
Supporting the Acquisition of Programming Skills
with Program Construction Patterns

Max Kesselbacher
Department of Informatics Didactics

University of Klagenfurt
Klagenfurt, Austria

max.kesselbacher@aau.at

Abstract—A central topic to computer science education is the
training of novice programmers. Novice programming skills have
already been mapped to hierarchical levels, and expert program-
ming skills have been measured based on task performance. But
didactical instructions and individual support to acquire expert
programming skills have not been provided in detail. I propose
the investigation of structural and semantic patterns in program
construction sequences in an IDE-based learning analytics setting.
I aim to provide a more fine-grained assessment of programming
skills, to enable skill assessments during programming tasks, and
to support the individual acquisition of programming skills.

Index Terms—program construction, learning analytics, pro-
gramming patterns, programming skills

I. PROBLEM AREA AND RELATED WORK

With the increased widespread application of information
technology systems, many countries establish informatics ba-
sic education in compulsory schools. Still a central topic to
computer science education is the training of novice pro-
grammers. Winslow [1] summarized key differences between
novice and expert programmers. Since then, a hierarchy of
programming skill levels of novice programmers has been
evaluated by Lister [2] based on neo-Piagetian theory. The
formal-operational level of programming experts is not cov-
ered. From the research field of software engineering, the
performance-based measurement of programming skills is an
active field, especially measuring expert programming skills
(see Bergersen et al. [3]). But it lacks didactic support on how
higher individual programming skills can be achieved.

In the field of learning analytics, data of student pro-
gramming processes are used to improve the teaching of
programming. Early work by Jadud [4] used measures of
compiler errors to identify problem students. The stream of
programming events was used by Ihantola et al. [5] to measure
assignment difficulty. Patterns of clustered program states
reached during programming were used by Blikstein et al. [6]
to predict student achievement. On a more fine-grained scale,
Rivers et al. [7] analyzed students’ learning curves regarding
used syntax elements in programming assignments.

In this thesis, I aim to contribute with a detailed anal-
ysis of program construction sequences from a syntax and
semantics point of view in order to identify patterns of
program construction. The expected contributions are: a more
fine-grained assessment of programming skills with program

construction patterns; assessment of programming skills dur-
ing programming in an IDE-based learning analytics setting;
individual support in the acquisition of higher programming
skills applicable to both novice and professional programmers.

II. RESEARCH QUESTION AND METHODOLOGY

The main research goal of the thesis is to support the
acquisition of programming skills by a detailed investigation of
how new program code is constructed. An underlying assump-
tion is that patterns found in program construction sequences
represent expert programming skills (in part also conjectured
by Soloway [8]) and can be used to educate programmers of
different skill levels. The main research question is:

MRQ. To what extent do structural and semantic patterns
of program construction, be they positive or not,
influence acquiring expert programming skills?

Sequential research steps are planned. First, I will review
methods and scales for measuring programming skills, and
existing hierarchies for programming skills, compiling them
in a reference catalog. Next, I plan to capture programming
sequences in an IDE-based learning analytics setting with the
aim to identify micro patterns during program creation. In the
taxonomy of Hundhausen et al. [9], programming data (editing
actions and file snapshots) and additional physiological data
(eye gaze and head movements) will be captured to assess
programming behavior and program content in relation to
eye movements. Qualitative (grounded theory) as well as
quantitative (clustering) methods are planned for data analysis.

The next step is to relate the micro patterns to measured
programming skills, investigating whether the usage of pat-
terns can be attributed to certain levels of programming skills.
Lastly, I plan to prepare didactical applications of identified
micro patterns to determine whether the programming skills
of individuals can be improved by the usage of those micro
patterns attributed to higher levels of programming skills.

Structural patterns encompass the sequence of syntax ele-
ments used during program construction, and can be analyzed
quantitatively and qualitatively. Semantic patterns are then
found by qualitatively analyzing the structural patterns for their
semantics in the forming program code. As an example, the
bottom sequence shown in Figure 1 exhibits a structural pattern
of construction of control structure before data structure,
which might be related to lower programming skills [1].



int sum(int[] a){
1 int sum=0;

}

int sum(int[] a){
1 int sum=0;

4 return sum; }

int sum(int[] a){
1 int sum=0;
2 for(int i=0;

i<a.length;i++)

4 return sum; }

int sum(int[] a){
1 int sum=0;
2 for(int i=0;

i<a.length;i++)
3 sum += a[i];
4 return sum; }

int sum(int[] a){

2 for(int i=0;
i<a.length;i++)

}

int sum(int[] a){

2 for(int i=0;
i<a.length;i++)

3 sum += a[i];
}

int sum(int[] a){
1 int sum=0;
2 for(int i=0;

i<a.length;i++)
3 sum += a[i];

}

int sum(int[] a){
1 int sum=0;
2 for(int i=0;

i<a.length;i++)
3 sum += a[i];
4 return sum; }

Fig. 1. Two sequences (top and bottom) of constructing a method in Java, computing the sum of an array of numbers. Numbers are used to show the additions
in each step. On top, code for dataflow is constructed before the loop (sequence 1 – 4 – 2 – 3). On bottom, the loop is constructed before completing the
function dataflow (sequence 2 – 3 – 1 – 4).

III. PLANNED EXPERIMENTS

Two types of experiments are planned to resolve the main
research question. The first type is the collection of program-
ming data of test subjects solving exemplary programming
problems. The collected data includes measured program-
ming skill, interactions with instrumented IDEs, sequences
of code changes, eye gaze and head movements. This type
of experiment is repeated to assess predictive validity of
the identified patterns. Considered subjects include school
students, university students with technology-related focus
and professional programmers. The populations vary in their
programming experience, which makes it possible to assess
potential variance in programming skills. The considered
programming languages are Scratch and Java. Differences of
pattern usage in block-based and text-based programming are
evaluated by analyzing similar syntactical elements.

The second type is a comparative experiment. Teaching
introductory Java programming at university level, a class
with adapted teaching material that incorporates micro patterns
is compared to traditional teaching. Positive changes in the
experimental group regarding the used micropatterns suggest
that the acquisition of programming skills can be improved.

IV. PRELIMINARY RESULTS

A preliminary trial with the Scratch 2 programming envi-
ronment was conducted, capturing the program construction
sequences of upper secondary school students. Aggregated
metrics based on block type usage were found to strongly cor-
relate to the programming skills attributed to the students, and
coarse patterns were identified with association rules mining.
The results show that programming skills are measurable from
program construction sequences, supporting the assumption
that programming skill manifests in such sequences.

From literature review, I identified continuous measurement
instruments [3] and hierarchical divisions [2] to measure
programming skills. I plan to evaluate both approaches for
relating programming skills to pattern usage.

The next planned research steps are: instrumenting IDEs for
Scratch 3 and Java, developing representative programming
examples, incorporating eye-tracking based metrics.

V. SUMMARY

The aim of my thesis is to identify patterns of program
construction and use them to support the acquisition of pro-
gramming skills. An underlying assumption is that patterns
used by experts to construct new program code are part of
expert programming skills. I will investigate patterns in block-
based (Scratch) and text-based (Java) programming languages.
I plan to complete the thesis in Spring 2021, following four
research steps: 1) Creating a reference catalog of measurement
procedures for programming skills, 2) Capturing program
construction sequences and identifying patterns in them, 3)
Investigating the relation of patterns to measured program-
ming skills, 4) Didactical application of patterns to evaluate
individual acquisition of expert programming skills.

ACKNOWLEDGMENT

I want to express my gratitude to my supervisor Andreas
Bollin, who guides me in growing as a researcher.

REFERENCES

[1] L. E. Winslow, “Programming Pedagogy – A Psychological Overview,”
ACM SIGCSE Bulletin, vol. 28, no. 3, pp. 17–22, 1996.

[2] R. Lister, “Toward a Developmental Epistemology of Computer Program-
ming,” 11th Proceedings - WiPSCE ’16, pp. 5–16, 2016.

[3] G. R. Bergersen, D. I. Sjøberg, and T. Dybå, “Construction and validation
of an instrument for measuring programming skill,” IEEE TES, vol. 40,
no. 12, pp. 1163–1184, 2014.

[4] M. C. Jadud, “Methods and Tools for Exploring Novice Compilation
Behaviour,” in Proceedings of the 2006 ACM Conference ICER ’06, 2006,
pp. 73–84.

[5] P. Ihantola, J. Sorva, and A. Vihavainen, “Automatically detectable
indicators of programming assignment difficulty,” in Proceedings of the
15th Annual Conference SIGITE ’14, 2014, pp. 33–38.

[6] P. Blikstein, M. Worsley, C. Piech, M. Sahami, S. Cooper, and D. Koller,
“Programming Pluralism: Using Learning Analytics to Detect Patterns
in the Learning of Computer Programming,” Journal of the Learning
Sciences, vol. 23, no. 4, pp. 561–599, 2014.

[7] K. Rivers, E. Harpstead, and K. Koedinger, “Learning Curve Analysis for
Programming,” in Proceedings of the 2016 ACM Conference ICER ’16,
2016, pp. 143–151.

[8] E. Soloway, “Learning to program = learning to construct mechanisms
and explanations,” CACM, vol. 29, no. 9, pp. 850–858, 1986.

[9] C. D. Hundhausen, D. M. Olivares, and A. S. Carter, “IDE-Based
Learning Analytics for Computing Education: A Process Model, Critical
Review, and Research Agenda,” Critical Review, and Research Agenda.
ACM Trans. Comput. Educ, vol. 17, no. 26, pp. 1–26, 2017.


