
Exploring Cognitive Load of Single and Mixed Mental 
Models Gesture Sets for UAV Navigation 

Ekaterina Königstorfer  

Alpen-Adria-Universität Klagenfurt 

Klagenfurt am Wörtersee, Austria 

{ekzhuravleva}@edu.aau.at 
 

ABSTRACT 

We conducted a user study to compare four gesture sets in 

terms of cognitive load, intuitiveness, easiness, learnability, 

and memorability. We assessed these attributes through the 

users’ subjective feedback reflected in questionnaires. 

Additionally, to evaluate the level of cognitive load 

associated with each gesture set under study, we used dual-

task performance measures (errors and response time) and a 

relatively new for Human-Computer Interaction measure – 

time perception. In our study, participants were controlling 

the flight of a UAV in a simulated environment using all four 

gesture sets. We adapted the Wizard of Oz approach in the 

study design: the flight was actually controlled by a human 

operator. The collected data confirmed our hypothesis that 

mixed mental model gesture sets are worse than single mental 

model gesture sets in terms of all the considered attributes. 
However, we did not find a significant difference in terms of 

cognitive load between the three classes of mental models 

(intelligent, imitative, and instrumented) only a tendency 

towards our hypothesis. 
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INTRODUCTION 
Nowadays, we observe how recently released sensing 

devices for Human-Computer Interaction (HCI) such as 

Kinect [7, 19] and Leap Controller [10, 20, 23] are gaining 

more and more popularity among users. As these devices 

become affordable for a wider range of researchers and 

practitioners, a higher interest in the design of more natural 

and intuitive HCI (including Human-Robot Interaction and 

Human-UAV Interaction) arises. Nowadays, we can interact 

with machines not only via standard input devices such as a 

keyboard and a mouse, but also using a wide spectrum of 

natural input modalities: gestures, speech, facial expressions, 

and gaze direction. We observe a growing amount of 

research works in this direction.  

One of the key questions addressed in the recent research 

works is the design on an interaction vocabulary. A typical 

way to design the vocabulary is to conduct an elicitation 

study to collect users suggestions (e.g., user-defined gestures 

and voice commands) and then to follow the majority 

principle (that suggests that the most frequently observed 

gestures/voice commands are selected for the final 

vocabulary) to define the final interaction vocabulary. But is 

this method indeed a good way to achieve a 'better' 

interaction vocabulary? 

Previously, Peshkova et al. [15, 17] have shown the 

importance of considering the adherence to a single mental 

model as an important criterion when aiming at intuitive 

interaction. The authors suggested a new classification 

scheme that is based on the concept of mental model. Mental 

models are formed by previously gained knowledge and 

experiences. Thus, each mental model is associated with 

certain knowledge. In HCI, users employ their mental 

models of a certain system to correctly interact with this 

system, predict its behavior, and correct possible errors. 

Overall, mental models allow their owners to choose a proper 

way to behave [14].  

Many of the works [4, 12, 13] try to achieve interaction 

intuitiveness using different metaphors that evoke certain 

mental models. The authors clustered supportive examples 

of these models into three categories – imitative, 

instrumented, and intelligent. 

The imitative class implies that a device can imitate operator’s 

movements. This interaction can be seen as a direct mapping of 

the operator’s movements to the vehicle motion, e.g., the ‘hand’ 

mental model, in which operator’s hand represents a UAV, thus, 

the operated UAV simply copies movements of the operator’s 

hand. 

The instrumented class suggests that an operator controls a 

vehicle through an imaginary intermediate link, which can 

be an imaginary physical object, such as a joystick; an 

imaginary link, such as an invisible string that lets you 
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manipulate the vehicle as if it were a marionette; or a super 

force that lets you move the vehicle without touching it, such 

as repelling or attracting a vehicle with an open palm. 

The key feature of the intelligent class, as its name implies, 

is that a UAV is treated as an intelligent creature. This 

explains the fact that, in many cases, this class is deemed 

most likely to resemble natural interaction. For example, 

when a person is instructed where to go, people tend to 

describe a place verbally and redundantly point in a direction 

with their index finger. 

The key difference between the presented classes is the 

expectations they raise and the need for initial instruction. 

The authors hypothesize that the intelligent class has the 

lowest cognitive load because an operator navigates a system 

following the natural ‘flair’ without a need for prior 

instructions. For the imitative and instrumented classes, a 

hint specifying the type of interaction is needed, so the 

cognitive load is higher. In addition, the instrumented class 

requires certain knowledge and experience from an operator. 

Thus, cognitive load should be the highest. In our study, we 

investigate this hypothesis. For this purpose, we selected one 

gesture set from each class of mental models among user-

defined gesture sets from the previous exploratory study 

[17].  

After a careful literature overview [5, 21, 22, 24], we decided 

to use the following standard measures to test this 

hypothesis: dual-task performance and participants’ 

subjective evaluation. We also decided to apply an extra 

measure – time perception. It is a relatively new measure in 

HCI, but based on the pilot works, it seems to be a reliable 

indicator of cognitive load [2, 3, 8]. It is believed when a 

person focuses on something and is actively engaged in some 

task, the time seems to pass faster than it actually does. 

Whereas when a person does something easy and perhaps 

even a bit boring, the time seems to pass slower. 

The second hypothesis that the authors rise is that a single 

mental model interaction vocabulary is in overall ‘better’ 

compared to a mixed mental models interaction vocabulary. 

Apart from cognitive load, in the current study, we compared 

these two types of interaction vocabularies in terms of their 

respective intuitiveness, easiness, memorability, and 

learnability. We assessed these attributes through 

questionnaires. To create a mixed mental model gesture set, 

we intentionally mixed gestures from different mental 

models. 

In our study, participants controlled the flight of a UAV in a 

simulated environment. Each participant completed the 

navigation task once with each gesture set under study (see 

Gesture Sets). We employed the Wizard of Oz technique in 

order to get rid of potential errors of a gesture recognizer. 

Our Wizard was uncovered: the participants knew that a 

human operator was actually controlling the simulated UAV 

based on their gestures. The participants were aware that the 

operator can only see them and not hear. 

We start by describing the four gesture sets investigated in 

this work. Then, we present the study design and show the 

obtained results. Afterwards, we discuss our findings and 

suggest for the direction for a future research. In conclusion, 

we summarize the outcomes of the study.  

GESTURE SETS 

In the previous study, Peshkova et al. [16] explored intuitive 

behavior of novice users for UAV navigation. The focus of 

their study was on basic navigation commands (as in 

standard off-the-shelf UAVs) to steer a UAV that include up, 

down, left, right, rotate left, rotate right, forward, and 

backward (Figure 1). As an outcome, the authors first 

collected users’ suggestions for relevant gestures through 

interview sessions and then recorded user-defined gestures 

showed by another group of users in a Wizard of Oz 

experiment, in which the users were made to believe they 

were steering a UAV. For a deeper understanding of users’ 

gestures, the authors analyzed the collected data in terms of 

mental models. In order to identify users’ mental models that 

likely guided users in their choice of gestures, the authors 

detected those mental models that allow to define most of the 

gestures showed by each user. As a result, the authors came 

up with a collection of gesture sets, in which each set is 

associated with a single mental model. In our work, we 

employ gesture sets from this collection. 

 

Figure 1. Moving directions, yaw, pitch, and roll axes. 

Later, Peshkova et al. [18] analyzed the identified mental 

models in terms of their commonalities and differences. This 

analysis led the authors to clustering of related mental 

models into three classes: imitative, intelligent, and 

instrumented. In the imitative class, a part of the operator’s 

body e.g., a hand, serves as a surrogate of the UAV and thus 

movements of this body part are directly mapped to 

movements of the UAV. Gestures include those where the 

UAV follows the motions of the head, one hand, two hands, 

and the upper/full body. We selected Full Body mental model 

as a representative of this class. 

In the instrumented class, an operator gives the flight 

instructions using an imaginary object (e.g., a device or a 

tool). This class is represented through the Puppeteer mental 

model. The operator holds an imaginary UAV right in front 

of the body. Operator’s hands are ‘connected’ with the UAV 



through two invisible ‘strings’, the real UAV copies the 

movements of the ‘puppet’ UAV (Figure 2). 

In the intelligent class, an operator expects a certain level of 

intelligence of a UAV that enables the UAV to interpret a 

given command correctly. Gestures include those where an 

indication of the direction is given with the index finger, 

thumb, hand, forearm, arm, and ‘come to me’ or ‘go away’ 

gestures. Following this idea, we asked our participants to 

invent their own gestures for basic navigation commands 

(Figure 1). In our study, the participants had a complete 

freedom to use any relevant gestures under a condition that a 

human operator should be able to interpret the invented 

gestures. Throughout this paper we call the user-defined 

gesture set My Gestures. This set represents the intelligent 

class of mental model. 

In our study, we investigate how the user’s cognitive load 

depends on the employed gesture sets.  In particular, we 

check whether there is a difference (1) between the three 

classes of mental models and (2) between single mental 

model gesture sets and mixed mental models gesture sets. 

Our study participants used four different gesture sets to 

control the flight of a UAV. Figure 3 shows three of these 

gesture sets. The top and the second rows show the Full Body 

and Puppeteer gesture sets. Full Body is design around an 

idea that your full body represents a UAV: if you step 

forward – the UAV flies forward, if you step back – the UAV 

flies back, etc. Puppeteer is based on a ‘puppeteer’ mental 

model. 

 

Figure 2. Neutral position for Puppeteer. 

The last row shows the gestures in the Mixed gesture set, in 

which we intentionally mixed gestures from different mental 

models: Puppeteer (up and down); Full Body (forward and 

backward); Indication (rotate left and rotate right: a rotation 

of the forearm at the elbow indicates the direction to rotate); 

and Airplane (left and right: designed on the ‘airplane’ 

mental model). Thus, Mixed represents a mixed mental 

models gesture set as opposed to Full Body and Puppeteer 

that are associated with a single model each. 

Based on the discussion provided earlier (see Introduction), 

we hypothesize that the lowest cognitive load is associated 

with intelligent mental models (My Gestures) and the highest 

with the instrumented mental models (Puppeteer). Gesture 

sets with gestures from imitative mental models (Full Body) 

we expect to impose cognitive load higher than intelligent 

and lower than instrumented (H1). Our second hypothesis 

(H2) is that people experience higher cognitive load and 

lower intuitiveness, memorability, learnability, and easiness 

using mixed mental models gestures sets (Mixed) compared 

to single mental model gesture sets (Full Body and 

Puppeteer). 

 

Figure 3. The three gesture sets investigated in the study.  

USER STUDY 

Task 

To avoid damaging a real UAV and causing participants’ 

discomfort when crashing a real UAV, we decided to 

simulate a UAV and its flight environment in software. We 

developed a 3D computer simulator that consists of four pre-

defined flight routes. The user’s task is to steer the UAV with 

gestures along these routes. Each route requires the same ten 

navigation commands to steer the UAV, but in different 

orders, as listed in Table 1. 

Route 1 Route 2 Route 3 Route 4 

takeoff+fw takeoff+fw takeoff+fw takeoff+fw 

rotate left+fw backward+fw right+fw down+fw 

up+fw left+forw rotate right+fw rotate right+fw 

rotate right+fw rotate right+fw down+fw left+fw 

down+fw up+fw left+fw rotate left+fw 

right+fw right+fw backward+fw backward+fw 

left+fw rotate left+fw rotate left+fw up+fw 

backward+fw down+fw up+fw right+fw 

land land land land 

Table 1. Command sequences in the four routes (fw=forward). 



Figure 5 provides an overview of Route 1. Between the 

starting point (a) and the destination (j), the UAV has to pass 

by eight checkpoints (b-i). When the UAV approaches a 

checkpoint, an arrow indicating the direction to move 

appears next to it. This arrow serves as a hint to prompt the 

user to issue a new navigation command in order to avoid 

crashing into an obstacle. Once the UAV has crossed the 

checkpoint, the arrow disappears. 

Figure 5 shows the user’s view at all the checkpoints 

including the starting point and the destination (text insets 

with command names are not shown to the user). The 

following example applies to Route 1: after a successful 

takeoff command (a), the user has to issue the forward 

command (b) to move the UAV to the next checkpoint (c). 

At this checkpoint, the rotate left command is required. 

Then, the user issues the forward command (this and all 

following forward commands are omitted in Figure 5) to fly 

towards the house (d). Here the user issues the up command 

to fly over the house until the next turn (e), where the rotate 

right command is prompted. After the rotation, the UAV 

moves towards the upcoming bridge (f), where the user has 

to use the down command to fly the UAV below the bridge 

until its next turn (g), where the path makes a smooth curve. 

Accordingly, only a short movement to the right is necessary 

to get around the curve. Thereafter, the user continues with 

the forward command until the UAV approaches the next 

curve (h). Again, only a short sideways movement, now to 

the left, is required to get around the curve and face the gate 

(i). When the UAV faces the gate, a gatekeeper’s voice 

demands the user to move the UAV up to the yellow line in 

front of the gate. At the line (once the UAV is ‘identified’), 

the gate slowly opens, towards the UAV. Thus, the UAV has 

to move backward to avoid crashing into the opening doors. 

Once the gate is opened, the user moves the UAV to the 

destination platform (j) and then lands it. 

A countdown timer starts when the user crosses a checkpoint. 

In the allotted time frame the user first has to command the 

UAV to fly forward to reach the next obstacle and then give 

a new command to pass this obstacle. Between checkpoints 

the user has 60 seconds when the rotate left or rotate right 

commands are required and 30 seconds for the other 

commands. Five seconds before a timeout, a warning 

message is displayed. If a timeout is triggered or a crash 

occurs, the UAV is automatically positioned directly after 

the current checkpoint (e.g., if the UAV crashes into the 

house, the UAV is positioned after it). 

 

Figure 5. Route overview. Letters indicate locations of 

checkpoints and correspond to Figure 5. 

Before proceeding with the main study, our operator 

practiced controlling the simulated drone using direct video 

streaming from the study room (two one-hour sessions). 

Then, we conducted a pilot study with 3 participants (3 male, 

from 20 to 21 years old) to estimate the study time and test 

our study design (the entire study procedure, technical 

equipment, and questionnaires). In the very first navigation 

task, in which the participants used their own gestures, the 

pilot participants were told that the operator controls the 

flight of a simulated UAV based on the gestures that the 

participants show. In the remaining navigation tasks, in 

which three pre-defined gesture sets were used, the 

participants were told that their gestures are recognized by a 

gesture recognizer using data from Kinect. In reality, the 

operator controlled the flight during all four navigation tasks.   

As an outcome of the pilot study, (1) we ensured that the 
instructions given to participants are comprehensible and 

that (2) the employed equipment functions properly, (3) we 

Figure 4. Vertically cropped user views: a) & b) start location, a) to j) checkpoints, j) destination (text 

insets invisible to the user). 



re-formulated and re-arranged some questions to shorten the 

time required to answer them, (4) we estimated the study 

time (approx. 45 minutes),  and (5) we decided to switch to 

uncovered Wizard of Oz (in which a participant is aware that 

the operator always controls the flight based on the 

participant’s gestures. 

During the main study, as mentioned earlier, we used the 

concept of uncovered ‘wizard’ – the participants knew that 

the human operator interprets their gestures and then sends 

the corresponding command to the flight simulator. It is 

worth mentioning that we had the same operator throughout 

the entire user study. The operator saw only participants and 

had no access to the video from the flight simulator.  

During each navigation task, the experimenter asked 

participants 5 simple math questions (Table 2), wrote down 

the participants’ answers, recorded time delays (when the 

response time was more than 5 seconds) and wrong answers, 

and took notes about think-aloud data. These math questions 

were the send task that our participants had to perform 

simultaneously with the main navigation task (a dual-task). 

The information regarding time delays and wrong answers is 

intended to reflect participants’ cognitive load. 

Task no. 1 Task no. 2 Task no. 3 Task no. 4 

3 + 2 3 + 6 2 + 3 6 + 3 

2 * 3 2 * 4 3 * 2 4 * 2 

8 / 2 6 / 2 4 / 2 2 / 2 

8 - 5 5 - 3 9 - 4 7 - 5 

5 + 2 6 + 1 7 + 3 2 + 1 

Table 2. Math questions. 

Subjects 

We recruited 22 participants (6 female), aged between 19 and 
34 years (mean 22, S.D. 4). Nineteen participants had 

experience playing computer games: 9 of them played 2D 

and 3D games and 7 - 3D games only. Twelve participants 

had experience in steering remote-controlled devices (cars, 

boats or drones) on the yearly (10), monthly (1), and daily 

(1) basis. Nine participants played Kinect or Wii games 

every week (3), every month (3), and every year (3). Most of 

our participants (16) had driver’s license and one of them had 

boating license. 

Apparatus and Setup 

Figure 6 shows top view of the study setup. During the task 

execution, the participant was standing in an upright position 

in front of a beamer projection, 4 meters away from the wall 

(projection size 1.1×0.8 meters). The video camera 1 (C1) – 

that is facing the participant – captures and recorders the 

participant’s body movements and passes them to the 

operator’s screen (number 1 in Figure 6), who sits in the 

adjacent room. A filled red circle and a horizontal blue dotted 

line on the floor mark the desired standing position 

respectively the minimum distance from the camera (so that 

the operator can observe the entire participant). When the 

participant shows a valid gesture, the operator sends the 

corresponding command to the flight simulator using a 

keyboard control (written using the Unity game engine, 

version 4.5.5). The flight simulator runs on the laptop in the 

operator’s room (number 2 in Figure 6). 

Two loudspeakers provided audio output (e.g., motor sound 

and crash sounds) and the other video camera 2 (C2) (facing 

the projection) recorded the flight simulator screen 

projection for later analyses. 

The operator, who actually steers the simulated UAV, sits in 

the adjacent room (Figure 6: the room on the top). The 

operator observes participant’s movements through the 

screen that receives video from camera 1 (C1). Based on the 

participant’s gestures the operator sends one of the basic 

navigation commands to the simulated UAV via the 

keyboard control. The operator does not know what exactly 

is going on in the flight simulator that runs on a separate 

laptop (number 2 in Figure 6). The operator’s keyboard and 

the projector (P) that displays the simulator on the projection 

wall are connected to this laptop. The order of routes was 

counterbalanced (balanced Latin square design), the operator 

did not know the order of routes to avoid the operator’s 

expectation of the participants’ commands. 

 

Figure 6. Study setup: top view. 

Figure 7a shows an experimenter and a participant during the 

introduction to the study, in which the experimenter explains 

the study procedure, the tasks, and shows the video of one of 

the routes. After that, the participant steers the UAV using 

the four gesture sets one by one and the experimenter asks 

the math questions and takes notes about think-aloud data 

(Figure 7b). Meanwhile, the operator observes the 

participant movements and controls the flight 

correspondingly. She does not see the screen with a flight 

simulator and relies only on the participant’s gestures (Figure 

7c). To watch the video of the study follow this link [27]. 



 

Figure 7. Screenshots. 

After each task, the participants completed a paper-based 

questionnaire, in which they evaluated the level of cognitive 

load they experienced during the time execution, wrote down 

his/her time estimation of the task completion, and evaluated 

their agreement with several statements using 4-point Likert 

scale. The participants were also encouraged to leave other 

relevant comments. 

Study Procedure 

Before the experiment, the participants read and signed the 

informed consent form that provided relevant study 

information necessary to allow the participants to make an 

informed and voluntary decision to participate in the 

experiment. They were informed about the experiment’s 

purposes and agreed to be video recorded during their task 

completion for the further data analysis.  

After signing the consent form, each participant received an 

introduction to the study procedure, the tasks, and a brief 

definition of cognitive load.  

In order to measure participants’ baseline time perception, 

the experimenter started the timer and asked the participants 

to say STOP when they think one minute is up. During this 

‘minute’ the experimenter was asking simple math questions 

(similar to those used during the time execution, see Table 

2). This procedure was also included into our user study to 
give the participants an idea on what questions they should 

expect during the UAV navigation. Then, the experimenter 

asked the participants to complete a pre-questionnaire to 

collect demographic data and information about their 

experience in related activities. 

After having watched a short video (1 minute 20 seconds) 

that showed one of the four routes, each participant 

performed the navigation task four times [26]. Once with a 

gesture set invented by themselves (called My Gestures) and 

once with each pre-defined gesture sets: Full Body, 

Puppeteer, and Mixed.  

All the participants started with My Gestures (they could use 

any gestures they find relevant for the considered navigation 

commands). However, they were asked to consider that their 

gestures should be understood by a human operator. The 

reason we asked the participants to begin with My Gestures 

is to see their spontaneous (natural) behavior and avoid 

biasing their behavior with our three pre-defined gesture sets. 

Before completing the navigation task with each of the pre-

defined sets, the experimenter showed all the gestures one by 

one (Mixed) and also explained the underlying idea of single 

mental model gesture sets (Full Body and Puppeteer). Apart 

from this short demonstration, the participants received an 

instruction sheet that showed these gestures (see Figure 3). 

The participants were encouraged to take as long as they 

need to study the gestures before proceeding to the task 

execution. 

The verbal description for Puppeteer was: You will control 

movements of the drone as a puppeteer controls a 

marionette. This is your neutral position (Figure 2 was 

shown). Imagine that there are two invisible links between 

your hands and the drone. Movements of the drone depend 

on your gestures. The description for Full Body was: The 

drone will imitate your full body movements. Imagine 

yourself in place of the drone. The presentation instruction 

for Mixed was: In this gesture set to move the drone up and 

down use the hand movements up and down like the drone is 

a marionette. To make drone fly right or left extend your 

arms to the side to imitate an airplane like children usually 

do it. Tilt your body to the right or left depends on what 

direction do you want to fly. To fly forward or backward just 

imagine yourself in place of the drone. Make a step forward 

to command the drone to fly forward. To rotate the drone, 

rotate your hand at elbow accordingly. 

As we observed, participants spent no time studying the 

instruction sheets and started steering the UAV right after the 

explanation (couple of participants took a few seconds to 

review gestures from Mixed set). During the task, the 

participant had no access to the lists of gestures. 

Study Group 
Sequence of study conditions 

1 2 3 

1 Full Body Puppeteer Mixed 

2 Puppeteer Mixed Full Body 

3 Mixed Full Body Puppeteer 

4 Mixed Puppeteer Full Body 

5 Full Body Mixed Puppeteer 

6 Puppeteer Full Body Mixed 

Table 3. The sequence of gesture sets according to balanced 

Latin square design. 



We applied within-subject design to get rid of individual 

differences. To deal with fatigue or improved performance 

we counterbalanced the four gesture sets. With 22 

participants, four gesture sets, and four routes, participants 

were assigned to use the gesture sets and routes in different 

orders. In particular, we used balanced Latin square design 

to allocate participants to gesture set sequences and to the 

routes. Latin square designs are often employed in 

experiments to minimize the number of participants required 

to detect statistical differences. Generally, potential 

carryover effects are not balanced out by randomization. 

Systemic methods are available for equalizing the residual 

effects [9]. Equal number of times each condition was in 

different order with other conditions and each condition was 

followed by different conditions also equal number of times 

(Table 3).  

At first all participants were asked to invent and use their 

own gesture sets. The other three gesture sets were counter 

balanced to prevent the problems with the sequence. 

In the previous study [17], Peshkova et al. verified that the 

four routes were equally difficult, but nevertheless we 

counterbalanced of the four routes as well to make sure that 

our operator does not know the order of routs. For the first 

six participants we used Route 1 with My Gestures, Route 2 

with Full Body, Route 3 with Puppeteer, and Route 3 with 

Mixed. For the following six participants, shifted the routes 

by one (Route 4 with My Gestures, Route 1 with Full Body, 

Route 2 with Puppeteer, and Route 3 with Mixed) and etc. 

We collected users’ time perception and their subjective 

evaluation of cognitive load experienced when using 

different gesture sets. The participants also reflected their 

subjective evaluation of the used gesture sets in a 

questionnaire before proceeding with a new gesture set. They 

answered the questions in regard to cognitive load (7-point 

scale), time evaluation (how long did it take to finish the 

route in their opinion) and evaluated statements about just 

performed gesture set (4-point Likert scale: strongly disagree 

– disagree – agree – strongly agree). During the entire 

experiment, the experimenter took notes about think aloud 

data. After having completed all tasks, the participants 

judged the four gesture sets regarding their intuitiveness, 

easiness, and memorability. In the final questionnaire the 

participants also gave description of gestures and selected 

their favorite/least favorite gesture set(s). The participants 

were also asked to explain their choice. 

RESULTS 

Cognitive Load 

We used the following measures to evaluate the level of 

cognitive load: time perception, dual-task performance, and 

participants’ subjective evaluation [2,3,5,6,8,21,22,24,25]. 

We also assessed intuitiveness, easiness, memorability, and 

learnability of the considered gesture sets through 

questionnaires. 

Time perception 

After performing the navigation task with each gesture set, 

our participants evaluated the time they spent to complete the 

task. Block and Gellersen [3] investigated the impact of 

cognitive load on the perception of time. It has been found 

that an increase of cognitive load leads to a decrease in time 

perception [1]. Hart [6] and Zakay and Shub [25] found that 

participants consistently underestimated time intervals when 

there was a greater task load: ‘increasing task difficulty 

caused the length of produced intervals to increase’ [2]. The 

descriptive statistics for the error in time perception for each 

gesture set is presented in Table 4.  

Figure 8 shows the density functions of these time intervals. 

From these functions we can see that some participants 

notably overestimated the time spent with My Gestures. 

Thus, we could not conduct one-way repeated measures 

ANOVA to test the significance of differences (homogeneity 

assumption is not satisfied) and we had to use non-

parametric test. We conducted non-parametric Friedman’s test 

[11] and found that the main effect of gesture set tended to be 

significant: 𝜒2(3) = 7.25, p = 0.06. Overall, we observed the 

overestimation of time (Table 4). As we can see, the 

participants perceived the time spent with My Gestures 

longer than with other gesture sets. The number of 

participants who underestimated the time was: My Gestures 

– 5, Full Body – 7, Puppeteer and Mixed – 8. That supports 

(though not significantly) our hypothesis that the cognitive 

load associated with intelligent gesture set (My Gestures) 

was the lowest, with imitative (Full Body) slightly higher, 

and with instrumented (Puppeteer) – the highest. 

Gesture set  Min. Med. Mean Max. S.D. 

My Gestures -68.5 43.48  62.24 255.88  83.31  

Full Body -99.31 29.86  24.06 166.59  58.79  

Puppeteer -62.66 21.33  26.73  128.27  56.15  

Mixed -64.19 22.13  24.74  146.29  58.34  

Table 4. Descriptive statistics of the error of time perception: 

Estimated Time – Actual Time. 

 

Figure 8. Densities of time deviations. 

Khan et al. [8] also investigated the effect of cognitive load 

on time perception. The authors also reported that higher 



cognitive load is associated with the higher difference 

between the actual and estimated time. Based on literature, 

we computed Directional and Absolute Errors (see Eq. 1 and 

2) for a further analysis of participants’ time estimation. 

Directional Error =
Estimated Time

Actual Time
 

Equation 1. 

Absolute Error =
| Estimated Time−Actual Time |

Actual Time
 

Equation 2. 

The descriptive statistics related to these errors are presented 

in Table 5. For directional errors, the main effect of gesture 

set, as previously, tended to be significant (Friedman’s test: 

𝜒2(3) = 6.6, p = 0.086). For absolute errors we found no 

significant difference (Friedman’s test: 𝜒2(3) = 3.6, p = 0.3). 

Directional errors are believed to increase with the increase 

in cognitive load, whereas absolute errors decrease. Though 

not supported by the results of our statistical tests, My 

Gestures seems to be the easiest to perform. 
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Gesture set  Min. Med. Mean Max. S.D. 

My Gestures 0.40 1.39 1.51 3.87 0.77 

Full Body 0.23 1.25 1.21 2.35 0.49 

Puppeteer 0.42 1.21 1.23 2.15 0.50 

Mixed 0.44 1.18 1.19 2.27 0.48 

A
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E
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My Gestures 4.14 54.86 64.32 287.12 65.03 

Full Body 2.33 35.21 41.97 134.99 32.62 

Puppeteer 4.85 38.59 44.05 114.80 32.09 

Mixed 1.61 33.70 39.52 127.17 32.50 

Table 5. Descriptive statistics of the directional error. 

Dual-Task 

We counted how many delays and wrong answers to math 

questions the participants made while steering the UAV. 

Figure 9 shows the obtained results. We did not find 

significant difference between the four gesture sets 

(Friedman’s test:  𝜒2(3) = 1.46, p = 0.69). 

 

Figure 9. Delays and wrong answers. 

Subjective Evaluation 

Upon each task completion, our participants evaluated 

cognitive load experienced with corresponding gesture set 

using 7-point scale. Figure 10 shows the results of this 

subjective evaluation. The most frequent evaluation (mode) 

for My Gestures was 3, we assume that it is related to the fact 

that our participants always started with this set. Full Body 

and Puppeteer were most frequently evaluated as 1 and 2, 

respectively. The most frequent evaluation for the Mixed 

gesture set was 4, that implies that this set was perceived as 

the most complicated. However, the difference between the 

four sets was not significant (Friedman’s test: 𝜒2(3) = 4.38, p 

= 0.22). 

Statements 

Upon task completion with each gesture set, the participants 

responded to five statements (six statements for My Gestures 

only) regarding the used gesture set using a 4-point Likert 

scale (strongly – disagree – disagree – agree –strongly 

agree): 

S1) I would imagine that most people would learn how 

to fly the drone with these gestures very quickly. 

S2) It was easy to fly the drone and reply to the 

questions at the same time.  

S3) I understand the idea behind the gestures. 

S4) The gestures are logically related to each other.  

S5) Each gesture individually makes sense for the 

considered commands. 

S6) It was easy for me to come up with gestures. 

 

Figure 10. Subjective evaluation of cognitive load: 1 – very 

low, 7 – very high. 

Due to the specificity of gesture-based interaction, we could 

not identify a standardized questionnaire covering the crucial 

aspects relevant for our study (intuitiveness, easiness, 

memorability, and learnability). Thus, because of the 

absence of established questionnaires for gesture we 

compiled the statements listed above. We analyzed the 

differences between the subjective evaluations of the four 

gesture sets with the Friedman test. For the post-hoc analysis, 

we applied the Wilcoxon test pairwise with Bonferroni 

correction. 

Figure 11 shows the obtained results with the horizontal axis 

representing the evaluated statements and the vertical axis 



indicating the total number of those participants who chose 

agree and strongly agree (Note: in the statistical analysis we 

used all four agreement levels).  As all our statements were 

positive, we can say that the higher the bar the better the 

evaluation was. Thus, we can conclude that Mixed gestures 

received more negative evaluation in most of the statements 

compared to My Gestures, Puppeteer and Full Body. S6 

concerned only My Gestures: 21 participants agreed that it was 

easy for them to come up with gestures. 

Most of the participants agreed that they would imagine that 

most people would learn how to fly the UAV with Puppeteer, 

Full Body and My Gestures sets very quickly (S1). In terms of 

significance, the statistical test revealed that Full Body is 

significantly easier to learn compared to My Gestures 

(S1: 𝜒2(3) = 14.3, p = 0.0025; post-hoc: p = 0.0075). Though 

not visible from Figure 11, most of the participants selected 

strongly agree with Full Body and agree with My Gestures. 

We found no statistical difference between other sets, 

however, we believe that Mixed is actually worse than others: 

eight participants confused gestures from Mixed while 

steering the UAV; one participant hesitated to show a gesture 

(up) when using Full Body and no one confused any gesture 

from Puppeteer. 

In all four tasks, the participants found it easy to steer the 

UAV and reply to math questions at the same time (S2: 𝜒2(3) 

= 5.75, p = 0.12). 

 

Figure 11. Subjective feedback from questionnaires (after 

using each gesture set). 

Mixed received the worst evaluation in all the statements. The 

smallest number of the participants understood the idea behind 

these gestures (S3: 𝜒2(3) = 10.45, p = 0.015) and agreed that 

the gestures are logically related to each other (S4: 𝜒2(3) = 

24.438, p < 0.0001) e.g., ‘very confusing’; ‘gestures did not 

seem to be connected to each other’. However, in the first 

statement the statistical analysis only showed significant 

difference compared to Full Body (S3 [post-hoc]: p = 0.0067). 

Compared to Mixed, a significantly greater number of the 

participants agreed that the gestures from My Gestures, Full 

Body and Puppeteer were logically related to each other (S4: 

𝜒2(3) = 24.438, p < 0.0001; post-hoc: p = 0.006, p = 0.0006, 

and p = 0.0008, respectively). Also, substantial number of 

participants agreed, that gestures in Puppeteer were more 

related to each other than in My Gestures set (S4: 𝜒2(3) = 

24.438, p < 0.0001; post-hoc: p = 0.0027). These results 

confirm that single model gesture sets were indeed perceived 

by our participants as coherent (logically related to each other). 

As expected, we found no significant difference between 

gesture sets in the fifth statement (S5: 𝜒2(3) = 4.66, p = 0.2). 

Thus, the participants agreed that all the gestures individually 

make sense for the considered commands, as opposed to S4 

that assessed the overall coherence (internal logical relation 

between gestures within one set). 

Learnability 

At the end of the experiment, we asked the participants write 

down a description of each gesture set for the next 

participant. Considering the fact that this participant would 

not see the actual gestures, but control the flight using the 

written description. We asked participants to either describe 

each gesture individually or describe the idea behind each set 

if they think it is sufficient to complete the navigation task 

(to guess the gestures).  The results are presented in Figure 

12. 

 

Figure 12. Description of gesture sets. 

Five and eleven participants decided that it is enough to give 

a hint (main idea) to describe Full Body (e.g., ‘imagine that 

your body is a drone’) and Puppeteer set (e.g. ‘imagine that 

you are a puppeteer moving a drone attached to your hands 

via strings’), respectively. Majority of participants (18 from 

22) gave a full description for My Gestures. We suppose that 

they just did not have enough time, or they did not try to 

recognize the idea behind their own gestures. Though, as we 

discuss later (see Discussion) there seem to be a common 

idea behind their behavior (gestures). As expected, all 

participants gave a full description for Mixed. 

Priorities 

We analyzed the differences between the subjective 

evaluations of the four gesture sets with the Friedman test. 

For the post-hoc analysis, we applied the Wilcoxon test 

pairwise with Bonferroni correction. 

In the end of the study, the participants selected their favorite 

gesture sets and the sets they did not like (multiple selections 

were possible for both ‘favorite’ and ‘least liked’). 

Participants also ordered the four gesture sets based on their 

intuitiveness, easiness, and memorability. 



As shown in Figure 13 and Figure 14, Puppeteer was favorite 

of most of the participants while Mixed turned out to be the 

one they did not like. Positive comments regarding 

Puppeteer (e.g., ‘easy to remember, easy to show’; ‘easy to 

understand, most intuitive gesture-set’; ‘easy to learn and 

you can concentrate on other tasks’) give evidence for their 

choice. 5 participants mentioned that they got the positive 

impression from their own gestures  (e.g., they liked ‘usage 

of own gestures’; ‘coming up with your own gestures, and 

not having to remember certain once’; ‘no need to remember 

gestures’) and Full Body (e.g., ‘easy to remember’; ‘it was 

like walking – very intuitive’; ‘It makes the most sense for 

me’). 12 participants scored Mixed Gestures as leased-liked 

and augmented ‘strange gesture set, not really intuitive’; 

‘very confusing’, ‘gestures did not seem to be connected to 

each other’; ‘It wasn’t easy to remember because sometimes 

you had to use your feet and sometimes you had to use your 

arms’. 

Since the participants could select more than one set for both 

‘favorite’ and ‘dislike’, the sums of the corresponding bars 

in Figure 13 and Figure 14 are not equal to the total number 

of the participants – 22. 

 

Figure 13. Favorite gesture set. 

 

Figure 14. Least-liked gesture set. 

We also asked our participants to assign priorities to the four 
gestures sets in terms of intuitiveness, easiness, and 

memorability. They could assign the same priority to several 

sets. 

 

Figure 15. Subjective feedback on intuitiveness: 1 – low 

intuitiveness, 4 – high intuitiveness. 

A significantly greater number of the participants found the 

single mental model gesture sets (Full Body and Puppeteer) 

more intuitive compared to the mixed mental models gesture 

set (Mixed): 𝜒2(3) = 12.90, p = 0.005; post-hoc for Mixed 

with My Gestures and Mixed with Full Body: p = 0.0005, p 

= 0.007, respectively. No significant difference between 

Mixed and Puppeteer (p = 0.058). The results for 

intuitiveness are shown in Figure 15. 

In terms of easiness, Mixed was evaluated significantly more 

complicated than the other gesture sets: 𝜒2(3) = 17.12, p = 

0.0007; post-hoc (My Gestures): p = 0.008; post-hoc (Full 

Body): p = 0.0002; post-hoc (Puppeteer): p = 0.0042. The 

results are shown in the Figure 16. 

 

Figure 16. Subjective feedback on easiness: 1 – very easy, 4 – 

very hard. 

In terms of memorability, Mixed was evaluated significantly 

less memorable than the other gesture sets: 𝜒2(3) = 17.08, p 

0.00068; post-hoc (My Gestures): p = 0.02; post-hoc (Full 

Body): p = 0.001; post-hoc (Puppeteer): p = 0.003. The 

results are shown in the Figure 17. 



 

Figure 17. Subjective feedback on memorability: 1 – hard to 

memorize, 4 – easy to memorize. 

Think Aloud Data and Comments 

We asked the participants to give an appropriate name for the 

Mixed gesture set. We did not mention that the name of this 

set is Mixed. By letting our participants suggesting their own 

name for this set, we intended to check if participants would 

notice and reflect the mixed nature of this set in its name. 

Figure 18 represents the results as word cloud where words 

with a bigger size represent names that are more frequent. 

 

Figure 18. Word cloud of names for the Mixed gesture set. 

Most of participants named Mixed set as airplane (7), 

helicopter (3), and child (2). We suppose that all these names 

were given according to the most eye-catching (‘feature’) 

gesture (airplane: left-right movement and helicopter: 

rotation) from the set. 

Two participants, whose last gesture set was Mixed, 

mentioned that it was ‘a combination of everything’, ‘the 

most difficult one for me’, and ‘confusing’. 

DISCUSSION 

As commonly used in the relevant Human-Computer 

Interaction works, we selected participants’ subjective 

evaluation and dual-task performance measures to assess 

cognitive load that different gesture sets impose on users 

[5,21,22,24,25]. Following the recent research work in 

Human-Computer Interaction, we also included measures of 

participants’ time perception as an indicator of cognitive load 

[2,3,6,8].  

As a result of our study, we did not find a significant 

difference between gesture sets in terms of cognitive load. 

However, we did observe some notable differences between 

the four gesture sets. Specifically, based on our time 

perception measures, we noticed that My Gestures set was 

associated with the lowest cognitive load among the four sets 

under study. This finding is interesting considering the fact 

that all the participants completed their very first navigation 

task with this gesture set.  

Overall, Mixed received the worst evaluation compared to 

the other three sets that supports the previous research [17]. 

As reported, the difference was not always significant, but it 

was always inferior to our three single mental model sets. 

Compared to the other sets Mixed is the hardest to learn (see 

Statements and Learnability subsections): we observed the 

biggest amount of gesture confusions with this set. Our 

participants confirmed that this set was not logical and 

confusing (S4) – it lacks internal coherence. Mixed was 

perceived as the least intuitive, the hardest to use and to 

memorize. As an outcome, this set was selected by the 

majority of our participants as the least-liked. Considering 

that we intentionally selected gestures from different mental 

models for this gesture set, the obtained result is not 

surprising, but it does put a stress on the importance of 

considering adherence to a single mental model when 

designing gesture-based vocabulary. 

Though the obtained results do not support our first 

hypothesis (cognitive load grows from left to right: My 

Gestures – Full Body – Puppeteer), we did observe some 

tendency in favor of this hypothesis. We believe that a 

potential reason for this negative outcome is poor 

‘sensitivity’ of the employed measures. The difference of 

cognitive load between the three gesture sets appears to be 

harder to measure and more precise measures could be 

considered. Thus, it seems promising to us to further 

investigate cognitive load associated with different classes of 

mental models using biofeedback – pupil dilation. We 

suppose that five statements might not be enough to get the 

comprehensive data: extended questionnaires could be used 

in future works. In particular, the first statement could be re-

formulated: “I would imagine that a CHILD would learn how 

to fly the drone with these gestures very quickly”. We believe 

that this statement might help to show the difference between 

Full Body and Puppeteer. It would be also interesting to 

compare a couple of representatives from each class of 

mental models for a more comprehensive comparison.  

In this study, My Gestures set represents the intelligent class 

of mental models: our participants were showing gestures 

that a human operator understands, human-to-human 

interaction. None of the participants had troubles inventing 

gestures, no hesitation was observed. We noticed that most 

of the participants used similar gestures to steer the UAV: 

they indicated the direction to fly using an index finger (3 

participants), one hand (13 participants) or both hands (5 

participants) and either rotated their body (7 participants) or 

rotated their hand at elbow (8 participants) to show the 

desired rotation direction. From the fact that all our 



participants immediately come up with similar gestures, we 

can imply that their behavior was indeed natural. 

The participants confirmed that they enjoyed steering the 

UAV using their own gestures (e.g., ‘I did not have to 

memorize gestures’). Though the participants had a complete 

freedom to suggest any relevant gestures, we did not find 

much variety among their behavior. Basically, their gestures 

could be described via a single sentence: use you hand to 

indicate the direction to fly or rotate. Thus, the participants 

tended to follow a single idea and their gestures actually fit 

into a single mental model that is another interesting finding.  

Full Body and Puppeteer represent imitative and 

instrumental classes of mental models, respectively. As 

mentioned earlier, we found no significant difference 

between these gesture sets in terms of cognitive load. 

Nevertheless, we strongly believe that it makes sense to 

continue investigating cognitive load associated with these 

two sets using other more accurate measures that could be 

biofeedback (e.g., heart-rate variability, brain activity, skin 

conductance, and eye-tracker) to collect more fine data. In 

addition, for a more comprehensive investigation, it would 

be interesting to consider a couple of representative gesture 

sets from each class of mental models. 

Several participants evaluated Full Body as physically 

demanding (e.g., ‘too much movement’; ‘it might get 

exhausting’). This finding suggest that Full Body is not 

acceptable for long-term navigation due to its high physical 

demand, but it might be appropriate for short-term 

navigation it the field of entertainment [17]. The participants 

evaluated Puppeteer as more appropriate set for a long-term 

navigation and for people with limited abilities. 

Several participants negatively commented individual 

gestures for the following commands: rotate left & rotate 

right in Puppeteer (3 participants found them hard to use) 

and Full Body (1 participant did not like to rotate the whole 

body as it was not convenient to look at the projection wall); 

up & down: standing on the toes and bending their knees 

down (due to a physical demand 3 participants did not like 

it); left & right in Mixed (6 participants mentioned that they 

felt silly using this gesture). 

CONCLUSION 

We conducted a user study, in which we compared four 

gesture sets in terms of cognitive load as well as 

intuitiveness, easiness, memorability, and learnability. We 

investigated whether there is a difference between: 1) the 

three classes of mental models (intelligent, imitative, and 

instrumented) and 2) single mental model gesture sets and 

mixed mental model gesture sets. 

Our findings confirmed our second hypothesis: mixed mental 

model gesture sets are indeed the worst in terms of cognitive 

load, intuitiveness, easiness, memorability, and learnability. 

As for the first hypothesis, our statistical analysis did not 

confirm it. However, we observed that the representative of 

the intelligent class of mental models (My Gestures) was 

notably easier in terms of cognitive load, even though our 

participants always started with this set (no prior experience 

at all). As for imitative and instrumented classes of mental 

models, we found no significant difference between Full 

Body and Puppeteer. We still believe that there is a 

difference, but to measure it we need more accurate 

measures.  Thus, we are planning to repeat our study using 

biofeedback – pupil dilation. 
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