
Down to Hades and Back – Experiences Gained in
Comprehending a Distributed Legacy System

Pavol Dano∗†, Andreas Bollin ∗
∗Alpen-Adria University of Klagenfurt, Klagenfurt, Austria

andreas.bollin@aau.at, pavol.dano@aau.at

†Technical University of Košice, Košice, Slovakia
pavol.dano@gmail.com

Abstract—Software engineering principles and practices face
a lot of challenges. Among them, debugging and comprehend-
ing systems is still demanding. Furthermore, comprehending
distributed systems, even though there are several papers and
approaches to be found in literature, is a challenge of a completely
different dimension. This paper describes the experiences gained
when trying to comprehend (and debug) a distributed legacy
system and it takes a closer look at the different options somebody
has in similar situations. It does not propose specific tools or
methodologies, but tries to provide guidelines to developers who
might be challenged by comparable problems.

I. MOTIVATION

Among many others, software engineering principles and
practices face a lot of challenges. As our programs are getting
bigger, are embedded in the real world, and age, they become
even more difficult to understand and to maintain. In 1995,
Brooks [1, p.182] already mentioned that ”software entities
are more complex for their size than perhaps any other human
construct, because no two parts are alike (at least above the
statement level). [...] In this respect software systems differ
profoundly from computers, buildings, or automobiles, where
repeated elements abound.”

Following the arguments of Banker, Davis and Slaughter
[2], to understand during forward engineering is not without
effort, but the situation gets worse if one is changing from
the construction phase to maintenance, reverse engineering or
design recovery. In 2014, we experienced such a situation at
first hand. In lectures at two Universities (Austria and Slovakia)
we are using the AMEISE (A Media Education Initiative
for Software Engineering) framework [3], [4] which focuses
on the simulation of software project management processes.
The related project started at the Alpen-Adria University in
Klagenfurt in 2001, and, apart from the pedagogical aspects,
the software is implemented as a distributed system consisting
of any number of clients, one load balancing manager, and up
to n simulation cores - all of them running on different engines
and summing up to 140.000 LOC in software. Over the past
13 years more than 40 developers contributed to the system,
and apart from one co-author of the paper, all stakeholders
have left the project.

After a quite stable phase during the past 4 years, we
experienced serious problems with the software during a
simulation run in Košice at the beginning of 2014. The system

became unstable, and we had a hard time to finish the lecture
as intended. The need to debug the system became evident
as we then had similar problems in Klagenfurt – the system
either stopped or skipped simulation steps.

In Klagenfurt, we thus started a project with one developer
(doing an Erasmus placement) dedicated to this situation,
and the objective of the paper is now twofold. First, we
strongly believe that one always can learn from post-mortem
project reports, and so the paper tries to motivate others
by sharing our experiences (and highlighting drawbacks) in
such circumstances. Secondly, it introduces a tailored approach
(we called it ”pair debugging”) which helped us in finally
comprehending the underlying system and fixing the problems
successfully.

The paper is structured as follows. Section II introduces the
background of this work. Section III addresses the challenges
one might have to deal with. Section IV then presents the
approach that we followed and we think was the basis for
successfully fixing all the bugs. Finally, Section V concludes
the work with a summary and some outlook of work that needs
to be done in the future.

II. BACKGROUND

A. The AMEISE System

AMEISE is a Client/Server system using a simulation
engine called SESAM (Software Engineering Simulated by
Animated Models). SESAM has been developed at the Uni-
versity of Stuttgart under the direction of Jochen Ludewig [5].
The major differences between SESAM and AMEISE is that
AMEISE is distributed among several server engines and that it
heavily relies on helper components built around the simulation
core. Additionally, key data of every simulation step is stored
in a MySQL database for later assessment and visualization.

The system follows a state-less Client-Server architecture.
Due to the high need of resources for the simulation cores,
requests from clients are distributed to several server engines
via a dedicated load balancing server. Quite from the begin-
ning, a CVS system was used, the development environment
was standardized and fixed, and there is a rich set of (honestly
still lacking) documentation in at least two languages, German
and English. In fact, it seems to be a ”typical” SW system
produced at Universities, where quality is an issue, but due to



TABLE I: Shortlist of comprehension/debugging techniques
and related papers.

Label Technique Related paper
T01 Logging & Tracing [6][7][8]
T02 Path Rules [9][10]
T03 Slicing & Dicing [11][8]
T04 Statistical Debugging [12]
T05 Visualization [13][14][8][15]
T06 Replay Technique [11] [14][15]
T07 Controlled Execution [14]
T08 Breakpoints [14][15]
T09 Algorithm Recognition [16][17]
T10 Model-based Debugging [11][6][18][19]
T11 Assertions/Predicates [14][?][9][10]
T12 Query-based Debugging [6][20]
T15 Delta Debugging [21]
T16 Software Reconnaissance [22][8]
T17 Code Reviewing [23]
T18 Bug (Defect) Prediction Modeling [24][7]
T19 Filtering [21][14][6][7][8] [25][15]
T20 Clustering [21] [25]
T21 Plan Recognition [26][17]
T22 Language Consistency Checking [17][10]
T23 Bug Cliche Recognition [16][26]

time constraints and varying developers’ skills, portions of the
code vary in their quality properties.

Up to January 2014, the simulation environment ran stable
at our server farm in Klagenfurt and we hosted more than 2.000
trainees over the past 10 years. However, we had a group of
150 students in a lecture at the Technical University in Košice
(TUKE) in January 2014, and the system “suddenly” became
instable. The system in Klagenfurt was accessed remotely via
the WLAN network from TUKE (which worked a year before
without problems), and we experienced the following: firstly,
some of the client interfaces got stuck, not being able to
proceed with any other simulation step. Secondly, some of our
server engines raised exceptions (duplicate key entry problems
in the database) and stopped working. And finally, the response
times got worse during the simulation run, varying between 4
and 200 seconds per simulation step.

At TUKE, we found out that the bandwidth of the WLAN
network caused problems. So, we expected that some data
packages got lost and database entries were inconsistent –
leading to all the other problems. But, as we had the same
situation then in Klagenfurt in April 2014 (with fast and stable
internet connections), it was evident that the bandwidth of the
WLAN was not the (only?) problem.All we knew was that
during the last two years the hardware the server farm was
running on had been partially upgraded, and as there was no
developer with system knowledge available, we set up a new
software maintenance project.

B. Approaches and Tools

At first, we took a closer look at techniques and methods
related to comprehending and debugging software systems.
By looking at more than 100 articles, it turned out that the
techniques listed in Table I seem to be the most relevant ones.

We also took a closer look at the problem fields (error
classes) that we thought were related to our topic. Hayes et
al. [27, p.128–134] did a very useful classification of errors
which we then decided to follow. As we were not able to

start with specific scenarios or perspectives on requirements,
the following abstract and high-level classification seems to be
the best we could start with:

Correctness Problems. This class is divided into the fol-
lowing sub-classes: Logical Problems (coding mistakes like
infinite loops, code dependency errors, communication ty-
pology and inappropriate data distribution errors), Coding
Problems (memory leaks and overwrites, and communication
miss-specification), and Language Problems (errors caused
by erroneous send/receive syntax and semantics, incorrect
object definitions and classifications, and inappropriate data
distribution maps).

Performance Problems. They result in an inevitable sub-
optimal system performance. This problems class can
be divided into the following sub-classes: System Effi-
ciency (e.g. unnecessary synchronization barriers, inappropri-
ate changes of the data distribution), Redundancy (redundant
data access or computations), Data Locality, Coding Efficiency
(poor code organization and inappropriate communication
topology), and I/O Error.

The process model we followed (see Section IV-A for
details) allows for a perennial selection of suitable tools or
techniques. At the beginning, however, we did not know
anything about the problem type and which flow of control was
leading to the problem. We also had no older (correct) version
of the code-base available. With the restricting factor that some
tools or approaches were also not available or suitable for Java
and our environment, we ended up with the following set of
techniques to be used in our situation:

1) Looking at problem classes, we assumed logical (code
dependency, communication topology), efficiency (synchro-
nization) and coding problems within our system. So, we used
techniques T01 (Tracing), T05 (Visualization), and T20 (Fil-
tering) in combination with T21 (Clustering) as our recurring
standard techniques.

2) In order to comprehend and narrow down the problem space,
especially at the beginning of our endeavor, we enriched our
standard techniques by techniques T15 (Delta Debugging), T17
(Code Reviewing) and T18 (Bug Prediction).

III. THE SOFTWARE ANALYSIS TASK

The paper is called ”Down to Hades and Back” as com-
prehending (going down) and debugging (coming back again)
is at least as challenging as entering the Hades in the Greek
mythology and leaving it in one piece again. We experienced
such challenges, tried to understand why they appeared, and
attempted to learn from it. The challenges are written in
sequential order, but, please note that it does not fully match
the chronological order in the process we really followed.

A. Methodology Selection (The Tortures)

For a wide variety of specific problems there are a lot
of approaches and tools, some of them called methodologies
nowadays. But, two questions immediately arise.

(a) The first question is how to find a match between the
problem class(es) and the techniques described in literature. It
turns out that there are already too many ”trees in the forest”,



and available textbooks are by far too general. The situation
gets even worse when you do not know WHY your system fails
as this means that there are even more forests to be considered.

(b) The second question pops up when you know the
problem class but find more than one method that could be
helpful. Here, one needs to find out where to start in order to
prevent from wasting too many resources.

Finding the bug(s) seems to be hard in situations like ours
as we lacked in knowledge of the problem class and about the
set of suitable methodologies and techniques. The challenge
then became a torture as we did not know HOW to start the
debugging process. Without guidance, one has to try out one
method by the other. Mapped to our metaphor, one needs a
guide to find the entrance to the Hades.

We started with the technique of logging and tracing (as
we had at least the exception traces pointing to some portion
of code) in order to come closer to the assumed error. But, we
soon learned that the exception was a side-effect and thus we
could not narrow down the portion of the code to be examined.
Therefore, we did not apply any third-party library, but found it
more practical to enhance our debugging module with a set of
methods we then called at hot spots that we wanted to analyze.
It took us 1 week till we excluded approaches we could not
apply and finally came up with a slightly modified debugging
technique explained in some details in Section IV.

B. Facing with Side-Effects (The Observation Sin)

Experienced developers might already have been noticing
the mistake we made when using logging and tracing (by
adding output statements to the code). We underestimated the
fact that we are dealing with a system that has multiple threads
running in parallel, most of them distributed. Well, we of
course thought that we handled events correctly, but what we
did not expect was the fact that not all of the threads were
synchronized carefully (which we found out later). By purely
adding lines of code we ran into the probe-effect.

It is like Orpheus who escaped with Eurydice from Hades.
He was overwhelmed by a desire to look behind him to make
sure his wife still followed him. And, when he looked back,
Eurydice was pulled back into the Nether Regions. In our
case, it took us 2 days to deal with the problem. The way
of observation was our sin.

C. Replay Considerations (Time is the Obolus)

We still have not arrived at Hades yet. Another factor that
has to be considered is the amount of resources that are needed
in order to comprehend the system. So, it is about the Obolus
one has to pay when crossing the river Styx. In our case we
were lucky to have a batch-facility in AMEISE that allowed us
to conduct simulation runs in an auto-play mode. However, the
problem only appeared in 10% of all the simulation runs, and
also was dependent on the number of server engines running.
Even more, one simulation run lasts at least 3 hours. In all,
this limits the amount of tests one can do a day. Charon, the
ferryman, had raised the price for crossing the river Styx. It
took us another 3 days to come up with a setting that allowed
us to reliably reproduce the problem.

D. Size of Log Data (Crossing the Data Styx)

Debugging in our case meant to combine the debugging
process with reverse engineering steps. Thus, one collects and
produces data in various forms. The problem here is that
it really is a lot of data which is generated. The diagrams
and models we recreated during reverse engineering steps
were large and one full simulation round with 20 clients also
produces several Gigabyte of log data (in just 3 hours). So, we
additionally used filtering and clustering techniques to help us.

There are few other facts that made crossing the river
Styx (our log data) even more complicated. For example, the
simulation cores are deployed to multiple machines and these
machines initialize multiple processes that communicate with
each other. As only one log file is produced on the level of the
single module, we neither could guarantee that the aggregated
log (a log file created by merging all existing log files) would
have execution representatives of all possible executions of
the system. With that, an approach like the one suggested by
Beschastnikh et al. [29] (where AspectJ is used for monitoring
socket connections) was not suitable in our situation.

Comprehending our log files turned out to be a challenge.
There are still a lot of old debugging statements in the
AMEISE system (from previous maintenance activities), and
the question now is which of them to reuse, which of them to
neglect, and, even more difficult to answer, how to interpret
their meaning. A lot of old log-statements were not clear due
to a lack of documentation. After a day we decided to disable
all of them (before endlessly guessing their meaning) and to
introduce and document our own log statements.

E. Camouflage Effect (Escaping Hades, but how?)

Another big challenge is that even in simple systems a set
of problems can be camouflaged by a single problem. Exactly
that happened in our case. Based on past experiences with
the AMEISE system (and its stability) we expected a single
problem that yields the erroneous behavior, but at the end of
the day it turned out that there were several problems (hidden
in the code for years) contributing to the observed effect. Greek
mythology shows us that there are several ways of how to leave
the Hades again. Also, in our case we needed to consider more
than one path to succeed. At the end, it turned out that the
buggy situation had several reasons and they existed in the
code for more than 7 years:

First, due to an hardware upgrade, our processes were
much faster and the number of open sockets (due to more
polling requests) was too high for the operating system and
the Java connections. Additionally, polling delays and timeouts
were not adopted to the new hardware speed. Secondly, the
database was not configured to handle that many concurrent
requests at a time (about 1.5 Mio. SQL requests in 3 hours).
Next, some threads, especially those operating on request
and response queues, were not synchronized. Also, the load
balancing mechanism had a bug in the distribution algorithm
(where the new polling time was calculated) – only appearing
in extremely rare and special timing conditions. It was the one
issue that was most difficult to identify. And finally, the load
balancing mechanism had a bug when a simulation core was
marked as being down.



F. Finally – Breaking with Myths

As mentioned in the introduction section, debugging con-
current and distributed systems is difficult. This section now
reflects on the challenges mentioned above and concludes with
hints for improving the situation a bit.

(1) At first, there was the problem of selecting the right
methodology (our tortures). To our experience, available ap-
proaches are either too specific or too general to be applicable.
Furthermore, there is a lack in papers describing HOW to start
with a comprehension and debugging project and HOW to
narrow down the problem class.

In our case, we classified the approaches we found in
literature so that we have a better overview (see Section II-B),
introduced a modified version of peer reviewing (based on
discussion and reflection), and made use of code metrics to
speed up the process (see Section IV for process details).

(2) Another difficulty is in reproducing the erroneous
behavior in a controlled manner (which reminded us on
the observation problem). The approach to be used heavily
depends on the problem at hand, but one should be aware
that an observed system might change its behavior. A stepwise
approach (less is more) is advisable, not adding too much to
a system at a time. And, every step has to be documented and
verified in respect to what one expects.

In our situation, we had to extend the code base (by
synchronizing events) so that we were able to place reliable
measure and log points to the system. We collected statistical
data about the run-time behavior and compared every new ver-
sion with the old one, following the notion of delta debugging.

(3) The next problem to be considered was a restriction
in the amount of available resources (so, the Obolus to pay).
Here, one has to think about a reasonable tradeoff between
different methodologies and the time and resources one can
spend for it.

In our case, we used versioning for all of our log data
as it turned out that we needed to jump back to the results
of older experiments and test runs. We also organized a text
editor which was able to deal with large log files and made
use of scripts, filtering and clustering techniques as often as
possible.

(4) Another challenge is then how to interpret the large
amount of data you collect (crossing the Data Styx). Assigning
meaning to the data is crucial, but to our experience one is
tempted to collect more than necessary at the beginning. A
rule might be to think about ways in how to understand and
filter the data right from the beginning. And then, the principle
of ”less is more” should be followed again. Another issue is
that one really needs to take notes (best is to document it in
the version control system AND in the artefact). It has to be
clear WHY one is doing WHAT and WHERE.

In our case, we defined several problem dimensions
(i.e. network, database, memory, file system, time behavior)
that we thought to need to take a look at, used unique labels
and expressive descriptions, and exported the data in such a
way that it can be read by a spreadsheet environment. Then we
used simple visualization techniques to compare the assumed
behavior and the actual behavior.

Problem Class 
Detection

Tools / 
Technique(s) 

Selection

Localization/
Removal

Problem 
Reproduction

Verification/
Validation/

Testing

1

23

45

6

7
Debugging

Preparation

Fig. 1: Necessary steps when comprehending and debugging a
system without knowing the error class/techniques to be used.

(5) The last issue is that there might be a camouflaging
problem hiding other problems (hiding our escape options).
As long as we do not know exactly what the problem is, we
need to be prepared for multiple problems and solutions. This
makes the decision about which technique to follow extremely
hard. One heuristic might be to use those techniques that cover
most of the assumed problem fields, and we decided to observe
several problem dimensions at the same time.

After trying out different techniques, we noticed that we
need to follow our own systematic approach, and we called it
“pair debugging” (see next section for details).

IV. A TAILORED APPROACH

A. Comprehend and Debug – Debug and Comprehend

In our case we had to deal with a situation comparable to
the situation described by Zeller in his article “Yesterday, My
Program Worked. Today, It Does Not. Why?” [21]. Retrospec-
tively, it turns out that it is clear why our emotions during
the comprehension and debugging process had their ups and
downs. Figure 1 exemplifies the most important steps we had
to follow during first comprehending and then debugging the
AMEISE system. Up to now this process can be described as
follows:

With the arrival of a problem (or a set of problems) at
point 1 we are entering a phase we called Preparation and
where the detection of a problem/error class and the selection
of suitable tools and techniques go hand in hand. It is also the
part that complicated our situation and led to the introduction
of an own debugging technique helping us with identifying
the problem classes. When one is sufficiently convinced that
the selected technique might be helpful, 2 then it comes
to the sub-process that developers usually call ”Debugging”.
However, debugging might (partially or fully) fail, and 3 it
might then be necessary to go back to the preparation phase.
Taking a closer look at this process, debugging incorporates
at least two sub-processes 4 . First, activities for being able
to reproduce the problem when needed, and, secondly, activ-
ities for the localization and removing of the bug (or bugs).
After completing the debugging process 5 , quality assurance
activities take place. Figure 1 mentions testing, verification,
validation as some popular representatives. Finally, this quality
assurance process could start a new cycle in case of problems
6 or terminate the process 7 .



Meeting 
Preparation

(Re-)Define 
Problem 

Dimensions

Identification of 
(next) 

Behavioural 
Unit/Szenario

Scrutinization/
Questioning

Specification

Behavioural Re-Documentation

Candidate 
Evaluation

Bug / Hot Spot
Candidates

Fig. 2: Process behind pair debugging, the core technique
that we used for understanding and localizing the bugs in the
AMEISE system.

B. Pair Debugging

Section IV-A mentioned that especially the preparation
phase was the challenging part. How to proceed when you do
not know where the problem is (so, which error class to start
with)? Based on the given situation (where we had one novice
developer in the debugging team) we decided to borrow the
ideas from team programming and to create our own debugging
approach out of it. We called it team debugging. It is a mixture
of comprehension and debugging techniques, and as such it
differs from expert code reviews (class T18).

The process is exemplified in Figure 2 to some extent.
First, it starts with the preparation for the meeting. Room and
resources (whiteboard, scratch paper, pencils ...) are organized,
and the pair is formed. A pair is composed of two persons in
our case, taking two different (and quite opposite) roles. The
first role is the Developer who is responsible for digging into
the code. This person reads the code on the statement level,
whereas the other role is the Manager, a person with technical
background, but who acts like a member of the project board
who has to understand the system from a senior users’ and
executives’ perspective. The overall task is, of course, broken
down into manageable pieces (for 1/2 day meetings), but then
the preparation phase differs for these two roles.

The Manager reads through the available documentation (ar-
chitecture level). He or she then looks at existing reports, and,
as in our case, also at code metrics. The problem report is
studied (it is allowed to look at code), and the preparation
phase has the objective to prepare the manager for guiding the
debugging process. Metrics, results from fault prediction mod-
els, and the manager’s experience should help in generating a
preconceived opinion about possible hot-spots in the code.

The Developer reads through the code and tries to understand
the flow of control and data as fast and as reliable as possible.
This prepares him or her to be a selective respondent during
the debugging process.

The next step is then the selection of the problem dimen-
sions. As we really did not know where to start, we decided to
look at several dimensions (like time or network connection)
at the same time.

The heart of the technique is then the behavioral (re-)
documentation of the system. The Manager suggests which
unit (component or class) or scenario to start with or to select
next (Identification step) and the pair agrees about it. Then, the

Developer explains what happens in the code and the Manager
writes down the specification of it (Specification step). In
such a way, the produced diagrams are used to document the
behavior of the components, but also to write down striking
features and questions. The job of the manager is to ask
back everything difficult to understand or being too complex
(Scrutinization step). Here, the look at metrics and other
reports beforehand turned out to be very helpful. Questions
like ”I don’t believe that the load balancing algorithm does
really work. Can you convince me?” or “Why are we loosing
500 ms here?” finally led, after evaluating them (Candidate
Evaluation step), to a set of candidates of possible bugs but
also areas and hot-spots in the code to look at.

The documentation stays at a quite abstract level, and it has
the following three purposes: first, to guide the pair through
the system, secondly, to help reviewing large portions of code
in short time, and thirdly, to systematically collect areas in (or
effects of) the code which might contribute to the problem you
try to solve. The document is then used to test assumptions
that you have against the effects in the system.

Checking all the candidates needs time, but in our case, we
managed to came up with a list of potential problem classes
for all three components within three 2.5 hours meetings. The
method relies on an old hypothesis, namely that one assume
that there are more bugs in areas which are hard to understand
and to explain.

C. Limitations

In our case, the approach had its merits as we were able to
localize the hot spots in a systematic manner. But, it can not
guarantee that all hot-spots are identified promptly, and here
at least two limitations should be mentioned.

Firstly, it does not help with the decision of which tech-
nique or tool to start with. In our case we had to deal with
both, functional and performance bugs, and at the end of the
debugging phase it turned out that most of our bugs were
performance-related. Focusing on the area of performance
engineering might have been working in our case, too.

Secondly, the technique is also not immune to mistakes.
In our case, at the first peer-review meeting the Manager said
that he did not understand the load-balancing mechanism. He
thought that the problem was there. The code was reviewed,
but no problem was detected by the Developer. However, due
to a misunderstanding the Developer looked at portion of the
code out of the scope of the actual problem. The candidate was
removed from the candidate list. One week later, by making
use of visualization techniques, the issue was brought back to
the candidate list – basically it was the problem to be solved
so that stability was reached again.

V. CONCLUSION

This contribution presents a real-world scenario which
shows the difficulty of comprehending and debugging a dis-
tributed Client-Server environment. It explains the impedi-
ments (being inspired by Greek mythology) that we had to deal
with, but also presents our lessons learned. We also present the
process model we followed and think that, put into a broader
context, it could be the starting point for a more general model
used by other developers in the future.



Our project findings are manifold and are, considered
separately, not really surprising. But, there is one issue that
turned out to be a necessity right from the beginning: to start
with a stepwise approach where every decision or action is
documented and versioned for later (re-)use. All tools and
techniques we looked at seem to have their merits, but it is
the human factor which plays the major role in such a project.
It is the ability to critically reflect on what is summarized,
visualized, abstracted, pointed at, or discussed. And, only by
versioning all steps (decisions, modifications, results) during
the comprehension and debugging phase, the human developer
has the necessary freedom to work on the problem at hand,
not worrying about memories fading away.

REFERENCES

[1] J. Frederick Philips Brooks, The mythical man-month: essays on software
engineering - Anniversary edition. Addison Wesley, 1995.

[2] R. D. Banker, G. B. Davis, and S. A. Slaughter, “Software development
practices, software complexity, and software maintenance performance:
A field study,” in Management Science, vol. 44, no. 4. Institute for
Operations Research and the Management Sciences, April 1998, pp. 433–
450.

[3] R. Mittermeir, E. Hochmüller, A. Bollin, S. Jäger, and M. Nusser,
“AMEISE - A Media Education Initiative for Software Engineering:
Concepts, the Environment and Initial Experiences,” in Proceedings
International Workshop ICL - Interactive Computer Aided Learning,
Villach, M. Auer, Ed., Sept. 2003, iSBN 3-89958-029-X.

[4] A. Bollin, E. Hochmüller, and R. Mittermeir, “Teaching Software Project
Management using Simulations,” in Proc. 24th IEEE-CS Conference on
Software Engineering Education and Training (CSEE&T 2011), J. B.
Thompson, E. O. Navarro, and D. Port, Eds., 2011, pp. 81–90.

[5] A. Drappa and J. Ludewig, “Simulation in Software Engineering Train-
ing,” in Proceedings, 23rd International Conference on Software Engi-
neering, IEEE-CS and ACM, May 2001, pp. 199–208.

[6] C.-S. Park, K. Sen, P. Hargrove, and C. Iancu, “Efficient Data Race
Detection for Distributed Memory Parallel Programs,” in Proceedings
of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’11. New York, NY, USA:
ACM, 2011, pp. 51:1–51:12. [Online]. Available: http://doi.acm.org/10.
1145/2063384.2063452

[7] M. Ganai, N. Arora, C. Wang, A. Gupta, and G. Balakrishnan, “BEST:
A symbolic testing tool for predicting multi-threaded program failures,”
in Automated Software Engineering (ASE), 2011 26th IEEE/ACM Inter-
national Conference on, Nov 2011, pp. 596–599.

[8] W. Wong, S. Gokhale, J. Horgan, and K. Trivedi, “Locating program
features using execution slices,” in Application-Specific Systems and
Software Engineering and Technology, 1999. ASSET ’99. Proceedings.
1999 IEEE Symposium on, 1999, pp. 194–203.

[9] Z. Xu, J. Zhang, and Z. Xu, “Memory Leak Detection Based on Memory
State Transition Graph,” in Software Engineering Conference (APSEC),
2011 18th Asia Pacific, Dec 2011, pp. 33–40.

[10] M. Ducassé and A.-M. Emde, “A Review of Automated Debugging
Systems: Knowledge, Strategies and Techniques,” in Proceedings of the
10th International Conference on Software Engineering, ser. ICSE ’88.
Los Alamitos, CA, USA: IEEE Computer Society Press, 1988, pp. 162–
171. [Online]. Available: http://dl.acm.org/citation.cfm?id=55823.55841

[11] A. Vo, S. Vakkalanka, M. DeLisi, G. Gopalakrishnan, R. M. Kirby,
and R. Thakur, “Formal Verification of Practical MPI Programs,” in
Proceedings of the 14th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, ser. PPoPP ’09. New York, NY,
USA: ACM, 2009, pp. 261–270. [Online]. Available: http://doi.acm.org/
10.1145/1504176.1504214

[12] J. S. Vetter and M. O. McCracken, “Statistical Scalability Analysis of
Communication Operations in Distributed Applications,” in Proceedings
of the Eighth ACM SIGPLAN Symposium on Principles and Practices of
Parallel Programming, ser. PPoPP ’01. New York, NY, USA: ACM,
2001, pp. 123–132. [Online].

[13] S. Bassil and R. Keller, “Software visualization tools: survey and
analysis,” in Program Comprehension, 2001. IWPC 2001. Proceedings.
9th International Workshop on, 2001, pp. 7–17.

[14] Rogue Wave Software, “PDF User Guide, Version 8.14.1,” Online,
http://www.roguewave.com/help-support/documentation/totalview. Page
last visited: Nov. 14th, 2014.

[15] S. Shende, J. Cuny, L. Hansen, J. Kundu, S. McLaughry, and O. Wolf,
“Event and State-based Debugging in TAU: A Prototype,” in Proceedings
of the SIGMETRICS Symposium on Parallel and Distributed Tools, ser.
SPDT ’96. New York, NY, USA: ACM, 1996, pp. 21–30. [Online].
Available: http://doi.acm.org/10.1145/238020.238030

[16] W. L. Johnson and L. A. Gladwin, “Intention-Based Diagnosis of
Novice Programming Errors,” IEEE Expert, vol. 2, no. 3, pp. 94–94,
Sept 1987.

[17] C.-K. Looi, “Automatic debugging of Prolog programs in a Prolog Intel-
ligent Tutoring System,” Instructional Science, vol. 20, no. 2-3, pp. 215–
263, 1991. [Online]. Available: http://dx.doi.org/10.1007/BF00120883

[18] T. Jeron, J.-M. Jezequel, and A. Le Guennec, “Validation and test gen-
eration for object-oriented distributed software,” in Software Engineering
for Parallel and Distributed Systems, 1998. Proceedings. International
Symposium on, Apr 1998, pp. 51–60.

[19] W. Mayer and M. Stumptner, “Model-Based Debugging - State of the
Art And Future Challenges,” Electronic Notes in Theoretical Computer
Science, vol. 174, no. 4, pp. 61–82, 2007, proceedings of the Workshop
on Verification and Debugging (V&D 2006). [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S157106610700196X

[20] M. Subramaniam, “Early error detection in industrial strength cache
coherence protocols using SQL,” in Parallel and Distributed Processing
Symposium, 2003. Proceedings. International, April 2003.

[21] A. Zeller, “Yesterday, My Program Worked. Today, It Does Not. Why?”
in Proceedings of the 7th European Software Engineering Conference
Held Jointly with the 7th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, ser. ESEC/FSE-7. London, UK,
UK: Springer-Verlag, 1999, pp. 253–267. [Online]. Available: http://dl.
acm.org/citation.cfm?id=318773.318946

[22] N. Wilde and M. C. Scully, “Software Reconnaissance: Mapping
Program Features to Code,” Journal of Software Maintenance, vol. 7,
no. 1, pp. 49–62, Jan. 1995. [Online]. Available: http://dx.doi.org/10.
1002/smr.4360070105

[23] M. Mantyla and C. Lassenius, “What Types of Defects Are Really
Discovered in Code Reviews?” Software Engineering, IEEE Transactions
on, vol. 35, no. 3, pp. 430–448, May 2009.

[24] M. D’Ambros, M. Lanza, and R. Robbes, “An extensive comparison
of bug prediction approaches,” in Mining Software Repositories (MSR),
2010 7th IEEE Working Conference on, May 2010, pp. 31–41.

[25] M. Syer, Z. M. Jiang, M. Nagappan, A. Hassan, M. Nasser, and P. Flora,
“Leveraging Performance Counters and Execution Logs to Diagnose
Memory-Related Performance Issues,” in Software Maintenance (ICSM),
2013 29th IEEE International Conference on, Sept 2013, pp. 110–119.

[26] R. L. Sedlmeyer, W. B. Thompson, and P. E. Johnson, “Knowledge-
based Fault Localization in Debugging: Preliminary Draft,” in Proceed-
ings of the Symposium on High-level Debugging, ser. SIGSOFT ’83.
New York, NY, USA: ACM, 1983, pp. 25–31. [Online]. Available:
http://doi.acm.org/10.1145/1006147.1006154

[27] A. H. Hayes, J. S. Brown, and M. L. Simmons, Debugging and
Performance Tuning for Parallel Computing Systems. Computer Society
Press, 1996, no. BP07412.

[28] P. Emrath, S. Ghosh, and D. Padua, “Detecting nondeterminacy in
parallel programs,” Software, IEEE, vol. 9, no. 1, pp. 69–77, Jan 1992.

[29] I. Beschastnikh, Y. Brun, M. D. Ernst, and A. Krishnamurthy, “Inferring
Models of Concurrent Systems from Logs of Their Behavior with
CSight,” in Proceedings of the 36th International Conference on Software
Engineering, ser. ICSE 2014. New York, NY, USA: ACM, 2014,
pp. 468–479. [Online]. Available: http://doi.acm.org/10.1145/2568225.
2568246


