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Abstract—Pupils are often first exposed to programming in
block-based programming environments like Scratch. Identifying
and measuring the previous experience of students learning to
program is a key to improve the teaching of programming. In this
contribution, we outline an approach to measure and evaluate
programming interactions with the block-based programming
environment Scratch. First results, obtained with eight upper
secondary school students, show that programming skills and
patterns can be quantified with interaction metrics measured
during program construction. The aim is a more fine-grained
identification and assessment of programming skills.

Index Terms—block-based programming, programming skills,
programming patterns, learning analytics

I. INTRODUCTION & MOTIVATION

Is learning to program hard, or is it easy? In a recent

paper, Luxton-Reilly [1] argues that the answer has many

facets. Children have been quite successful in programming

computers for decades [2], using different languages and envi-

ronments. But programming is still perceived as a difficult skill

to learn, and at university level the phrases failure rate and

introductory course are almost synonymous [3]. Luxton-Reilly

concludes that the learners’ abilities have to be considered.

With the advent of computational thinking [4], many na-

tional curricula for primary and secondary schools included

programming as a standard part of education. In most cases,

pupils and students are first exposed to visual and block-

based environments like Scratch [5] as they demonstrated to

be well accepted at their developmental stage. However, such

languages differ in the expressiveness of text-based languages,

might limit the future developers’ view on computer program-

ming at higher education, and can influence the acquisition

of programming skills. To improve teaching, a closer look at

the previous knowledge of freshman programmers is needed.

Learning to program in Scratch has been attributed to positive

(fewer learning difficulties [6]) and negative (code smells that

hamper learning [7]) effects regarding the transition to text-

based programming. Meerbaum-Salant et al. [8] identify, but

do not quantify, undesirable programming habits in Scratch.

Programming has already been subject to analysis with

learning analytics and educational data mining, collecting and

analyzing data in educational programming processes in order

to improve pedagogy, course and tool design [9]. In this notion,

we propose to record sequences of program construction

and interactions in the Scratch programming environment in

order to gather measurable evidence of patterns and strategies

used during the construction of Scratch programs. The aim

is to quantify programming interactions for a fine-grained

assessment of programming skills.

II. TRIAL SETUP AND MEASUREMENT

Scratch is occasionally used in Austrian upper secondary

schools to introduce programming. We conducted a trial with

eight school students at the age of 16 to 18. The students

had to solve a given problem in the block-based programming

environment Scratch 2. The Scratch 3 online editor was not

available at that time. The problem, drawing a trajectory by

iterating through a list, is divided in two tasks (T1, T2) and

requires 14 blocks and 7 main block types to be solved.

It includes the concepts of loop, conditional, comparison,

variable and list. The students’ mean completion time was

14.80± 6.50 minutes. We observed the students and assigned

a programming skill level in the integer range 1 to 4.

The programming interactions were recorded by logging

mouse and keyboard events, and screenshots on each mouse

click. Logged timestamps and mouse coordinates make it

possible to relate the events to specific programming actions.

During the trials, a mean number of 322± 170 programming

interactions (mouse and keyboard events) were recorded.

The recorded click events were semi-automatically pro-

cessed. Each event was categorized regarding: the area of

interaction; the interacted block type; start and end area for

drag events dealing with program blocks; type of program

change (addition or removal to different program parts). All

but the type of program change was automatically categorized.

We manually extracted the used block types after each event,

and computed the change rates by dividing the block type

changes by the number of programming actions. For detailed

analysis, the block types are categorized more fine-grained

compared to the main block categories of Scratch 2 (loop is

separated from control, explicit variable usage var and lists

is separated from data). Two sequences of block type usage

can be seen in Figure 1. Student 6 mostly programs in the

non-executable part (bottom left). Student 7 develops the main

program (top right) and tests single blocks and changes in the

non-executable part (bottom right).
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(a) Student 6, 19 total programming actions
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(b) Student 7, 36 total programming actions

Fig. 1: Sequence of block types usage for the program construction of two students. On the x-axis, the sequence of programming

actions is plotted. On the y-axis, the used block types are shown. The labels T1 and T2 denote the programming action that

solve the respective task. Student 6 follows a Subprogram strategy, programming in the non-executable part (bottom left)

before adding multiple blocks to the main program (top left) at once, solving the respective task.

III. TRIAL RESULTS

Correlation analysis employing Spearman rank correlation

shows that three interaction metrics exhibit a strong correlation

to the assigned programming skill level of the students, signif-

icant at p < 0.05. A lower trial completion time (−0.87), and

a lower fraction of block delete actions (−0.93) are correlated

to higher skill level. Higher geometric mean change rates of

used block types, incorporating the change rates of executable

and non-executable program parts and representing program

changes that alter the used block types, are correlated to higher

skill level (0.93). A caveat is that the latter correlation might

be specific to the crafted example problem requiring different

block types to be solved. Still the approach can provide a fine-

grained assessment of programming skills during a program-

ming task by observing the program construction sequence.

Based on heuristics derived from analyzing the students’

program construction, we assigned four patterns and strategies

to the students (Trial & Error programming, Unfamiliarity

with the environment, Late Abstraction by beginning to

program on explicit rather than general cases, Subprogram

construction). Factorizing the 55 interaction metrics into three

levels [low, medium, high] and using association rules mining,

we obtained a set of metrics and factor levels for each pattern.

The cardinality of the sets range from 8 to 49, with only 0 to

3 intersections. This preliminary result shows the possibility

to identify patterns and strategies with interaction metrics.

IV. CONCLUSION AND FUTURE WORK

In this contribution, we report on a trial conducted with

upper secondary school students solving a given problem

in the block-based programming environment Scratch. Their

programming interactions were recorded by screenshot, mouse

and keyboard logging with the aim to asses the programming

skills with measurable interaction metrics. Some interaction

metrics show a strong, significant correlation to the students’

assigned programming skill level. Sets of metrics have been

ascribed to patterns and strategies. These first results indicate

that a fine-grained identification and assessment of program-

ming skills is possible with program construction metrics. As

future work, we plan to investigate more students and example

problems, incorporating Java programmers. We plan to use

program construction patterns to adjust teaching instructions

and improve the acquisition of programming skills.
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