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ABSTRACT
Nowadays, block-based programming environments are often used
to offer a gentle introduction to learning a programming language.
However, an assessment of students’ programming skills based on
the results of a programming task is not sufficient to determine
all areas students are struggling with. We therefore introduce a
learning analytics approach of measuring and evaluating the pro-
gramming sequences of students that program with Scratch 3. With
our measurement framework, it is possible to record, store and
analyze programming sequences done on a publicly-available, in-
strumented Scratch 3 environment. Changes in the programming
sequence are categorized regarding the used block types and types
of program change. We conducted an exploratory programming
trial with lower and upper secondary school students to investigate
small-scale programming strategies in the recorded programming
sequences. Our goals are to identify students in need of support
and to identify recurring patterns used by students successful in
the trial. Clustering with k-means makes it possible to identify
struggling students based on both interacted block types and types
of program changes. Recurring patterns in the programming se-
quences of successful students show that small-scale programming
strategies are very diverse.

CCS CONCEPTS
• Social and professional topics→ Student assessment; Com-
putational thinking; Software engineering education; K-12 education;
• Software and its engineering → Software creation and man-
agement.
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1 INTRODUCTION
Algorithmic thinking is part of the skill set of computational think-
ing, which is currently being implemented in curricula and edu-
cational standards all around the world. Algorithmic thinking is
not only exercised by programming - Bollin et al. [9] have found
that Bebras tasks offer a variety of problems and manage to inspire
pupils with similar traits compared to programming students. Still,
programming is a key skill of computer science, and basic concepts
should be learned by everybody.

The fail rates of introductory programming courses show that
learning to program continues to be a hurdle for students [38].
Block-based programming environments like Scratch [27] offer ad-
vantages that make them well-suited to introduce programming,
even at an early age [32]. Armoni et al. [3] demonstrate that Scratch
is a suitable first-exposure programming environment and can im-
prove the acquisition of text-based programming skills. Grillen-
berger and Romeike [14] show that advanced computer science
concepts can be taught to upper secondary school students with
the help of block-based programming environments. But Hermans
and Aivaloglou [17] also show that code smells found in Scratch
projects hamper students’ learning progress.

Traditionally, students’ programming skills are assessed based on
an artifact evaluation after task completion. Evenwhen employing a
periodic assessment based on an automated evaluation (like Troiano
et al. [37] use Dr. Scratch [30]), drawbacks of these assessments are
that the student’s learning opportunity is already over and that bad
habits which lead to code smells may have already occurred.

Learning analytics approaches [19] are well-suited to overcome
the drawbacks of after-task assessment. The objective of this paper
is to discriminate students based on their programming sequences,
with the aim of evaluating a student’s progress during task comple-
tion and improving instructions on an individual basis. As a step
towards our aim, we thus introduce an IDE-based measurement
framework for Scratch 3 which makes it possible to record, store
and analyze students’ programming sequences when working on a
task. From the collected data, we identify metrics that discriminate
between students in need of support and successful students. We
address the following research questions:

RQ1 How can block-based programming sequence data from an
IDE-based learning analytics setting be used to identify stu-
dents in need of support?

RQ2 What programming sequence metrics and recurring patterns
discriminate students successful in the trial?

To obtain answers to these research questions, we measured the
program construction of four cohorts (n = 42) of students aged 13−
18, solving a given programming task in Scratch 3. We categorized
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the students’ program changes regarding the used block types and
types of program change. We analyzed the data with correlation
and cluster analysis, and extracted small-scale recurring patterns
in the programming sequences. We contribute the following to the
body of knowledge:

- An IDE-based learning analytics framework to record pro-
gramming sequences in Scratch 3.

- A set of categories to classify programming sequences in
Scratch 3, based on recorded learning analytics data.

- Identification of programming sequencemetrics that discrim-
inate students in need of support from successful students.

2 RELATEDWORK
Block-based programming languages like Scratch [27] and Code.org
[10] are widely used in today’s school classrooms to expose stu-
dents to programming for the first time. There has already been
effort to investigate the use of block-based programming languages
for teaching computer science related topics and programming in
particular. The group of Armoni, Mordechai and Meerbaum-Salant
has published a number of articles on this topic. Chronologically,
first Meerbaum-Salant et al. [25] describe certain programming
habits that are fostered by learning programming in Scratch and
are contradictory with accepted software engineering practices: a
bottom-up development process, and extremely fine-grained pro-
gramming where solutions are programmed in a fine-grained, not
a general way. Later, Meerbaum-Salant et al. [26] describe a tax-
onomy, incorporating both SOLO [6] and Bloom’s [2] taxonomies,
to measure the learning of computer science concepts with envi-
ronments like Scratch. Armoni et al. [3] conducted an experiment
in which they investigate the effects of transitioning from Scratch
programming to textual programming (C# or Java) in secondary
schools, with regards to the acquired programming knowledge.
They found that students familiar with Scratch needed less time
to learn new topics, had fewer learning difficulties and achieved a
higher cognitive level of understanding. At the end of the teaching
process, there were no significant differences in the achievements,
regardless of Scratch familiarity.

These results make a point in favor of teaching programming
with learning environments like Scratch. But the articles also show
that care must be taken to prepare the correct instructions for learn-
ing how to program. Other articles investigated specific learning
interactions with the Scratch environment. Swidan et al. [35] exam-
ined how Scratch programmers name their variables and procedures
and found that they prefer longer identifier names compared to
names used in textual programming languages. More than one third
of the analyzed projects use identifier names that contain spaces, a
feature unique to Scratch as opposed to textual programming lan-
guages. The authors argue that this can hamper the transition from
Scratch to a textual programming language. Grover and Basu [15]
describe an experiment made with middle school students and re-
port on misconceptions of loops, variables and boolean logic used
in Scratch programs. The authors show that, even after completing
an introductory programming course with Scratch, the students
are unfamiliar with the use of variables, and have misconceptions
with how loops and boolean logic operators work.

Also the presence of code smells in block-based program scripts
has been examined. Hermans et al. [18] report that more than 88% of
the analyzed projects contain code smells, most frequently lazy class,
duplication, and dead code smells. Hermans and Aivaloglou [17]
conducted a controlled experiment with novice Scratch program-
mers to investigate the effects of code smells when comprehending
Scratch programs. They found that long method code smells lead to
a decreased system understanding, while duplication code smells
lead to a decreased ease of program modification. These results
imply that code smells already have an effect on Scratch program
scripts. When transitioning students to a textual programming
language, care must be taken to prevent the transfer of program
construction strategies that lead to more smelly program code.

To adapt teaching instructions with this goal in mind, the mea-
surement of patterns and strategies used during program construc-
tion can provide additional insight. Meerbaum-Salant et al. [25]
describe programming habits but do not quantify the effects with
measurable program interactions. Boe et al. [8], Moreno et al. [30],
and Aivaloglou and Hermans [1] perform static analysis of Scratch
code repositories, but do not consider dynamic program construc-
tion. In the context of textual programming, programming patterns
have already been the focus of different researchers. Already twenty
years ago, Kontogiannis [22] investigated whether patterns can be
detected in source code with the use of software metrics. The author
focused on finding duplicated code fragments by using structural
and data flow metrics. Proulx [33] considered the incorporation
of design and programming patterns into introductory computer
science courses, acknowledging that there are patterns in program-
ming that are beneficial to convey to students.

Since then, the field of learning analytics or educational data
mining has steadily grown. Researchers make use of the collection
and analysis of various data in educational processes in order to
gain empirical support for educational theories on a completely new
scale [4]. In text-based programming, patterns in clustered program
states have been investigated by Blikstein et al. [7] to identify
struggling students and to predict student achievement. Rivers
et al. [34] employed a fine-grained assessment of programming
skills by analyzed students’ learning curves regarding used syntax
elements in Python.

Block-based programming and Scratch in particular have already
been studied with learning analytics. Papavlasopoulou et al. [31]
statically analyze Scratch projects regarding the used programming
concepts by mapping them to Scratch blocks. They report strong
correlations between the use of threads and looping, as well as
variables and event handling, looping, threads and operators. Filvà
et al. [12] describe a learning analytics infrastructure based on in-
strumenting Scratch 2, storing the click stream of programming
actions and reporting behaviour patterns to instructors. They ex-
tract two types of behaviour patterns from an experimental cohort:
execution behaviour, and coding trend detected by click concen-
tration. Kesselbacher and Bollin [21] describe an experiment in
Scratch 2, recording students’ programming sequences with click,
keyboard and screenshot logging. They found that students’ pro-
gramming skills highly correlate with the change rate of the used
types, and identified four patterns and strategies (Trial & Error,
Unfamiliarity, Late Abstraction and Subprogram construction) with
their characterizing metrics using association rules mining.
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We extend the related work on learning analytics in Scratch by
introducing an IDE-based measurement framework for Scratch 3.
Our focus is the analysis of programming sequences instead of click
streams, and we show that metrics obtained from the program-
ming sequence can be used to discriminate between successful
students and those who struggle. Unlike an after-task assessment,
our approach can be used to individually support students during
programming.

In addition to the above approaches, we use the neo-Piagetian
theory to put our findings into context. Lister has extensively stud-
ied the first three stages of neo-Piagetian development (sensori-
motor, preoperational, concrete-operational) with regards to novice
programmers’ development of programming skills [23]. In Lister’s
work, those stages are called pre-tracing, tracing, and post-tracing
and describe the novice’s ability to mentally trace and reason about
programming code [24]. We use these terms in our work.

3 METHODOLOGY
In this section, we first describe the IDE-based learning analytics
measurement framework for Scratch 3. Next, the trial example
and the measured student cohorts of the programming trial are
detailed. Lastly, we describe the data collected by the measurement
framework and used in analysis and discussion of the results.

3.1 Measurement Framework for Scratch 3
The proposed measurement framework1 is implemented as a cus-
tom online Scratch 3 environment, and represents an IDE-based
learning analytics framework following Hundhausen et al. [19]. The
framework provides an unobtrusive way to record programming
sequences and requires no specific interaction of the user.

The source code is instrumented on server side to record users’
programming interactions (mouse and keyboard events), users’
performed changes to program blocks and a representation of the
whole program script after each change. The instrumented IDE
makes it possible to record fine-grained changes to the abstract
syntax tree (AST) representing the executable Scratch program. The
state of the AST is maintained by the Scratch virtual machine [29]
by listening for changes and observing block change events. The
event types are emitted by the Scratch blocks framework [28], a
fork of Google’s Blockly project [13], and constitute the category of
block listen events in Table 2. See Section 3.3 for details regarding
the classification of performed changes.

Following the classification of data collection for learning analyt-
ics in programming (Ihantola, Vihavainen et al. [20]), this measure-
ment framework records programming data by IDE instrumentation
and key logging. Regarding the granularity, each programming in-
teraction in Scratch produces a compilable and executable state
in the underlying virtual machine. The measurement procedure
records data on key stroke and compilation granularity.

3.2 Programming Trial
The programming trial, used already in our previous work [21],
consists of a given programming task, which was crafted to require
multiple programming concepts: loops, conditional branching, vari-
ables and lists. The context of the programming task was to move a
1Link to the publicly-available measurement server: http://seqtrex.aau.at/

Table 1: Cohorts of students participating in the trial.

Solution Solution Solution
Cohort Age N None Linear Loop

Interns 2018 15-18 8 1 0 7
Interns 2019 15-18 6 3 1 2

School Upper 14-15 8 6 1 1
School Lower 13-14 20 14 6 0

Total 42 24 8 10

soccer ball object on a computed trajectory path and check whether
a fixed, marked point in the goal was hit with the trajectory. The
trajectory is represented in a list variable with 36 elements, de-
noting the flight heights (coordinate on the y-axis) that are given
in 10-point distances (coordinate change on the x-axis). The com-
putation of the trajectory, based on user input values, was fully
prepared. The coordinates of the fixed, marked point were given.
The students received an information sheet that specified the pro-
gramming task, received a prepared .sb3 Scratch file to open in
the instrumented Scratch 3 environment, and had a maximum of
20 minutes to complete the task.

Table 1 shows the student cohorts participating in the program-
ming trial. The cohort Interns 2018 was collected in our previous
work [21] and has been replayed in the proposed Scratch 3 mea-
surement framework to obtain comparable data.

The first two cohorts of Table 1 consist of upper secondary
school students that worked as interns in the respective year at our
department. The students had varied programming skills, ranging
from no programming skills to programming skills in multiple text-
based programming languages, and were measured individually.

The second two cohorts of Table 1 consist of lower and upper
secondary school students, measured in a computer science class
setting in their respective school. In both classes, block-based pro-
gramming in Scratch had previously been covered by instructions.
The upper secondary school students (cohort School Upper) were
measured during a compulsory computer science class. The lower
secondary school students (cohort School Lower) were measured
during an elective computer science class.

Figure 1 shows three exemplary student-developed programs,
one of each group. The programs were extracted after the recorded
last program change. The programs of students that did not solve the
programming task are very diverse. They could feature incorrectly
applied programming concepts, correctly applied programming
concepts with a wrong understanding of the problem (as the one
in Figure 1 (a)), unsuccessful attempts to solve the problem in a
linear fashion (mostly not taking into consideration the specified
coordinate changes), and a seemingly random sequence of blocks
that do not contribute to a solution of the problem.

Linear solutions to the problem have been implemented in two
primary ways. The first one, similar to Figure 1 (b), uses a sequence
of go to blocks and changes x- and y-coordinates at the same time.
This way, x-coordinates have to be hard-coded in the move blocks,
although the task specifies constant change of the x-coordinate
by 10. The second one uses pairs of move blocks instead of the

http://seqtrex.aau.at/
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(a) No solution (b) Exemplary linear solution (c) Exemplary loop solution

Figure 1: Three exemplary last program states of students participating in the trial. The left program contains no solution, al-
though programming concepts like loops and variables are used. Themiddle program shows a snippet of a linear solution. The
right program shows a looping solution, correctly applying the programming concepts of loops, conditionals and variables.

combined go to block, similar to a part of the loop solution Figure 1
(c). This way, x-coordinates can be changed by 10 units each, while
the y-coordinate can be set to the next element of the list.

All loop solutions are very similar to the one shown in Figure 1
(c). Compared to the linear solution, the loop solution is distin-
guished by the usage of a loop (with fixed size as specified) and an
iteration variable to program the movement along the trajectory.

3.3 Categorization of Recorded Data
The raw data recorded during the programming trial consists of
mouse and keyboard interactions since the last change, the current
program change and a textual representation of the whole program.
Each program change is a (E) block listen event. A meaningful
sequence of such block listen events is categorized into (P) pro-
gram change events, as described below. Table 2 shows the three
categories to classify program changes.

For each program change, the block types of interacted program
blocks are categorized. Most (T) block types correspond to the
Scratch 3 block type categories: T1 motion, T2 looks, T6 event, T10
operator, T11 sound, T12 sensing, T13 user-defined, T14 extensions.
However, some block types are more fine-grained. The Scratch 3
categoryVariables (internally called data) is split into two categories:
T4 var for blocks that deal with variables, and T5 lists for blocks
that deal with lists. The Scratch 3 category Control is split into three
categories: T8 loop for loop blocks, T9 conditional for conditional
branching blocks, andT7 control for all other blocks of this Scratch 3
category. The block type T3 pen is a Scratch 3 extension, but is
included as a separate block type to ensure backwards comparability
with our previous study [21].

Most of the (E) block listen events are directly derived from the
block change events observed by the Scratch virtual machine [29]
when a user interacts with the programming environment and
makes changes to the program blocks.

E1 create events capture block creations, E2 change capture
changes to block fields, E3 move capture block movements after
block drags, E4 delete capture block deletions, E5 end-drag cap-
ture block drags. E6 outside-drag and E7 end-drag-onto capture
block drags that leave the program area and can result in copying
blocks to other objects. The events E8–E12 handle variable and list
management, the events E13–E16 handle comment management.

Interactions that start and stop the program execution are addi-
tionally instrumented and captured. E17 stackclick events represent
a user’s click on a stack of blocks and executes or evaluates them,
E18 greenflag events represent a user’s click on the greenflag sym-
bol that starts general execution, and E19 stopall events represent
a user’s click on the stopall symbol that stops general execution.

The block listen events E1–E5 represent single actions and have
to be bundled to form meaningful (P) program change events.
Most of the program change events (P1–P10) are divided in two
modes. Change events with suffix -program indicate that the change
affects blocks connected to a main executable block (so-called hat
blocks2). Change events with suffix -nonprogram indicate that the
change affects blocks in the non-executable part of the program.

The addition of new blocks to the program (P1, P2) is classified
from the following sequence: E1 the creation of the new block from
the Scratch 3 category, E5 the end of the drag event and E3 the
movement of the block to the new destination.
2Scratch wiki regarding hat blocks: https://en.scratch-wiki.info/wiki/Hat_Block

https://en.scratch-wiki.info/wiki/Hat_Block
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Table 2: Overview of categories for classifying programming interactions.

(T) Block Type

T1 motion T4 var T7 control T10 operator T13 user-defined
T2 looks T5 lists T8 loop T11 sound T14 extensions
T3 pen T6 event T9 conditional T12 sensing

(E) Block Listen Events

E1 create E5 end-drag E9 create-var-global E13 create-comment E17 stackclick
E2 change E6 outside-drag E10 rename-var-local E14 change-comment E18 greenflag
E3 move E7 end-drag-onto E11 rename-var-global E15 move-comment E19 stopall
E4 delete E8 create-var-local E12 delete-var E16 delete-comment

(P) Program Change Events

P1 add-program P4 attach-nonprogram P7 reorder-program P10 delete-nonprogram P13 block-move
P2 add-nonprogram P5 detach-program P8 reorder-nonprogram P11 block-change P14 block-click
P3 attach-program P6 detach-nonprogram P9 delete-program P12 immediate-delete

The block listen event E3 move specifically spawns a number
of program change events, depending on the context of the block
movement. Attaching a block to another block (P3, P4) is classified
from a move event that adds a new parent block to the moved block
and adds a new next block to the block attached to. Detaching a
block from another block (P5, P6) is classified from a move event
that removes the parent block from the moved block and removes
the next block from the block detached from. Reordering of a block
stack (P7, P8) is classified from a move event that specifies old and
new parent blocks in the moved block. Attach and reordering are
often preceded by detach events, when blocks are moved from one
program part to another. A simple block move (P13) is classified
from a move event that does not change block order.

The deletion of blocks (P9, P10) is classified from the following
sequence: E5 the end of the drag event, E3 the movement of the
block to the new destination and E4 deletion of the block.

Detailed changes to block field parameters (P11) are classified
from E2 change events. Program change events spawned from E3
move can also change block fields (for example moving a variable
block into a block field), but are then classified as the respective
move event (attach, detach or reorder).

Table 3: Simplified example categorization (block listen
events not shown) for creation and attachment of a go to
block with access to list element 3 (see also Figure 1 (b)).

User Action Categorized Sequence

Create go to block P1 add-program, T1 motion
Attach it after block P3 attach-program, T1 motion (parent)

P3 attach-program, T1 motion (next)
Edit x field (−160) P11 block-change, T1 motion

Create list access block P1 add-program, T5 lists
Attach it in y field P3 attach-program, T5 lists

P3 attach-program, T1 motion
Edit list access field (3) P11 block-change, T5 lists

Immediate deletion of blocks (P12) is the creation and deletion
of blocks from the Scratch 3 block categories with the same drag
event, and is similar to block deletion with a preceding create event.
It is classified from the following sequence: E1 the creation of the
new block, E5 the end of the drag event, E3 the movement of the
block to the new destination and E4 deletion of the block. The
difference to normal deletion events (P9, P10) is that immediate
deletion does not cause any program block changes.

Block clicks that execute the stack of blocks (P14) are classified
from E17 stackclick and represent the same event.

The analysis data for each category of Table 2 consists of the
fractions of category types, classified from each student’s sequence
of program changes. As in our previous work [21], we additionally
computed the maximum number of used block types, and the geo-
metric mean change rates of used block types in the executable and
non-executable program.

Table 3 shows a simplified categorization (only program change
events aggregated from block listen events are shown) of an exam-
ple creation and attachment of another go to block with access to
list element 3, comparable to those in Figure 1 (b).

3.4 Fine-grained Sequence Data
Besides the fractions of category types, the other type of data used
for analysis is a more fine-grained sequence of program changes
obtained from a combination of (P) program change events and
(T) block types. The events to add blocks (P1, P2), to delete blocks
(P9, P10, P12), and to click blocks (14) are simply enriched with
the block type. Block change events (P11) are enriched with the
block type and the type of change (field for editable block field
parameters, input block fields with drop-down input parameters).
The events to attach (P3, P4), detach (P5, P6) and reorder (P7, P8)
blocks are enriched with block types for source and destination of
the movement, and type of change (order for block order changes,
input for block field parameter changes). Block move events (P13)
are not considered for this type of data as they do not change the
structure of the program.
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Analysis data from these fine-grained sequences consists of oc-
currences of frequent patterns that occur in the sequences of two
or more students. They are stored as a vector of occurrence (1 for
occurring pattern, 0 for non-occurring pattern).

4 TRIAL RESULTS
In this section we present the results of the trial in a descriptive
way. We first present quantitative results (correlation and cluster
analysis), and then present patterns in the students’ fine-grained
sequence data.

4.1 Quantitative Results
The raw data after classification consists of a mean number of
326±194 (E) block listen events, and a mean number of 299±197
(P) program change events per student.

Before performing data analysis, we selected a subset of (E)
block listen events metrics to be included in the analysis: E8 and
E9 (variable creation), E17–E19 (program execution). The other
metrics of this category are either captured in (P) program change
events (E1–E5) or do not occur in the data set.

We tested normality of the data (fractions of category types) with
the Shapiro-Wilk test and rejected the null hypothesis of normality
for most of the metrics at p < 0.05. Because of this, we performed
correlation analysis with Spearman’s rank correlation and a signifi-
cance of p < 0.05. In order to control the false discovery rate (as is
called for with pair-wise tests of 34 metrics), we used the Benjamini-
Hochberg procedure [5]. A power test shows that correlations of
0.5164 or greater have sufficient power (with a significance of 0.05,
test power of 0.95 and 42 subjects [11]).

We first investigated the correlations between the students’ suc-
cess (numerical encoding: 0 for no solution, 0.5 for linear solution, 1
for loop solution) and the fractions of category types to see whether
particular high or low frequencies might indicate successful stu-
dents or such in need for support. Table 5 presents the correlations.

There are moderate positive correlations between Success and
the block types needed to solve the trial (T2 looks, T4 var, T8 loop,
T9 conditional, and T10 operator blocks), and one moderate nega-
tive correlation with T6 event blocks. This shows that successful
students interact with relevant block types more often, but do not
interact with event blocks as often.

The strong positive correlation between Success and E9 global
variable creation again discriminates successful students, who cre-
ated variables more often, based on a programming concept needed
to solve the trial. The moderate negative correlation to E18 green-
flag execution shows that successful students use the greenflag
execution not as often.

Regarding program change events, only P7 program reordering
shows a moderate positive correlation to the students’ success.

A moderate positive correlation shows that successful students
tend to use more block types in their program (MaxBlockTypes).

All but the fractions of E18 greenflag execution and T6 events
block usage are related measures, exhibiting moderate to strong
positive correlations between each other.

Next we performed cluster analysis with the students’ program-
ming sequence data, using k-means. Notably, we did not include
the measure of success in the cluster analysis. Using the elbow

Table 4: Results of clustering students’ programming se-
quence data with k-means, n = 42. Cluster 2 represents the
linear solution, cluster 3 represents the loop solution. Clus-
ters 1 and 4 capture students who did not solve the trial.

Solution Solution Solution
Cluster None Linear Loop Total

1 14 1 15
2 4 7 11
3 1 10 11
4 5 5

Total 24 8 10 42

technique, 4 was found to be the appropriate number of clusters
for the data [16]. Table 4 presents the results of the cluster analysis.

There is one cluster for each group of students that successfully
solved the trial (cluster 2 represents the linear solution, cluster 3
represents the loop solution). Only a small number of students
who did not solve the trial are also grouped in those clusters (five
students in total). The other two clusters (cluster 1 and cluster 4)
mainly capture two groups of students who did not solve the trial.

We evaluated the cluster groups by comparing box plots of the
metrics used for clustering, and tested for significant differences
with the Mann-Whitney-U test and a significance of p < 0.05. Fig-
ure 2 shows boxplots that contain at least one significant difference.

We first describe the clusters of students who did not solve the
trial. Both clusters use T1 motion blocks significantly more often
than cluster 3. Cluster 1 shows some use of T4 variable, T5 lists,
T8 loop and T10 operator blocks, cluster 4 shows very small usage
of those types. Both clusters have the highest fraction of execution
interactions: Cluster 1 performs E17 stackclicks, cluster 4 performs
E18 greenflag executions with a significant difference compared to
clusters 1 and 3. Compared to cluster 1, cluster 4 students detach
blocks from the non-executable program (P6) less often, but have
a significantly higher fraction of block deletions from the non-
executable program (P10). Cluster 1 has a higher maximum number
of block types in the executable program and a higher geometric
mean type change rate compared to cluster 4.

We next describe cluster 2 of students with a linear solution.
Cluster 2 uses significantly more T1 motion blocks compared to
clusters 1 and 3, significantly more T5 lists blocks compared to
cluster 1, and significantly lessT6 event blocks compared to clusters
1 and 4. Cluster 2 has a significantly higher fraction of P1 changes
that add blocks to the executable program, compared to cluster
1. Cluster 2 also has significantly lower fractions of P6 detaching
blocks from the non-executable program and of P13 block move
events, compared to cluster 3. Cluster 2 has a significantly smaller
geometric mean type change rate compared to cluster 1.

Lastly, we describe cluster 3 of students with a loop solution.
In line with the correlations for success, cluster 3 has the highest
usage fraction of T2 looks, T4 var, T8 loop, T9 conditional and T10
operator blocks, the highest fraction of E9 global variable creation
and the highest maximum number of block types in the executable
program. Cluster 3 has a significantly higher geometric mean type
change rate than any other cluster.
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Table 5: All significant Spearman correlations (p < 0.05, corrected with the Benjamini-Hochberg procedure to control the false
discovery rate) between fractions of category types and success in the trial.

n=42 Success T2 T4 T6 T8 T9 T10 E9 E18 P7 MaxBlockTypes

Success — 0.55 0.44 -0.40 0.43 0.58 0.47 0.72 -0.43 0.48 0.55

T2 looks 0.55 — 0.49 0.60 0.84 0.68 0.62 0.55 0.72
T4 var 0.44 0.49 — 0.54 0.56 0.56 0.66 0.44 0.73

T6 event -0.40 —
T8 loop 0.43 0.60 0.54 — 0.59 0.57 0.66 0.59 0.68

T9 conditional 0.58 0.84 0.56 0.59 — 0.82 0.63 0.48 0.78
T10 operator 0.47 0.68 0.56 0.57 0.82 — 0.57 0.51 0.81

E9 create-var-global 0.72 0.62 0.66 0.66 0.63 0.57 — 0.50 0.71
E18 greenflag -0.43 —

P7 reorder-program 0.48 0.55 0.44 0.59 0.48 0.51 0.50 — 0.50

MaxBlockTypes 0.55 0.72 0.73 0.68 0.78 0.81 0.71 0.50 —

4.2 Recurring Programming Sequences
The fine-grained sequence data described in Section 3.4 yields 354
different program change types that occur in the students’ pro-
gramming sequences. A total of 6727 frequent patterns have been
found in the students’ programming sequences, with a length of
2 to 51 program changes. Our goal is to identify patterns in the
programming sequences of successful students, especially of those
using a loop solution to solve the trial (cluster 3).

After a manual investigation of the frequent patterns, we saw
that patterns of length 2 or 3 were too small to form programming
patterns and filtered them out (1211 patterns). We then realized that
only trivial patterns (like repeated change of a block parameter field
during typing) were recurring for a majority of successful students.
Actually, only 20 of the remaining 5516 patterns (0.36%) are used
by half or more of the students constructing a loop solution.

We still set out to find patterns relevant to a successful trial com-
pletion with loop solution, and filtered the patterns, only retaining
those that include at least one block of type T4 var (88 patterns),
T8 loop (12 patterns), T9 conditional (90 patterns) or T10 operator
(43 patterns). We manually investigated those filtered patterns and
identified 10 small-scale patterns with a length of 4 to 14 which
capture important steps in the construction of the loop solution.

5 patterns are exclusive to constructing the loop solution: adding
a loop and editing the iteration number (2 patterns with 2 students
each), attaching conditional and operator blocks after the loop to
solve task 2 (3 students), adding list and variable blocks to access
the list with a variable (2 students), adding variable changes and
conditional blocks to solve task 2 (2 students).

2 patterns include students constructing the loop as well as the
linear solution: adding a list block to a motion block field (1 student
of each solution type), adding the motion variable y position to an
operator block and appending output for task 2 of the trial (two
students of loop solution and one of linear solution).

3 patterns include students constructing the loop solution and
students not solving the trial. The students use conditional blocks
to solve task 2 of the trial (2, 2, and 1 student/s of cluster 1; 6, 3, and
2 students of cluster 3 respectively).

5 DISCUSSION OF FINDINGS
After an initial description of the trial results in Section 4, we now
continue with a discussion of the findings and focus on answering
the research questions for this paper.

5.1 Identification of Struggling Students
The first research question is: How can block-based programming
sequence data from an IDE-based learning analytics setting be used
to identify students in need of support?

To resolve this research question, we give a task-based summary
of clusters 1 and 4 and their differences, using Figure 2. We put the
summary into the frame of neo-Piagetian stages of development
following Lister [24].

Students less successful in the trial execute the program more
often. Cluster 1 (4% greenflag, 5% stackclick actions) and cluster
4 (9% greenflag, 2% stackclick actions) both execute the program
with about 10% of all actions. Repeated, frequent execution of the
program could hint at the pre-tracing stage [24], when novice pro-
grammers have no consistent understanding of basic programming
concepts and the program execution. Executing the program could
be a way to test hypotheses regarding program changes.

The usage fractions of block types needed to solve the trial (T4
var, T5 lists, T8 loop, T9 conditional, and T10 operator blocks)
discriminate between students solving the trial (cluster 3 has a
mean usage fraction of 10% per type) and students not solving the
trial. The latter can be further divided into students of cluster 1
with a mean usage fraction of 5% per type, and students of cluster
4 with no usage of these block types.

Summarizing, cluster 4 encompasses novice programmers that
struggle with the application of basic programming concepts and
with consistent reasoning about their program code. These stu-
dents use the block types T1 motion, T3 pen, and T6 events nearly
exclusively, and execute their program frequently with greenflag
execution (main program execution). They need general support
to increase their programming skills and understanding of basic
programming concepts. Students in this cluster could be described
with the pre-tracing stage of neo-Piagetian development [24].
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Figure 2: Distribution of students’ usage fractions for selected category types, divided into the four clusters. All presented
category types exhibit at least one significant difference between any of the clusters.

Cluster 1 on the other hand encompasses novice programmers
that are more familiar with basic programming concepts and use
them, but cannot apply them consistently. These students execute
their program frequently by clicking on blocks. They need more
specific support, depending on the programming concepts they are
struggling with. An indication is a particularly high or low usage
fraction for specific block types like variables or loops. Students in
this cluster could be on their path between the stages of pre-tracing
and tracing [24], as different neo-Piagetian stages of development
can be overlapping [36]. They already apply programming concepts
but are not capable of correct and consistent code tracing yet.

Answering the first research question, the following metrics
identify students in need of support:

- Repeated, frequent execution of the program. In the trial,
frequent execution was measured at about 10% of all actions.
This could signal that students struggle with code tracing
and reasoning, and with the application of basic concepts.

- Limited usage of different block types that represent pro-
gramming concepts (like variables, lists, loops, conditional
branching, operators). In the trial, limited usage was mea-
sured at less than 5% of all block actions. This could indicate
a lack of understanding of those concepts.

5.2 Discrimination of Successful Students
The second research question is: What programming sequence met-
rics and recurring patterns discriminate students successful in the
trial?

As we have shown in Section 4.2, no recurring patterns could be
identified that discriminate a majority of successful students. But
we use the programming sequence metrics to resolve this research
question. We give a task-based summary of clusters 2 and 3 and
their differences, using Figure 2. We put the summary into the
frame of neo-Piagetian stages of development following Lister [24].

Students more successful in the trial execute the program less
often. Cluster 2 (4% greenflag, 1% stackclick actions) and cluster 3
(3% greenflag, 3% stackclick actions) have the lowest mean values of
program execution actions. Interpreted with neo-Piagetian theory,
those students do not rely on program execution to understand
their program. This shows the students’ ability to trace and reason
about their code, attributing at least the tracing stage to them [24].

Cluster 3 has a balanced usage fraction of block types needed to
solve the trial (T4 var, T5 lists, T8 loop, T9 conditional, and T10
operator blocks) with a mean 10% per type. This is also reflected in a
high geometric mean type change rate. In contrast, the construction
of the linear solution of cluster 2 is characterized by higher usage
fractions of list blocks (19%) and motion blocks (62%).

Summarizing, cluster 2 encompasses novice programmers who
can correctly apply some basic programming concepts and can
consistently trace and reason about their code. They solved the
trial by combining T1motion and T5 lists blocks in a linear fashion
without any loop. Students in this cluster have developed some skills
of the tracing stage. They need specific support in programming
concepts, especially with variables and loops, as they are likely still
in the pre-tracing stage [24] with regard to these concepts.
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Cluster 3 encompasses experienced programmers who can apply
all basic programming concepts and can consistently trace and
reason about their code. They solved the trial with seven to eight
different block types, and have a significantly higher geometric
mean type change rate than any other cluster. This is in line with
our previous findings [21] and further confirms that the proposed
type change rate metric is a discriminator of students with high
programming skills, when using this programming task. Students
in this cluster have likely reached the tracing stage, and are on their
path to develop post-tracing skills like deductive reasoning [24].

Answering the second research question, the following metrics
discriminate successful students:

- Sparing execution of the program. In the trial, successful stu-
dents executed the program with less than 6% of all actions.
This indicates that better students do not need to execute
the program in order to reason about and understand it.

- High geometric mean type change rate, which is a higher
fraction of changes that alter used block types. A mean value
of 37% was measured for students of cluster 3 in the trial.
This indicates that students who use different block types in
a balanced way are more likely to solve similar tasks.

5.3 Implications for Instructors and IDE
The aim of our research is to make individual support for students
during programming possible. The results of this work are a first
step towards this goal. We computed metrics from students’ pro-
gramming sequences and identify struggling students based on
their high frequency of execution and limited usage of different
block types. We envision two implications from our findings.

The first is an educator dashboard that presents programming
sequence metrics to instructors during the students’ task comple-
tion. Instructors can get alerted on high frequencies of execution
or repeated execution, and offer support. Potential support for stu-
dents of clusters 1 and 4 includes guided step-by-step execution to
improve their code tracing skills, or instructions how to use specific
programming concepts. Filvà et al. [12] also use dashboard report-
ing, but our approach can be employed during task completion.

The second is an IDE designed for learning assignments. Instruc-
tors could specify sample solutions for an assignment, and the IDE
could monitor students’ programming. Whenever an assignment re-
quires specific block types (like loops or lists) or block interactions
(like operators attached to conditional blocks) to be solved and the
IDE detects an underrepresented usage of corresponding blocks, it
could notify the student or display helping documentation.

5.4 Threats to Validity
Here we describe external and internal threats to the validity of the
described results. The first threat is concerned with the group of
experimental subjects. The cohorts are diverse and vary in age, level
of programming skills, experience with Scratch 3 and experimental
context (internship and class setting). This uncontrolled variance is
a threat to the generalizability of the results, especially regarding the
linear solution (the majority of students belong to the same class).
Regarding the loop solution, the threat is reduced as the students are
drawn from different educational backgrounds (vocational schools,
grammar schools) and still produce a comparable solution.

The second threat is concerned with the programming task. The
task was specifically crafted to require multiple block types and
different programming concepts to be solved. Our results may not
be generalizable to arbitrary programming problems. We use a
fixed programming task to cover the use of variables, lists, loops,
conditionals and operators with a common functional aim. This
makes context-sensitive analysis possible, but prevents us to find
general programming strategies and discriminating metrics.

Regarding internal validity, the statistical analysis was conducted
with the software R, and we report results with a significance of
p < 0.05. After rejecting normality for the data, we only applied non-
parametric statistics. We used the Benjamini-Hochberg procedure
to control the false discovery rate [5]. As not all correlations have
sufficient power (0.5164 with a significance of 0.05, a test power of
0.95, and 42 subjects [11]), we also performed cluster analysis and
evaluated cluster differences with Mann-Whitney-U tests.

The patterns found in the fine-grained sequence data were ana-
lyzed manually by the authors. The resulting data was not suitable
to answer the research questions of this paper. A major point is the
noise in the fine-grained data. Additional data preparation and data
analysis with this in mind is subject to future work.

6 CONCLUSION
We measured four cohorts of lower and upper secondary school
students solving a programming trial in Scratch 3 and recorded
their programming sequences with an IDE-based learning analytics
framework. Our goals are to identify students in need of support
students, and to discriminate successful students based on program-
ming sequence metrics and recurring patterns. The advantage of
our learning analytics approach is the possibility to perform an
evaluation during and not only after task completion.

We categorized the programming sequence data based on used
block types and types of program change, and used the resulting
fractions of category types for rank correlation analysis (Table 5)
with the students’ success. We found moderate positive correlations
to block types that represent programming concepts (variable, loop,
conditional, and operator), correlations to specific program change
actions (strong positive correlation with variable creation, moderate
negative correlation with main program execution) and a moderate
positive correlation to the maximum number of used block types.

We also employed clustering with k-means, obtaining 4 clusters
(Table 4) of students, representing different trial solutions. Two
clusters describe students not successful in the programming trial.
Cluster 4 (n = 5) is composed of students at the pre-tracing stage:
they use no block types representing programming concepts, and
struggle the most with the programming trial. They benefit from
general support regarding basic programming concepts. Cluster 1
(n = 15) is composed of students likely between the stages of pre-
tracing and tracing: they use block types representing programming
concepts, but cannot apply them consistently. They benefit from
individual support regarding programming concepts. Both clusters
feature a repeated, frequent execution of the program with about
10% of all actions, and use block types that represent programming
concepts in less than 5% of all block actions.

The two other clusters describe students successful in the pro-
gramming trial. Cluster 2 (n = 11) captures students programming
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a linear solution. They are at the stage of tracing for sequential
programming, but are likely at the stage of pre-tracing for other
programming concepts and need specific support. Cluster 3 (n = 11)
is composed of students programming a loop solution. They can
consistently apply all basic programming concepts and have likely
reached the tracing stage. They feature a balanced use of all block
types needed to solve the trial (about 10% per block type), and have
a high rate of changes in the used block types (about 37%). Both
clusters execute the program with less than 6% of all actions.

Following these results, the proposed IDE-based learning analyt-
ics framework can be used to individually support students during
task completion based on their programming sequence. Repeated,
frequent execution of the program or limited usage of block types
that are necessary to solve a given task can indicate a student’s
need for support. This can trigger the instructor or even the IDE to
provide more specific instructions or additional documentation.

To discriminate students constructing the loop solution, we also
investigated recurring patterns in fine-grained programming se-
quences (types of program changes enriched with interacted block
types). After excluding small and trivial patterns, only 20 of the
remaining 5516 patterns (0.36%) are used by half or more of the stu-
dents with a loop solution. After only considering patterns that use
block types relevant to the loop solution, we found 10 small-scale
patterns with a length of 4 to 14 program changes which describe
important steps in the construction of the loop solution. This result
shows that small-scale programming strategies are very diverse.

Going forward, we intend to conduct additional programming
trials with a diverse set of programming tasks to evaluate the gen-
eralizability of the described measurement approach. We plan to
conduct qualitative studies with think-aloud programming and
post-programming interviews to explain emerging programming
strategies from the student’s view. We envision an evaluation dash-
board for educators to support students during task completion.
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