script visualization tool, DiffViz highlights the
changes between two versions of a file (in the following
named diff-pair). As shown in Figure 1 DiffViz compares
both versions of the diff-pair side-by-side. The left side shows
the older version and the right side shows the newer version.
DiffViz depicts changes in the diff-pair with colored markups.
Changes that are present in both versions of the diff-pair (e.g.,
updated nodes) are visually connected as explained later.

To analyze a diff-pair, the user has to provide DiffViz with
the respective source files. This can be done in three different
ways. First, there is the integrated editor which can be used
to provide source code manually (Figure 1- 1 ). Second, diff-
pairs can be imported from GitHub using a wizard (Figure 1-
2 ). As a third option, a JSON file that references one or more

GitHub diff-pairs that are uniquely identified by username,
project name, commit hash, parent-commit hash, filename, and
parent-filename can be uploaded to import many diff-pairs at
once (Figure 1- 3 ). Every imported diff-pair is listed in the
sidebar for the user to load (Figure 1- 4 ). The whole list can
be downloaded as a JSON file.

After importing, the user can choose a specific edit script
from the sidebar to inspect. The source code is fetched through
a proxy and sent to the backend where the selected differenc-
ing algorithm is applied. The backend and the algorithm can
be changed at any time in the settings (Figure 1- 5 ).

DiffViz receives the result and shows source (Figure 1- 6 )
and destination (Figure 1- 7 ) side-by-side with all the changes
visualized as inline nodes. DiffViz implements further features
for improved code navigation, such as:

https://youtu.be/RF93ey9GYoc
https://github.com/W3D3/DiffVisualizer


• Node Matching: Updated and moved nodes have match-
ing nodes in the source and the destination file. If the
user selects such a node, DiffViz automatically displays
the respective matching node on the opposite side and
highlights both nodes.

• Node Highlighting: Nodes can be hard to distinguish
from each other. For this reason, nodes that have been
selected by the user are highlighted with a solid border
and shadow. Nodes that the user hovers over are rendered
with a dotted border. This makes it easier to pick the
desired one.

• Meta-Data: The backend can return metadata for every
node. For example, IJM supplies a node type description
as well as the containing method and class. The user can
inspect this data by double-clicking on a node.

• Mini-Map: When browsing an edit script with few or
small changes that are spread across the file it can be
hard to spot all the nodes without scrolling through the
whole file. DiffViz provides a mini-map that enhances
the scrollbar with a color encoded representation of all
nodes and the currently visible area of the file to help the
user navigate the changes. The mini-map can be seen in
(Figure 1- 8 ) .

• Editor: DiffViz offers the possibility to make changes
to the already imported source code on the fly with the
editor (Figure 1- 1 ). The modified version is then diffed
again.

• Filter: Focusing on a specific change type in a file with
a high variety of change types can make it easier to find
relevant changes. To achieve this, DiffViz offers an option
to filter nodes based on their change type.

• Syntax Highlighting: Highlighted language keywords
make the code easier to read. DiffViz tries to detect
the programming language automatically and uses high-
light.js1 for syntax highlighting.

• Jump to Line: To help with navigating huge files there is
a jump-to-line feature for the case when the user already
knows where to look.

• Code Search: DiffViz overrides the default browser
search with a custom one that only searches the source
code. The user has the option of searching both revisions
or to search only one explicitly.

A. Bug fix scenario

This example shows how DiffViz can be used to detect bugs
in the Java class Loops. The class implements some simple
array operations: sorting and printing an array in reverse.
Since the latest commit, the program crashes when trying
to run doSomething(). The developer therefore decides
to analyze the commit using DiffViz and selects a suitable
differencing algorithm. In this case, GumTree has been chosen.

The user is then presented with a change overview that is
shown in Figure 1. Now that all the changes are highlighted,
the user can reduce the scope of the potentially faulty code.

1http://highlightjs.org/

If the bug was added with the commit, it was most likely
introduced through one or more of the changes.

The left code panel of the DiffViz in Figure 1 shows that
the whole for-loop used for reverse printing the array has
been moved. Clicking on any moved node highlights the corre-
sponding matching node as well. It is therefore possible to see
that the loop got moved into the method loopReverse().

The only node that was not moved from the original
for-loop inside loopReverse() is the infix expression
this.arr.length - 1. It got deleted (red background
color) and replaced with this.arr.length. This uncovers
the bug since this change leads to an ArrayOutOfBounds
exception.

When viewing this commit in the traditional line-based diff
view that GitHub provides as seen in Figure 2 the changes
get interpreted as just four inserts and four deletes. Due to the
long distance of the move, GitHub will not show us character-
based differencing which makes it harder to spot that only the
condition inside the for-loop got altered. While this specific
bug would be easy to spot in reality without any tools, it is still
exemplary for how DiffViz can improve the understandability
of an edit script.

III. ARCHITECTURE

The DiffViz project is composed of different modules for
the sake of interchangeability and encapsulation.

A. Backend

The backend is a Java RESTful web-service, providing the
source code analysis and consequently the data for the front-
end to visualize. DiffViz’s currently used backend includes
GumTree [4], MTDIFF [3] and IJM [6] as differencing algo-
rithms. However, this backend and its differencing algorithms
are interchangeable and DiffViz can use any data source which
complies with the following requirements:

• Supplies a list of available matchers where every matcher
has a name and a unique ID for further identification.

• Supplies all the nodes for a given source and destination
source-code in combination with a unique matcher ID. A
node can have the types INSERT, DELETE, UPDATE,
MOVE and META. UPDATE and MOVE nodes need
to have a corresponding node in both versions. META
nodes can be used for additional highlighting. Every
node needs to contain the relative start/end positions
in the source/destination file (line number and offset).
Nodes need to be properly nested and cannot be partially
overlapping. Every node can contain a string of metadata.

B. Client

The client is written in ECMAScript 6. It aims to make
it efficient and intuitive to interact with the backend. It uses
Bootstrap 3 and jQuery for the UI. Microsoft’s Monaco editor2

is used for the code editor.
Together with the client, DiffViz also includes a small utility

2https://microsoft.github.io/monaco-editor/

http://highlightjs.org/
https://microsoft.github.io/monaco-editor/


Fig. 1. Screenshot of DiffViz showing two versions of the Java class Loop where a bug was introduced in the newer version

Fig. 2. GitHub diff of the Java Loop class

web-server. This web server hosts the client and is used
to up- and download JSON files containing diff-pairs that
are validated in this process. It also acts as a middleman
between the GitHub REST API v3 to avoid exposing the login
credentials to the client. It also proxies requests to the GitHub
RAW CDN to circumvent CORS restrictions.

IV. COMPARISON

In this section we compare DiffViz to three other freely
available and web-based visualization tools.

1) The GitHub diff visualization (GHDV) is based on
diff. diff is a line-based differencing algorithm, which
does not provide update or move actions. GHDV does,
however, highlight the parts of the line that have been
added or deleted. Due to its use of diff, the GHDV is

language independent and available for all text revisions
uploaded to GitHub.

2) The GumTree Webdiff tool (GTWD) is a web-service
that visualizes edit scripts produced by GumTree. Hence,
GTWD is able to show changes on a fine-grained level
and supports move and update actions. GTWD shows
the different actions in different colors and is able to
highlight corresponding moved or updated nodes when
the user clicks on them.

3) Mergely3 is an open-source visualization tool that builds
on diff as well. It is therefore line-based and does
not support move or update actions but is language
independent. It does not only serve as a diff visualization
tool but can also be used to directly merge two files.

A. Usage Scenario

In Section II we described a bug finding usage scenario
and explained the steps necessary in DiffViz to identify the
changes that caused the bug. In the following, we provide
an overview of how the same scenario would look like using
GHDV, GTWD, and Mergely and compare the differences to
our approach.

If the commits in question are already on GitHub, GHDV
is a fast way to get a grasp on what changed. The user has
to open the commit on the GitHub website. They are then
presented with a line-based differencing view of the Loop
class, shown in Figure 1. Deleted and added lines are visually

3http://www.mergely.com/

http://www.mergely.com/


highlighted and can therefore help finding the bug, however,
an indication that some of the lines are moved or partially
updated is missing.

Mergely allows the user to directly copy-and-paste the two
source files into their online editor. It then presents the user
with an indication what lines have been added or deleted,
similar to GHDV. An indication that some of the lines are
moved or partially updated is missing as well.

GTWD is started from a command line, taking both files
as arguments. It then starts a web-server that displays a side-
by-side comparison of both source files. It highlights inserted,
moved, updated, and deleted nodes in different colors. When
clicking on a moved or updated node, the corresponding
node in the other source file is highlighted as well. This
representation allows the user to quickly find the bug, as
described in Section II.

DiffViz, GHDV and Mergely are all easy to use and require
only little effort to display the file differences. However, the
line based nature of GHDV and Mergely may not be sufficient
for a detailed analysis. GTDV on the other hand provides a
detailed analysis but requires some effort to use and lacks
further features to navigate the changes, as can be seen in
Table I. DiffViz is easy to use and can provide a detailed
analysis.

B. Feature Comparison

Table I compares the features provided by all four tools.
It is important to note, that the four tools can be used for
different scenarios, Mergely for example offers additional
merge features that are not discussed here. In our selection of
features, we focused on features that help with understanding
the changes made to two versions of a source file. It is not a
complete list of all features but is only aimed at providing an
overview. Table I shows that DiffViz provides many features,
aimed at helping developers understand changes, that are not
provided by other visualization tools. It is also the only differ-
encing tool that allows choosing between multiple differencing
algorithms. We therefore think that DiffViz provides a useful
set of features that can help developers to understand complex
changes.

V. RELATED WORK

Many different approaches have been developed to visualize
the historical data of version control repositories. Voinea et al.
[16] present an open framework to mine and visualize histor-
ical data from CVS repositories. Gource [2] and code swarm
[12] both generate animated histories of repositories. Ogawa
et al. [13] present an approach to visualize the interaction
between different developers of a repository in the form of
software evolution storylines. Aghajani et al. [1] present an
IDE plugin to explore the history of changes in a project. It
is used to find interesting points in the history of a file using
metrics from the version control system. The Chronos tool by
Servant et al. [14] allows for the visualization of the history
of specific lines of code.

TABLE I
FEATURE COMPARISON OF THE DIFF VISUALIZATIONS BY GITHUB,

GUMTREE, MERGELY, AND DIFFVIZ

Feature GitHub GumTree Mergely DiffViz
Source Highlighting Yes No No Yes
Moves & Updates No Yes No Yes
Search Function Browser Browser Custom Custom
Mini Map No No Yes Yes
Unchanged Code Collapse Yes No No No
Commenting Yes No No No
Code Editor No No Yes Yes
Side-by-Side view Yes Yes Yes Yes
Scroll to Node No No No Yes
Node Metadata No No No Yes
Multiple Differs No No No Yes
Filter Function No No No Yes
Jump to Line No No No Yes
Diff Summary Yes No No On import

In addition to the visualization of whole repositories, there
also exist approaches to visualize the changes made by specific
commits or revisions. With Torch, Gómez et al. [7] present a
visualization tool that combines text-based diffs with metrics
and a visual representation to support integration decisions.
Telea et al. present Code Flows [15], a method to visualize the
evolution of source code geared to the understanding of fine
and mid-level scale changes across several file versions. With
Chronicler, Wittenhagen et al. [17] present a history-graph
base visualization of the evolution of code elements. Yoon et
al. [18] present a tool to visualize fine grained code changes.
DiffViz differs from these existing approaches in several ways:
firstly, it visualizes the changes at a much more detailed level,
namely the AST; secondly, it allows to switch the underlying
differencing algorithm; finally, it provides several new features
to browse and navigate the changes.

VI. CONCLUSION

In this paper we presented DiffViz, a tool to visualize
code changes. DiffViz works with a variety of differencing
algorithms and can be extended to use any approach as long
as they conform with the requirements specified in Section
III. We explain how DiffViz is built and how it can be used.
We also compare it to three other visualization approaches
(GitHub, Mergely, and GumTree), highlight their differences,
and show the benefits of DiffViz.

ACKNOWLEDGEMENT

This work has been funded by the Austrian Science Fund
(FWF) under project number 2753-N33.

REFERENCES

[1] E. Aghajani, A. Mocci, G. Bavota, and M. Lanza. The code time
machine. In Proceedings of the 25th International Conference on
Program Comprehension, ICPC ’17, pages 356–359, Piscataway, NJ,
USA, 2017. IEEE Press.

[2] A. H. Caudwell. Gource: Visualizing software version control history.
In Proceedings of the ACM International Conference Companion on
Object Oriented Programming Systems Languages and Applications
Companion, OOPSLA ’10, pages 73–74, New York, NY, USA, 2010.
ACM.



[3] G. Dotzler and M. Philippsen. Move-optimized source code tree
differencing. In 2016 31st IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 660–671, Sept 2016.

[4] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus.
Fine-grained and accurate source code differencing. In Proceedings of
the 29th ACM/IEEE International Conference on Automated Software
Engineering, ASE ’14, pages 313–324, New York, NY, USA, 2014.
ACM.

[5] B. Fluri, M. Wuersch, M. Pinzger, and H. Gall. Change distilling:tree
differencing for fine-grained source code change extraction. IEEE
Transactions on Software Engineering, 33(11):725–743, Nov 2007.

[6] V. Frick, C. Wedenig, and M. Pinzger. Generating accurate and
compact edit scripts using tree differencing. In 2018 IEEE International
Conference on Software Maintenance and Evolution (ICSME), in press.

[7] V. U. Gmez, S. Ducasse, and T. DHondt. Visually characterizing source
code changes. Science of Computer Programming, 98:376 – 393, 2015.
Special Issue on Advances in Dynamic Languages.

[8] J. W. Hunt and M. Douglas McIlroy. An algorithm for differential file
comparison. 1975.

[9] C. Macho, S. Mcintosh, and M. Pinzger. Extracting build changes with
builddiff. In Proceedings of the 14th International Conference on Mining
Software Repositories, MSR ’17, pages 368–378, Piscataway, NJ, USA,
2017. IEEE Press.

[10] W. Miller and E. W. Myers. A file comparison program. Software:
Practice and Experience, 15(11):1025–1040, 1985.

[11] E. W. Myers. An O(ND) difference algorithm and its variations.
Algorithmica, 1(1-4):251–266, Nov 1986.

[12] M. Ogawa and K. L. Ma. code swarm: A design study in organic soft-
ware visualization. IEEE Transactions on Visualization and Computer
Graphics, 15(6):1097–1104, Nov 2009.

[13] M. Ogawa and K.-L. Ma. Software evolution storylines. In Proceedings
of the 5th International Symposium on Software Visualization, SOFTVIS
’10, pages 35–42, New York, NY, USA, 2010. ACM.

[14] F. Servant and J. A. Jones. Chronos: Visualizing slices of source-
code history. In 2013 First IEEE Working Conference on Software
Visualization (VISSOFT), pages 1–4, Sept 2013.

[15] A. Telea and D. Auber. Code flows: Visualizing structural evolution
of source code. In Proceedings of the 10th Joint Eurographics /
IEEE - VGTC Conference on Visualization, EuroVis’08, pages 831–838,
Chichester, UK, 2008. The Eurographs Association &#38; John Wiley
&#38; Sons, Ltd.

[16] L. Voinea and A. Telea. An open framework for cvs repository querying,
analysis and visualization. In Proceedings of the 2006 International
Workshop on Mining Software Repositories, MSR ’06, pages 33–39,
New York, NY, USA, 2006. ACM.

[17] M. Wittenhagen, C. Cherek, and J. Borchers. Chronicler: Interactive
exploration of source code history. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems, CHI ’16, pages
3522–3532, New York, NY, USA, 2016. ACM.

[18] Y. Yoon, B. A. Myers, and S. Koo. Visualization of fine-grained code
change history. In 2013 IEEE Symposium on Visual Languages and
Human Centric Computing, pages 119–126, Sept 2013.


