Towards Fully Dense Direct Filter-Based Monocular Visual-Inertial
Odometry

Alexander Hardt-Stremayr and Stephan Weiss

Abstract— We propose a fully dense direct filter-based visual-
inertial odometry method estimating both pixel depth for all
pixels and robot state simultaneously, having all uncertainties
in the same state vector. Due to the fully dense method, our
approach works even in low-textured areas with very low,
smooth gradients (i.e. scenes where feature based or semi-
dense approaches fail). Our algorithm performs in real-time
on a CPU with a time complexity linearly dependent on the
amount of pixels in the provided image. To achieve this, we
propose complexity reduction methods for fast matrix inversion,
exploiting specific structures of the covariance matrix. We
provide both simulated and real-world results in low-textured
areas with a smooth gradient.

I. INTRODUCTION

Visual-inertial odometry (VIO) methods combine fast in-
ertial measurement readings (IMU) with camera images at a
lower frequency to estimate an internal robot state.

In this paper, we present a novel fully dense tightly
coupled direct filter-based approach with a computational
upper bound of O(nm?) instead of O(n?®) on a CPU, with n
being the number of processed pixels, m begin the size of the
robot state and n > m. We fuse IMU and camera data in an
Extended Kalman Filter (tightly coupled EKF) and operate
directly on image intensities to minimize the photometric
error instead of using features. Our fully dense approach
processes all pixels in an image, contrary to using only
high-gradient areas (semi-dense) or single pixels (sparse).
By adding both depth and intensity to the state vector, we
are able to update all entries in a single step, inherently
including map uncertainty in the probabilistic estimation.
This is in contrast to algorithms which iteratively estimate
pose change and scene depth in two repeated steps with
disjoint uncertainty information.

Especially in low-texture areas, direct methods minimizing
the photometric error are more robust than indirect methods
extracting features [1]. Thus, we specifically tested our
approach on low-texture areas with smooth gradients as seen
in Fig. 1, showing promising results. Based on this proof of
concept, this approach can already be used to bridge short
featureless areas with low gradients.

Alexander Hardt-Stremayr and Stephan Weiss are with the
Department of Smart Systems Technologies in the Control of
Networked Systems Group, Alpen-Adria-Universitit Klagenfurt, 9020
Klagenfurt, Austria alexander.hardt-stremayr@aau.at,
stephan.weiss@ieee.org

The research leading to these results has received funding from the
ARL within the BAA W911NF-12-R-0011 under grant agreement W911NF-
16-2-0112 and from the Austrian Ministry for Transport, Innovation and
Technology (BMVIT) under the grant agreement 855468 (Forest-IMATE).

k

Fig. 1. Left: Camera view of a scenery with smooth intensity gradients,
input for our algorithm. Right: No or wrong features found by a feature
detector.

Our main contributions are

o Fully dense handling of camera information with
combined single-step simultaneous pose and depth
estimation.

o Complexity reduction methods to fuse the informa-
tion on a CPU in real-time.

o State estimation on featureless areas with smooth
gradients, different to classical approaches that need
strong corners, lines or gradients.

II. RELATED WORK

In their core, direct semi-dense and dense Visual Odom-
etry methods are built upon the dense optical flow. By
comparing the predicted intensity value with the measured
intensity value and multiplying this residual with the gradient
and a subsequent state Jacobian, it is possible to estimate
the state. In semi-dense approaches, high-gradient pixels
are selected for estimation, while dense approaches use all
pixels.

Additionally, as the gradient is a linearization of a po-
tentially highly nonlinear image, the pixel offset should be
smaller than one pixel. This is commonly achieved by using
an image pyramid. Visual-Inertial Odometry methods incor-
porate the measurements provided by an IMU to improve the
predicted state and to decrease the pixel coordinate offset.
However, to predict the expected value, knowledge of the
scene depth is needed. Different ways to handle this problem
have been introduced in the past.

Using a stereo with known baseline, depth estimation
is reduced to a line search and can be accomplished in
real-time on a CPU as seen in [2] and [3]. Similar to
stereo, a RGB-D camera provides depth information. This
has been used to provide dense visual odometry [4]-[6] on
a CPU. DTAM [7] popularized GPU-based trajectory and
depth estimation. Recent work added inertial measurements
[8], [9]. KinectFusion [10] provided GPU-based processing
of RGB-D information. Among different extensions [11],
[12], integration of IMU information has also been published

[13]. Deep-learning based depth estimation approaches as
e.g. [14]-[16] do not yet integrate IMU readings. Two-
step algorithms estimate pose change and depth interatively,
having disjoint uncertainty information. Beside semi-dense
[17] and sparse [18] visual odometry approaches, a pseudo-
dense (semi-dense among gradients [19], superpixels for
monotonous regions [20]) visual-inertial odometry algorithm
[21] has been published. One-step algorithms like ours esti-
mate both depth and pose change pixel intensities. However,
existing algorithms have conceptual overlap to feature-based
approaches as a set of regions is selected and depth is
estimated for each one similarly to sparse features [22]—[24].
To our knowledge, no one-step fully dense direct CPU-
based visual-inertial odometry algorithm exists as of now.

III. DENSE DIRECT VISUAL-INERTIAL ODOMETRY
A. State Representation

The state of our system is composed of the position ,, p,,,
of the IMU in the world frame W, its velocity ,, v, and
its attitude quaternion q,,,, describing a rotation from the
world frame W to the IMU frame Z. The state of the IMU
sensor is given as its angular velocity bias b, and its linear
acceleration bias by,. The camera extrinsics are given as the
position ,p,, of the camera center in the IMU frame and
its attitude quaternion q,.. In this document, those states are
summarized as core states X..

Xc:[wpwz wVwr Qwr Pw ba Pp qm} M

Since we compare predicted pixel intensities with measured
pixel intensities and the predicted image depends on the
depth of the scene, we keep both (inverse) depth per pixel p
and intensity values ¢ in the state.

AT
X = [xc p z] 2)
We use an error state EKF and the error rotation and its
covariance as an error quaternion q = [%50T 1]7 to handle
the quaternion in its minimal representation. The error state
X is: o
x=[x 7 i 3)
For a more thorough description of the error state X, and its
application see [25].

B. Process Model

For brevity, we refer to [25] for both continuous and
discretized equations for the core states f(x.) as well as the
description of the corresponding process noise matrix (x,.
The derivation of the dynamics p = f,(x) and 4 = f;(x) is
based on the pixel propagation model. Every pixel intensity
1 is the result of a look-up of image Img at the 7position
PImg With the homogeneous coordinates [u v 1]~ . Using
the camera matrix /K and the inverse depth of the pixel p,
the pixel coordinate can be calculated based on the three-
dimensional position p,,. of the point in the camera frame.
p is used to scale the coordinate back to a depth of 1,

therefore p = L — with e, = [0 0 1]".
€z cPcp

t= Img(plmg) =Img([u v 1]) = Img(chcpp) 4)

Fig. 2. Image intensities
shown as three buckets and
corresponding gradients (red,
blue). If the prediction is
slightly left of the dotted line
(red) a correction has opposite
sign compared to a prediction
right (blue) of the line. To miti-
gate this, we include a gradient
dependent uncertainty term.

The dynamic of the intensity ¢ is then

K I m, m,
i = a mg(pl 9) ap[g (5)
8171 mg ot
The first part is a spatial derivation of the intensity value,

also known as image gradient g.

i = gK(cpcpp + cpcpp) (6)
T .
. €z cPcp T 2 -
P=—7T7 g = " €P P (N
(e cpep)? e

Based on p and .p., = K‘lplmg%, i can be reformulated.

i =gK(Ia,,, — K 'prmgel) pePop (8)

The position of a point P as seen by the camera in world
coordinates can be described by the concatenation of all
translations between world frame WV, inertial frame 7 and
camera frame C expressed in the world frame. C,, is the
rotation matrix based on quaternion q,,.

wI

= wPw; T Cwupzc + CWICICCpCP 9)

WpWP

The time derivative of this expression is

WpWP :WpWI + CWIIpIC + CWIIpIC+

CWICICCPCP + CWICICCPCP + CWICICCPCP
(10)
As the world coordinate of the point is assumed to be
stationary ., p,,, and both attitude C,, and translation ,p,.
of the camera with respect to the IMU do not change over

time, the corresponding time derivatives can be set to zero.
This will yield

O = WpWI+CWIIpIC+CWICICCpCP+CWICICCpCP (11)

Reformulating and replacing , p,,, by ., vy, it is possible
to derive the change of the point P in the camera frame over
time.

cPop = 7CICTCWIT(WVWI + CWIIpIC + CWICICCpCP)
(12)

C. Process Noise

The noise for x. originates from IMU noise and both
its derivation and discretization can be found in [25]. The
intensity change rate 7 is linearly dependent on the gradient
g, assuming g is an exact linearization of the underlying
model. However, as Fig. 2 shows, the assumed image inten-
sity function can be highly nonlinear or even discontinuous.
When using a simple linear model, the sign of the correction

may depend on whether the left or right gradient of the
current pixel is used. This problem is mitigated when using
a different interpolation model, e.g. a larger kernel for
convolution, but it is not entirely removed.

Instead, we calculate an image gradient based uncertainty.
Py is the gradient covariance matrix. o, and o, are the
variances of the gradient in = and y-direction respectively,
based on either the left and right or the upper and lower
pixel of the current one. Similarly, o4, is the calculated

covariance between the gradients.

2
o o
_ | Y% Gy
P — |:O. x O.2~Ly:|
Gy

Gy

13)

The goal is to efficiently include predicted intensity un-
certainty arising from uncertain motion propagation. The
dynamics of a pixel coordinate %p;mg can be igtegrated
over time to yield Apry,y. The Jacobian F,, = “5m¢ of
the corresponding dynamic model is used to propagate the
covariance of the derived state, stored in P, to the covarinace
of Aprmg, stored in the newly calculated covariance matrix
P, Wiﬂ; p being the subscript denoting Aprp,e: Pp =
Fp?CPFm. .

1 may be formulated as ¢ = g%phng. Similarly, Ai =
gAprmg. To calculate the discrete intensity process noise
variance (Q;; for a single pixel, both covariance matrices are
combined using multiplicative uncertainty propagation.

T 1
Qii = Apl'mg PgApImg + [1 1} PpPg 1 (14)
To fully complete the multiplicative uncertainty propagation,
gPpgT would also have to be added. However, this is

implicitly covered in the covariance prediction step of the
EKF P~ = FPFT 4+ Q.

D. Update Model

On a camera reading of a grayscale image, the image is
first undistorted and then provided as measurement input. As
the image intensities have been predicted using the estimated
depth and the IMU inputs as shown in Eq. (8), the residual
y is the difference between the measured pixel intensity z
and predicted intensity 7. n, is the measurement noise of a
single pixel intensity:

15)

Y=2—1—"n,

The measurement noise for each pixel is assumed to be inde-
pendent from the other pixels. Therefore, the measurement
noise matrix R is given as

R=1,, n’ (16)
E. Discretization and Linearization
The process Jacobian F' = %(xx) is divided into multiple
parts: we use the indices x for x., d for p and ¢ for <.
F,., O 0
F=|Fy Fyg O 17

The derivation of Fw.w can be found in [25]. Similarly, for
both p = f,(x) and ¢ = f;(x), a first-order discretization is
performed and higher order terms are omitted. Due to space

limitations, we only give two simple examples, 5 a‘,,; and
. wVwr
3 a‘; , how entries of F' = %(xx) may be computed:
w YW1
0
v =—p(-C.TC, A ag)
WVWI
i _
P = gK(Idsxa - K 1pImgeZ)p(_CIcTCW1T)At
The Jacobian for the intensity measurement H = 6}5(:) is
H= [OnXm Onxn Idnxn] (20)

E Initialization

Position ,, p,,,, velocity v, and angular velocity bias
b, are initialized with zero values assuming a still phase.
For the rotation q,,, gravity alignment is performed on a set
of IMU readings and the remaining acceleration is stored as
linear acceleration bias b,. For the covariance of , p,,,, the
entries are set to be very small while for the other covariance
entries, values corresponding to the expected initial error
are chosen. ¢ is initialized with 0.5, assuming that pixel
intensities are scaled to 0 and 1. p is initialized with random
values. For both, the initial variance is set to a large value.
Similarly, whenever a pixel in the current image was not yet
seen before, the newly inserted intensity and depth entries
are initialized in the same way.

This describes the complete fully dense direct tightly-
coupled EKF able to estimate both internal robot state as
well as inverse scene depth. Naive implementation would
not allow real-time operation on a CPU. In the following
section we discuss our approach on complexity reduction.

IV. COMPLEXITY REDUCTION

If the measurement size n is far larger than the state size
m, in an EKF, the most costly operation is the inversion of
the innovation matrix S with a complexity of O(n?). When
considering all pixels in an image, this would render the
approach intractable in practice on a CPU for all image sizes
larger than a few pixels. Thus, in the following, we detail
a set of assumptions, so the complexity can be reduced to
O(nm?) with m being the size of x., enabling real-time use
on a CPU.

A. Fast State Propagation

Although both intensity and inverse depth vectors are
stored in the state vector, only x. is propagated upon IMU
readings for performance reasons. On each camera reading,
the state change introduced by IMU readings is accumulated
(i.e. integrated) and the pixel propagation is calculated before
comparing the intensity with the camera measurement. This
is comparable to keeping the map in two-step algorithms.
However, in our case it is embedded into the probabilistic
framework with a shared uncertainty. The rotational change
between first and second camera measurement seen from the

frame of the second measurement is calculated in C, by
iteratively applying IMU propagation steps. Likewise, ,p,
is the same for the translational movement. Similar to IMU-
preintegration methods, we also calculate integrated F' and
(@ matrices. Assuming that between camera measurements 1
and 2, additional IMU measurements have occurred, the inte-
grated F,, and (Q,, matrices can be calculated as repeated
application of different F,,, and Q.. matrices between
every two measurements ¢ and j. Propagation of inverse
depths and intensities can be calculated as follows:

CmK_lpImglpl_l + Dy
Pyt
P2 = GZ(CmKilpImglpl_l + 2p21)

The new pixel position defines the location in both intensity
and inverse depth vectors. As the location corresponds to a
position on the pixel grid and only allows whole numbers,
the resulting position is rounded as seen in Fig. 3 and
the intensity is interpolated. The remainder of the rounding

Pimgo =K (21)

(22)

Fig. 3. A pixel intensity value is transferred from the original image
position to the predicted image position. As only pixel centers can be
destinations, the propagated intensity value is shifted by multiplying the
pixel coordinate offset (red arrow) with the gradient.

is multiplied with the gradient to predict the target pixel
intensity. If multiple pixels would be propagated onto the
same position, the pixel with the smaller inverse depth
variance is used. In Eq. (23), the operator [-] is the two-
dimensional nearest integer function.

(23)

As the intensity value is modified using the potentially noisy
gradient, an additional factor AQ);; is added to the intensity
uncertainty based on the gradient covariance matrix P,.

AQy = ApTPgAP

By using the gradient based interpolation, at most one entry
per row and column is set in Fy; and Fj;, corresponding
to the coordinate of pr.,g, as the column index and the
coordinate of prpg, as the row index. Entries in both F
and P are swapped so that Fy; and Fj; (and subsequently
F;4) are diagonal matrices. Ensuring this diagonal property
is a critical step for the fast matrix inversion shown in section
IV-D.

19 =11 — QAP, Ap = PImggy — [plmgg]

(24)

B. Covariance Matrix Assumptions

The covariance matrix P can be divided into a set of
smaller matrices, corresponding to X, as x, p as d and 2
as ¢ similar to I’ in III-E. To enable fast matrix inversion,
the covariance matrix P has to conform to a certain structure
after any covariance update as shown in Eq. (25).

wa Pwd 0
P=|Py Py O (25)
0 0 Py

Using concatenated F' and () matrices, the filter process can
be adapted to a single propagation step followed by a single
update step with respect to the inverse depth p and intensity
¢ parts of the state and covariance matrix. Based on our
simulations using a full covariance matrix P, covariances
between image intensities and the remainder of the state
vector are negligible and can be approximated to be zero
leading to the structure in Eq. 25. Similarly, the off-diagonal
entries of P;; are also approximated as zero. Py, P,q and
P,, are stored as dense matrices. For Py4, the diagonal
component of the matrix is stored while off-diagonal entries
are approximated using matrix rank reduction for rank k
to lower storage size and execution time. With k£ < m,
the upper computational complexity bound is ensured. For
results in this paper, we set the off-diagonal entries of
Pyq to zero (kK = 0) without significant quality loss but
noticeable speed increase. This may of course introduce filter
inconsistencies which is subject to further investigations.
With those assumptions, supported by our simulations, only
P, and P,4 with the corresponding transpose remain block
matrices. This is another important property for the fast
matrix inversion.

C. Fast Matrix Inversion

Based on the substructure of the covariance matrix shown
above, we present a fast matrix inversion which is alge-
braically exact. With the concatenated F' and () matrices, the
covariance matrix P~ corresponding to the predicted state at
the time of the update can be calculated using the covariance
matrix P after the last update:

P~ =FPFT +Q (26)

While we build upon a certain substructure in P as described
above, no such substructure assumptions hold for P~ which
may be a fully dense matrix. As one of our contributions
in this paper, P~ is never calculated in its entirety enabling
real-time computation despite its density. Instead, fast update
equations are derived based on the definition of P~ and used
directly.

The innovation matrix S is defined as S = HPHT + R.
As H has been derived tobe [0 0 Iy,] in Eq. (20) and
based on the structure of P, S has the following definition:

S =FiyPooFy 4 FigPaaFy + FiiPii F+ 7
FuPuaFly + FuPLFia” +Qu+ R)
Except for F;, and P,4, which are a n X m matrices, Py,
which is a m x m matrix and P4, which is a combination of
a diagonal and n x k matrices, all used matrices are diagonal
matrices. This is the base for the O(nm?) inversion. This can
be reformulated as S = ABAT + D with

A= |F; FiaPeq Puaaal,

sz [d
B= I,

mXm

(28)

mXm Y

Pyan

Piia and Pgyp as rank-reduced dense matrices and D
summing up all diagonal matrices including the diagonal

component of Py,. A further reformulation yields
S=vVD-1(I,,, +VDTABATVD-1)VD-1

To perform a fast matrix inversion, we use the identity of
(UAUT +1;) '=UlN+1;,,) 'UT (30)

assuming UUT = UTU = 1, . With a QR-decomposition
of QR = qr(D~ %5 A),

QRBRTQT _ D70'5ABATD70'5

(29)

nXn

nXn nXxXn

€29

As A has a rank of 2m + k, only 2m + k x 2m + k
entries of R will be filled. Furthermore, RBRT will be
a symmetric matrix, so a singular value decomposition
U, A, VT = sud(RBRT) will yield UVT =UTV = I.

Combining QR decomposition and singular value decom-
position yields

QUAVTQ" = D=5 ABA"D~%®

with QUVTQT = I,
matrix is

ST =D""QU(A+ 14

As both A and I
in linear time.

However, U(A + I,,,)"*UT still has a computational
complexity of O(n?). To enable a speed-up, @ needs to be
cut to a nxm matrix Q.. Similarly, R, is the upper triangular
rectangular matrix based on the first entries of R.

This would lead to information loss as while QTQ. =
14, still holds, Q.QZ does not evaluate to the identity
matrix anymore. By reformulating the equation it is possible
to prevent this problem and to ensure fast algebraic exact
inversion.

U, A. and V.I' are calculated using the singular value
decomposition of R.BRI and will be square matrices (di-
agonal in the case of A.) with a size of m x m.

By adding —D ! + D7! and expanding it to
—D795QQTD~%% + D=1, it is possible to adapt S~! into
the formulation given in Eq. (34) and (35).

Sinner = UC(AC + Id2m+k><2m+k)_1UcT - Idem+kx2m+k (34)
S7t = D""QcSinne,Q: D™+ D71 (35)

(32)

Therefore, the inverted innovation

nxn*®

—lUTQTD—O.S (33)

)

are diagonal matrices, inversion is done

nXn

Again, and similar to P~, S is never calculated directly.
Instead, it is only used to derive fast update equations.

D. Fast Update Calculation

The Kalman gain K is defined as K = P~ HTS~!. Based
on equations 26 for P~ and 20 for H, the gain K can be
calculated for all parts of the state. Equation 36 shows the
content of the K component for the core state x..

K, = (FuuPpp FL 4 Fup PogFH)S™1 (36)

By doing repeated right-side multiplication with the residual
y, we ensure the intermediate result to always be a vector of
at most size n. This ensures a time complexity of O(nm).

The covariance update is calculated independently for P,,,,
Py, Pyq and Py; due to the structure of P~ . Other entries are
not calculated as they are assumed to be zero as discussed in
section IV-B. Similar to the state update, certain properties
of the matrix structure can be used to simplify the equation
and to preserve the upper bound of O(nm?) for calculation
of the updated covariance matrix P+ = P~ — PV,

PY =F,,P., FLS ' F;, P, FL +

37
FyuPyaFLS_ FiyPTFT 7

Although S~! is a n x n matrix, it is possible to multiply
either F;, or PwdFlE with the (). component, resulting in a
m X m matrix. By repeating this inner matrix multiplications
and by using the diagonal property of the D! matrix, the
update calculations for P,, and P,4 never exceed O(nm2).
For PY and the diagonal component of PY,, only diagonal
update entries are calculated as we assume that off-diagonal
entries are zero. Similar to P,,, inner matrix multiplications
are repeated until only the outer matrices with m X n and
m X n remain. Diagonal results are extracted and in case of
off-diagonal Py, entries, rank-reduced intermediate matrix
multiplication products are stored.

V. RESULTS

Fig. 4. Estimated pixel depths projected into world frame as a point cloud:
The sequence shows the first few updates on the depth estimation and the
rapid convergence over the planar scene (synthetic data).

Results presented in this section have been generated on
a 2.2 GHz Intel i5-5200U. With non-optimized code and a
downscaled image resolution of 94 x 60 running in a single
thread, calculations currently take 125ms per frame. This
calculation time scales linearly with the image resolution.

Due to space limitation we largely omit well behaving
results from our simulations with synthetic data and directly
present our preliminary results with real-world data. Most
interesting (and probably best reflecting the (good) perfor-
mance of our fully dense approach) is the estimated depth
per pixel. In Fig. 4, we project the estimated pixel depth
as a point-cloud into the world reference frame using the
estimated states. The image sequence in the Figure shows
this point-cloud soon after the (random initialization) and
its rapid convergence towards the simulated planar ground.
Fig. 5 shows a similar sequence, but with real-world data,
demonstrating the performance of our algorithm in a real en-
vironment with real hardware. Smaller images in this Figure
additionally show the down-scaled input image, colorized
depth estimates per pixel and uncertainty of this estimate.
The convergence is well reflected in the increased portions
with lower uncertainty (red-ish areas in the small images).

Fig. 6 also shows a similar experiment, but this time with
real-world data including a three-dimensional object (i.e.
motion estimation over non-flat ground). The depth image

Fig. 5. Similar Figure as Fig. 4 but with real world data over a planar scene: Pixel depth convergence is shown during the first few updates. The top row
shows the pixel depth estimates projected as point-cloud in the world frame (left: soon after initialization, middle and right: gradually converging). Bottom
row shows for each step: left: the camera image, middle: estimated depth color coded, right: estimated uncertainty for the depth at each pixel (white means

large uncertainty).

Fig. 6.
correctly reconstructed within our combined approach to simultaneously
estimate the system motion and scene geometry in the same state vector.
Left: camera image, middle left: estimated depth color coded, middle right:
depth uncertainty, right: top view of reconstructed point cloud. (real-world
data)

Motion estimation over non-flat scene: The 3D object (box) is

Fig. 7.
Upper left: depth estimation has a lower uncertainty compared to the border
regions as the system moves upwards and the border pixels continue to see
new regions. Bottom right: camera image. Right: estimated system pose as
RGB-tripod and projected (already converged) point-cloud from estimated
pixel depths.

Depth and motion estimation during take-off on real-world data.

(middle left) and point cloud (right) reflect well the perceived
environment (left) with outliers having a high uncertainty
(middle right).

Fig. 7 is based on real-world data with regular texture
and high frequencies in the camera image. Naturally, feature
based approaches would also work with such data. The
sequence depicts a “take-off” scene where the system moves
upwards. Thus, the uncertainty (top left) is lowest in the
image center where pixels were already perceived in previous
readings the scene. Conversely, at the borders, the uncertainty
is large as new scene elements enters the image. The Figure
also shows the point cloud already well converged to the
planar scene.

Lastly, Fig. 8 shows the estimated pose of the system
during a trajectory with motion along the y axis. We observe
a position drift of < 3% which is slightly larger than classical
visual-inertial estimators (< 1%) with the difference of being
able to use low-texture, low gradient images and to estimate

Z
S 05] — 8
o
=
k=
= Un
.S
=
E
a —0.5
! 1
<
-
k=
- 05
2
=
8
2 0
0 2 4 6 8 10
time in seconds
Fig. 8. Estimation of a real-world translational with slight rotational

trajectory. The full lines are ground truth (optitrack), the dashed lines are
the estimation. Red is the position in x direction in the upper plot and the
roll in the lower plot. Likewise green for y and pitch and blue for z and
yaw.

all pixel depths of the image in a fully dense fashion. We
omitted evaluation of other approaches on this data set as
both feature based and high gradient based approaches have
difficulties or fail to extract meaningful information from low
gradient areas as shown in Fig. 1.

VI. CONCLUSION

We demonstrated an initial approach towards a fully
dense direct filter-based monocular visual-inertial odometry
approach running in real time on a CPU estimating both
robot state and inverse depth simultaneously within a shared
covariance matrix, using a certain covariance matrix sub-
structure.

This approach may be used to bridge short featureless
trajectories with reasonable drift. Longer trajectories as well
as drift reduction and robustness improvement is subject to
further work.

We have shown that this approach works for a selected set
of real-world data. This set has been chosen to be difficult
for classical approaches. The approach converges correctly
and is able to detect depth differences introduced by a three-
dimensional object.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

REFERENCES

N. Yang, R. Wang, X. Gao, and D. Cremers, “Challenges in monocular
visual odometry: Photometric calibration, motion bias, and rolling
shutter effect,” IEEE Robotics and Automation Letters, vol. 3, no. 4,
pp. 2878-2885, 2018.

Y. Ling and S. Shen, “Dense visual-inertial odometry for tracking
of aggressive motions,” in Robotics and Biomimetics (ROBIO), 2015
IEEE International Conference on. 1EEE, 2015, pp. 576-583.

V. Usenko, J. Engel, J. Stiickler, and D. Cremers, ‘“Direct visual-inertial
odometry with stereo cameras,” in Robotics and Automation (ICRA),
2016 IEEE International Conference on. 1EEE, 2016, pp. 1885-1892.
C. Kerl, J. Sturm, and D. Cremers, “Robust odometry estimation
for rgb-d cameras,” in Robotics and Automation (ICRA), 2013 IEEE
International Conference on. 1EEE, 2013, pp. 3748-3754.

C. Kerl, J. Stuckler, and D. Cremers, “Dense continuous-time tracking
and mapping with rolling shutter rgb-d cameras,” in Proceedings of the
IEEE international conference on computer vision, 2015, pp. 2264—
2272.

M. Kuse and S. Shen, “Robust camera motion estimation using direct
edge alignment and sub-gradient method,” in Robotics and Automation
(ICRA), 2016 IEEE International Conference on. 1EEE, 2016, pp.
573-579.

R. A. Newcombe, S. J. Lovegrove, and A. J. Davison, “Dtam: Dense
tracking and mapping in real-time,” in Computer Vision (ICCV), 2011
IEEE International Conference on. 1EEE, 2011, pp. 2320-2327.

K. Qiu and S. Shen, “Model-aided monocular visual-inertial state
estimation and dense mapping,” in 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Sept 2017, pp.
1783-1789.

Z. Yang, F. Gao, and S. Shen, “Real-time monocular dense mapping on
aerial robots using visual-inertial fusion,” in Robotics and Automation
(ICRA), 2017 IEEE International Conference on. 1EEE, 2017, pp.
4552-4559.

S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli,
J. Shotton, S. Hodges, D. Freeman, A. Davison et al., “Kinectfusion:
real-time 3d reconstruction and interaction using a moving depth
camera,” in Proceedings of the 24th annual ACM symposium on User
interface software and technology. ACM, 2011, pp. 559-568.

T. Whelan, M. Kaess, H. Johannsson, M. Fallon, J. J. Leonard, and
J. McDonald, “Real-time large-scale dense rgb-d slam with volumetric
fusion,” The International Journal of Robotics Research, vol. 34, no.
4-5, pp. 598-626, 2015.

T. Whelan, R. F. Salas-Moreno, B. Glocker, A. J. Davison, and
S. Leutenegger, “Elasticfusion: Real-time dense slam and light source
estimation,” The International Journal of Robotics Research, vol. 35,
no. 14, pp. 1697-1716, 2016.

T. Laidlow, M. Bloesch, W. Li, and S. Leutenegger, “Dense rgb-
d-inertial slam with map deformations,” in Intelligent Robots and
Systems (IROS), 2017 IEEE/RSJ International Conference on. 1EEE,
2017, pp. 6741-6748.

M. Kuse, S. P. Jaiswal, and S. Shen, “Deep-mapnets : A residual net-
work for 3d environment representation,” in 2017 IEEE International
Conference on Image Processing (ICIP), Sept 2017, pp. 2652-2656.
M. Bloesch, J. Czarnowski, R. Clark, S. Leutenegger, and A. J.
Davison, “Codeslam - learning a compact, optimisable representation
for dense visual slam,” CoRR, vol. abs/1804.00874, 2018.

H. Luo, Y. Gao, Y. Wu, C. Liao, X. Yang, and K. Cheng, “Real-time
dense monocular slam with online adapted depth prediction network,”
IEEE Transactions on Multimedia, pp. 1-1, 2018.

J. Engel, T. Schops, and D. Cremers, “Lsd-slam: Large-scale di-
rect monocular slam,” in European Conference on Computer Vision.
Springer, 2014, pp. 834-849.

J. Engel, V. Koltun, and D. Cremers, “Direct sparse odometry,” IEEE
transactions on pattern analysis and machine intelligence, vol. 40,
no. 3, pp. 611-625, 2018.

A. Concha Belenguer and J. Civera Sancho, “Dpptam: Dense piece-
wise planar tracking and mapping from a monocular sequence,” in
Proc. IEEE/RSJ Int. Conf. Intell. Rob. Syst., no. ART-2015-92153,
2015.

A. Concha and J. Civera, “Using superpixels in monocular slam,” in
Robotics and Automation (ICRA), 2014 IEEE International Conference
on. IEEE, 2014, pp. 365-372.

A. Concha, G. Loianno, V. Kumar, and J. Civera, “Visual-inertial direct
slam,” in Robotics and Automation (ICRA), 2016 IEEE International
Conference on. IEEE, 2016, pp. 1331-1338.

[22]

[23]

[24]

[25]

X. Zheng, Z. Moratto, M. Li, and A. I. Mourikis, “Photometric patch-
based visual-inertial odometry,” in Robotics and Automation (ICRA),
2017 IEEE International Conference on. 1EEE, 2017, pp. 3264-3271.
M. Bloesch, S. Omari, M. Hutter, and R. Siegwart, “Robust visual
inertial odometry using a direct ekf-based approach,” in Intelligent
Robots and Systems (IROS), 2015 IEEE/RSJ International Conference
on. IEEE, 2015, pp. 298-304.

M. Bloesch, M. Burri, S. Omari, M. Hutter, and R. Siegwart, “Iterated
extended kalman filter based visual-inertial odometry using direct pho-
tometric feedback,” The International Journal of Robotics Research,
vol. 36, no. 10, pp. 1053-1072, 2017.

S. Weiss, M. W. Achtelik, S. Lynen, M. C. Achtelik, L. Kneip, M. Chli,
and R. Siegwart, “Monocular vision for long-term micro aerial vehicle
state estimation: a compendium,” Journal of Field Robotics, vol. 30,
no. 5, pp. 803-831, 2013.

