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Abstract Due to their accuracy in describing systems, for-
mal specifications can play an important role during forward
as well as reverse engineering activities. However, besides
dense mathematical expressions, their lack in visually ap-
pealing notations impedes their use and exchange among
different stakeholders. One solution to this problem is to en-
rich the specification by other views, in most cases UML
diagrams. But the mapping is not trivial, and existing ap-
proaches have their impediments, among them the assign-
ment of methods to classes – which has to be re-done by
hand quite often.

By the example of Z, this paper demonstrates that the sit-
uation can be improved. The new approach combines exist-
ing mapping strategies, but additionally lets the assignment
of methods rest on quality-related measures. The basic idea
is to balance the values of coupling for all methods within
and between the UML classes. With that, two issues are ad-
dressed: firstly, the mapping of sets, types, and operations (to
UML classes and UML methods) is based on reproducible
measures that are intuitively comprehensible. Secondly, im-
plementations based on the resulting UML class diagrams
very likely also have comparable quality-related properties.

Keywords Formal Specification · Transformation · Slice-
based Coupling Measures

1 Introduction

Today’s systems become more and more software-intensive
which typically means that software is the major compo-
nent that provides the needed functionality. With that, relia-
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bility and dependability considerations gain in importance,
and, by following the arguments in [14, p.55], formal meth-
ods hence lend themselves back to the software engineering
community. Several stories of success and myths are around
(and might balance each other [11,5,28]), but when used
appropriately, they form the basis for ongoing software en-
gineering steps like code- and test-case generation.

But there is a drawback. Even if the system has been
refined correctly, there is another issue to be solved: the val-
idation problem. What sounds like a requirements elicita-
tion problem also has to do with the question of choosing a
suitable notation (as several stakeholders in the project will
have to agree upon the specification). Here, the mathemati-
cally dense notations might be an impediment. A pragmatic
solution is therefore to combine formal specifications and
other (semi-formal) graphical notations and thus to provide
an additional view onto the specification.

As illustrated in Section 2.1, there are already approaches
dealing with the mapping between graphical notations (like
UML) and formal specifications. However, these transfor-
mations are not without restrictions. Formal specifications
are usually not object-oriented and they are not necessarily
concerned with classes. This contribution makes an attempt
to resolve one of the stumbling blocks in the mapping of
specifications to UML diagrams: that of a “pragmatic” lay-
out of the diagrams. But what is the exact problem?

Well, apart from a possible loss in semantic expressive-
ness, the resulting diagrams quite often have to be re-format-
ted by hand so that developers and managers are satisfied
with them and perceive them as useful. Especially the as-
signment of operations to classes is a problem that has to be
resolved by human beings. Existing solutions do their best in
finding pertinent classes for methods, but the mapping is not
necessarily recognized as useful, and when the specification
scales, classes with unbalanced design might be created.



2 A. Bollin

Here, by the example of Z specifications [29], the paper
suggests an alternative way in finding an improved mapping.
The basic idea is to focus on the values of coupling between
the operations in the specification and to use this informa-
tion to find class assignments that are “optimal”. Basically,
the objective is to find a mapping such that the coupling
between the methods within a class is at a maximum, and
the coupling to methods in other classes is at a minimum.
The optimization process will be discussed in more details
in Section 4.

The contribution is structured as follows. Section 2 ex-
plains the need for mapping strategies in more detail and
presents approaches transforming UML diagrams to formal
specifications and vice-versa. It also gives attention to some
limitations of existing approaches. Section 3 discusses the
transformation process for Z specifications. It also provides
the necessary background for the calculation of slice-based
coupling values. Section 4 then explains the approach by
making use of a small Z specification. Finally, the paper con-
cludes with a short summary and an outlook.

2 Formal Specification Transformations

The idea of combining formal specifications with other no-
tations is not new, and the existing approaches help to focus
on orthogonal properties of the underlying system. Under-
standability is gained due to the different views, and deci-
sions are alleviated. Dick argues in [7] that confidence and
acceptability is raised and changes of the system are alle-
viated. As the transformation is possible in two directions,
also some weaknesses of purely graphical notations can be
eliminated. The following section summarizes existing ap-
proaches briefly and then moves on to the issue of the im-
proved mapping strategy.

2.1 Related Work

Besides formal extensions to existing graphical notations
(e.g. Petri-nets with Z extensions [13] or VDM-link to UML
[8]), two classes of approaches for specification transforma-
tions are existing.

The first class comprises approaches that map graphical
notations to formal specifications. UML is wide-spread, so
most of them take static UML diagrams and generate formal
state descriptions from it (e.g. UML to Z [9,17], or UML to
Z++ [20,27]). The approaches have in common that formal
specification skeletons are generated which then have to be
completed by the designer/developer. After completion the
resulting predicates are simplified, resulting in a compact
formal specification. So, semantics has to be added by the
designer, but the specification can then be taken to prove

Type Symbol A B
Relation A ↔ B * *
Partial A 7→ B * 0 . . 1
Total A → B * 1
Part. Inj. A 7� B 0 . . 1 0 . . 1
Part. Surj. A 7→→ B 1 . . ∗ 0 . . 1
Total Surj. A →→ B 1 . . ∗ 1
Total Bij. A �→ B 1 1
Total Inj. A � B 0 . . 1 1

Table 1 As defined in [16], relations between sets A and B are mapped
to associations with the given multiplicities.

properties of the system and the results can then be mapped
back to the design documents in order to eliminate deficien-
cies.

The second class comprises approaches that map formal
specification to some graphical notation. One early approach
is the visualization of Z defined by Kim [19], who makes use
of constraint diagrams [18]. The notation is able to express
predicate logic, but, unfortunately, there is no integration
into existing frameworks. In addition, constraint diagrams
look differently from UML diagrams, and so the understand-
ing among different stakeholders is impeded again.

When not the whole semantics of a specification at hand
has to be mapped, then UML, being state-of-the-practice,
is a possible candidate. With the involvement of members
of the precise UML group1 in the standardization process,
it also gets an interesting target for the transformation pro-
cess. The approach of Fekih et.al maps B specifications to
UML [10]. It takes the state space of the specification and
creates an UML class for every abstract set that is element
in the domain of relations. The transformation rules are sim-
ple and lead to incomplete class diagrams as operations are
not regarded. In addition to that the generated classes are
not associated. Idani and Ledru improve the approach by
mapping occurring relations to UML associations [16] (as
summarized in Table 1). Furthermore they take operations
into account and provide an algorithm for mapping an oper-
ation as a method to the most suitable class (called pertinent
class). Altogether this leads to a more complete static UML
diagram, though their approach neglects the dynamics be-
hind operations.

In [2] the approach of Idani and Ledru is mapped to Z
and extended by rules to cover also activity diagrams. This is
done by regarding control and data dependencies that have
been recalculated beforehand (via a specification transfor-
mation that is explained in more details in [24]). The ap-
proach has been refined and integrated into a Java-based en-
vironment called ViZ by Lessacher in 2007 [21]. Neverthe-

1 The precise UML group, created in 1997, tries to bring interna-
tional researchers and practitioners together in order to develop the
Unified Modelling Language (UML) as a well defined modeling lan-
guage. See http://www.cs.york.ac.uk/puml/index.html for more details.
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less, also this set of rules has its limitations as the mapping
of operations is handled in such a way that all operations are
part of a root class with the stereotype “⟨⟨system⟩⟩” (as will
be shown in Section 3.2).

2.2 Mapping Strategies

Algorithms that map formal specifications to UML diagrams
follow a pragmatic approach: sets correspond to classes and
relations correspond to associations. This mapping is quite
natural as programmers often use classes to represent ab-
stract types. Their interrelation is then expressed by various
forms of associations between them. The mapping of oper-
ations to classes is more sophisticated. One way in dealing
with the situation is to take a look at the number of uses
(and references) of these sets of types in the operations and
to assign them to the most frequently used classes (as done
by Idani and Ledru in [16] and extended later on in [15]).
A contrary approach (as used in [2]) is to collect all of the
operations and to put them into a separate class. However,
both strategies have drawbacks:

– For the first approach it might happen that more than one
class is pertinent for an operation. It is then up to the user
to decide where to put the method to. While this is not a
problem for the second approach, putting all operations
into one class definitely does not scale-up very well.

– Besides abstract types, also the state-space is relevant.
The first approach does not deal with this information.
The second approach creates a system class for every
state, but whenever several state spaces are included it is
again not defined where a method has to be mapped to.

– None of the transformation rules do take implementation
related issues into account. While implementation de-
tails are not an issue for formal specifications, this point
gets important when (a) communicating them to differ-
ent stakeholders and (b) using them as the basis for the
ongoing development process.

An improved mapping strategy should take these issues
into account, and especially the third aspect can be used
to improve the existing mapping strategies. When a speci-
fication is the basis for an implementation (especially when
specifications are refined) then it is very likely that the de-
pendencies between operations are still prevalent and affect
implementation-specific properties. This includes the dual
properties of coupling and cohesion and operations should
be created in such a way that the values for coupling and
cohesion are minimized (maximized) whenever possible.

The idea now is quite simple: one can use specification
measures to decide where to map operations to. In [4] it is
shown that slice-profiles [26,23,30] can be computed for Z
specifications and that they can then be used to calculate

Measure Definition
Inter-Schema Flow z(ψs, ψd)
measures the number of primes of
the slices in ψd that are in ψs

|(SU(ψd)∩ψs)|
|ψs|

Inter-Schema Coupling
C(ψs, ψd) computes the nor-
malized ratio of the flow z in
both directions

z(ψs,ψd) |ψs|+z(ψd,ψs) |ψd|
|ψs|+|ψd|

Schema Coupling χ(ψi) is the
weighted measure of Inter-
Schema Coupling C of ψi and all
n other schemata

∑n

j=1
C(ψi,ψj) |ψj|∑n

j=1
|ψj|

Table 2 Slice-based measures for Inter-Schema Flow and Coupling as
introduced for Z specifications in [4].

specification-based coupling and cohesion measures. It is
also demonstrated that the behavior of these measures can
be compared to their corresponding measures in the field of
ordinary programming languages. So, based on these values,
it is suggested to add another rule set that regards the average
values of coupling for every operation. Whenever necessary,
it moves the operations to other (pertinent) classes in such a
way that at the end of this process all values have reached an
optimum (which means high values for coupling between
methods in one class and lower values for coupling between
methods of different classes).

Section 3 now introduces the necessary background for
the calculation of slice-based coupling measures and the re-
fined set of transformation rules.

3 Slice-based Transformation Process

The calculation of slice-based measures goes back to the no-
tion of a static specification slice as introduced by Oda and
Araki [25] and Chang and Richardson [6]. Their idea is to
look for predicates that are part of pre- and postconditions
and to introduce “control” dependencies between them. Their
idea has been refined and extended by Bollin [1] which also
led to the development of an environment called ViZ that
now supports reverse engineering of formal Z specifications
by slicing, chunking and clustering techniques [3].

3.1 Slice-based Coupling

For the definition of the measure of coupling we first need
to introduce the notion of specification slice profiles and the
union of all its slices. The basic idea is quite simple: for ev-
ery post-condition prime in a schema ψ one has to calculate
the corresponding slices. The set of all possible specification
slices is called Slice Profile (SP(ψ)). The union of all slices
in SP(ψ) is called Slice Union (SU(ψ)).
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Nr. Rule
1 Every section in a Z specification corresponds to one UML

class diagram.
2 Every state schema corresponds to a root class with the stereo-

type ⟨⟨system⟩⟩ and the name of the schema.
3* Every given set A corresponds to a class in the UML specifica-

tion, getting the name of the basic type.
4 Every inclusion of a state A in the declaration part of a schema

B corresponds to an aggregation of the classes A and B (where
B is the whole class).

5 Every use of a given set or free-type A in a state schema B
corresponds to a ⟨⟨use⟩⟩ association between the classes A and
B and with multiplicities (∗, 1).

6* Every variable representing relationships between entities in a
state schema is translated to associations. It holds that (i) mul-
tiplicity is resolved by the mapping rules presented in Table
1, (ii) subsets between relations are resolved by a subset con-
straint, and (iii) an identifier A representing a set of a type B
is resolved by a generalization between class A and super-class
B. Associations do get role-names. They are built by combining
the first characters of the source class and association name.

7 Every use of a given set or free-type A in an operation schema
B that has been assigned to a class C is mapped to a ⟨⟨use⟩⟩
association with multiplicities (∗, 1) between A and C.

8 Every identifier A in the declaration part of an operation
schema is mapped to a parameter of the corresponding method
B, annotated by “In” for input and “Out” for output. When the
output is a set, then a Vector of the type is returned.

9 Every operation schema A is added as a method to those sys-
tem root class which has been included in the operations dec-
laration part. When there are several root classes possible, then
A is added to a system class called “Operations”. In this case
a ⟨⟨use⟩⟩ association with multiplicities (1, 1) is introduced be-
tween these classes. The initialization schema is mapped as a
constructor to its corresponding system class.

Table 3 (Part I) Z mapping rules for the static part of a specification as
defined by Bollin and Lessacher [2,21]. Rules following the approach
of Idani and Ledru [17] are marked by an asterisk.

The calculation of coupling follows the definitions to be
found in [12]. First, an Inter-Schema Flow z is specified. It
describes how many primes of the slices in the slice union
are outside of the schema. Inter-Schema Coupling C is then
computed by the normalized ratio of this flow in both direc-
tions. Finally, Schema Coupling χ is calculated by consider-
ing the Inter-Schema Coupling values to all other schemata.
The definitions of the measures are summarized in Table 2.

3.2 Transformation Rules

The mapping of Z specifications to static class diagrams as
introduced in [2] is based on the idea of Idani and Ledru
[17]. However, the approach omits assigning the operations
to derived classes. Instead, it introduces one or several sys-
tem classes and assigns the operations to them. When an
operation can be assigned to several system classes, then a
helper class called “Operations” is created and the operation
is assigned to it.

Nr. Rule
10 Every free-type corresponds to a UML class with the stereo-

type ⟨⟨datatype⟩⟩. Every constant of a free-type A is mapped
to an attribute of the corresponding UML class. Every dataset
of the constructor of a free-type A corresponds to an instance
variable in the corresponding class A. Every link-set of the
constructor of a free-type A corresponds to a recursive as-
sociation of the corresponding class A with the name of the
constructor and multiplicities (0 . . 1, 1).

11 Every global constant A representing a subset of a free-type B
is mapped to a UML class with the name of A and the stereo-
type ⟨⟨datatype⟩⟩. Additionally, a generalization between the
classes A and B is introduced. Every element of a subset A
corresponds to a class attribute of class A and gets the name
of the element and the type of A.

12 Every identifier in the declaration part of a schema A repre-
senting a sequence of a state schema or a type B is mapped
to an association between classes A and B. For non-empty
sequences the multiplicities are (0 . . 1, 1 . . ∗), otherwise
(0 . . 1, ∗).

13 Every identifier in the declaration part of a schema represent-
ing a relation between a type A and a sequence of type B
corresponds to an association between classes A and B. Mul-
tiplicity is resolved by the mapping rules presented in Table
3.2 where the multiplicity for class B is 1 . . ∗ for non-empty
sequences, and ∗ otherwise.

Table 4 (Part II) Extended set of rules (compared to the rule-set pre-
sented in [2] and [21]) for the static part of a Z specification, now also
dealing with sequences and free-types.

Experiments with larger specifications showed that free-
types and sequences are used quite often. As they are not
covered by the rules defined in [2], the existing set of rules
had to be extended again. The resulting mapping strategy2

can be found in Tables 3 and 4.

Fig. 1 presents the result for the transformation of the
“Access Control Specification” as done by the ViZ environ-
ment3. ViZ generates an XML file that can be imported by
UML modeling tools like VisualParadigm4. According to
the mapping rules the system class contains all operations
and the initialization schema as a constructor. As there are
three given set definitions (called USERS, RESOURCES, and
ADDRESSES), three classes are introduced and connected to
this system class. Additionally, the identifier Unused is mod-
eled as a subset of Resources, and Assigned and Permitted
are enriched by a subset constraint.

In fact, the set of rules operates well when there is only a
small number of given sets and a few operations. With larger
specifications that contain a lot of operations the approach of
taking given sets as classes and putting them into the system

2 A description of the mapping rules (also covering activity dia-
grams) including Java-like pseudo-code can be found in [21].

3 The specification is also used by other authors to demonstrate their
mapping strategies and has thus been selected for this contribution.

4 Visual Paradigm is part of the Visual Paradigm Suite and is
free for academic sites. For more information see http://www.visual-
paradigm.com. Page last visited: August 2011.
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Fig. 1 Applying rules 1 to 13 leads to a static UML Diagram for the Access Control system specification (see Appendix). The UML diagram has
been exported by the ViZ environment and imported by Visual Paradigm 8.0 (and making use of the “Auto Layout” algorithm).

C(ψs, ψd) S1 S2 S3 S4 S5 S6 S7 S8 χ(ψi)

S1 (AccessControl) 1.000 0.250 0.444 0.800 0.400 0.364 0.400 0.400 0.383
S2 (InitAccessControl) 0.250 1.000 0.154 0.222 0.143 0.133 0.143 0.143 0.215
S3 (AddPermission) 0.444 0.154 1.000 0.400 0.267 0.250 0.267 0.267 0.248
S4 (ListUsers) 0.800 0.222 0.400 1.000 0.364 0.333 0.364 0.364 0.343
S5 (AssignResource) 0.400 0.143 0.267 0.364 1.000 0.235 0.250 0.250 0.233
S6 (ChangeIP) 0.364 0.133 0.250 0.333 0.235 1.000 0.235 0.235 0.220
S7 (DeassignResource) 0.400 0.143 0.267 0.364 0.250 0.235 1.000 0.125 0.233
S8 (Disconnect) 0.400 0.143 0.267 0.364 0.250 0.235 0.125 1.000 0.233

Table 5 Values for Inter-Schema Coupling C and schema coupling χ(ψi) for the Z schemata of the Access Control specification.

class (as can be seen in Fig. 1) leads to huge static UML
diagrams no developer would generate by hand. However,
making use of coupling measures mitigates this situation. It
also leads to an assignment of operations to classes such that
the values for coupling within a class are maximized and the
values for coupling to other classes are minimized.

4 Coupling-based Mapping

Contrary to existing approaches where pertinent classes are
identified by the number of use or references to identifiers,
the strategy for identifying pertinent classes is now based on
the analysis of the values of Inter-Schema Coupling C. The

objective is to “optimize” their values for the whole specifi-
cation:

Definition 1 The value for Inter-Schema Coupling of the
transformed specification is optimal, when there is no other
assignment of operations to classes such that the average
value of all Inter-Schema Coupling values within the classes
can be increased.

When taking a look at the values of schema coupling
χ(ψi) for the Access Control specification in Table 5 then
we can see that the values are quite evenly distributed. Nev-
ertheless, there are variations. The state space AccessControl
has the highest values as it is connected to all the other
schemas, and InitAccessControl has the lowest relation to



6 A. Bollin

all the other schemas. For an optimal distribution (where
the values for coupling are maximized for methods within
classes) the following additional rules are pursued:

Rule 14 For every system class select all operations that
have an Inter-Schema Coupling value lower than a given
threshold ρ, and for every selected operation determine the
set of possible (pertinent) class candidates.

Rule 15 Move every operation to one class-candidate by
the following strategy: (a) select a class from the set of can-
didates that has no method at all, and (ii) if there is no
such class select a class so that the average value for Inter-
Schema Coupling for all class candidates stays at a maxi-
mum.

Rule 16 Look at every class and check whether a swap or
delegation of methods between two classes increases the av-
erage values for Inter-Schema Coupling. If so, then delegate
or swap the methods. Continue the steps till there are no
more improvements.

The problem of finding the optimal solution can be com-
pared to the knapsack problem [22]. However, we know a
bit about the preferred properties of the resulting classes
and the optimal solution is approximated by the rules due
to a simple strategy: at first it tries to avoid empty classes
(the value for inter-class coupling would be zero). The first
class-candidate that matches gets the method assigned to it,
yielding a value for intra-schema coupling equal to 1 (per
default). Secondly, when there is no class-candidate that is
empty, then the method is assigned to one of the classes in
such a way that the average value for schema coupling does
not decrease too much. The last step is to try to find a swap-
ping of the methods such that the average value for coupling
increases a bit.

With the suggested procedure, one is able to calculate a
balanced distribution of the operation schemas to the classes.
In fact, the first couple of steps are quite straight forward
and efficient. Choosing between all operations according to
a given threshold can be done in linear time (when the Inter-
Schema Coupling matrix is already given). The identifica-
tion of the set of class candidates per method can also be
conducted in one run when parsing the parameter lists of the
methods. The same holds for the next step, the assignment of
the methods to the classes. Empty classes are selected easily,
and only in the case of already occupied classes one has to
take a look at the matrix again and compute the average of
the related Inter-Schema Coupling values.

Definitely more complex is the implementation of the
last two steps, the delegation and swapping of methods. In
the worst case, all possible combinations of methods per
class have to be considered till the algorithm stops. In fact,

it might be that there is more than one optimal solution5,
but the algorithm stops when no further improvement of the
average value of the Inter-Schema Coupling values can be
found.

This process of assigning methods to classes – according
to a balanced distribution of Inter-Schema Coupling values
– is now demonstrated by the example of the Access Control
specification (see Appendix for the Z specification).

4.1 Example

The starting point of our example is the UML layout as pre-
sented in Fig. 1 (so rules 1 to 13 have already been ap-
plied). There, all the methods are element of one system
class. Rule 14 now tells us that (for a given value ρ) we
have to decide upon the methods we want to delegate to as-
sociated classes. For ρ let us assume to start with a value of
0.7, which means that we want to delegate those methods
that have a value of Inter-Schema Coupling lower that 0.7.
The relevant methods (see Table 5, rows C(ψs, ψd) and S1)
are therefore: AddPermission, AssignResource, ChangeIP,
DeassignResource, and Disconnect. (ListUsers has a value
C(ListUsers) = 0.800 within the system class, so a value
higher than ρ and it is skipped. The initialization schema
is also skipped as it becomes the constructor of the system
class). For the selected methods we have to calculate the
class-candidates (so the pertinent classes that are associated
with the system class and that are referred to or used in the
methods). The class-candidates and their pertinent classes
are as follows:

– AddPermission → USERS or RESOURCES.
– AssignResource → USERS or RESOURCES.
– ChangeIP → ADDRESS or RESOURCES.
– DeassignResource → USERS, RESOURCES, or Unused.
– Disconnect → ADDRESS, RESOURCES, or Unused.

We now apply rule 15 to the specification. In this first
step we are taking a look at the methods one by one. At
first, AddPermission could be delegated to either USERS or
RESOURCES (as both of the classes are still empty). In our
case let us take the USERS class, which also means that the
value for coupling within the USERS class increases from 0
to 1. Next is AssignResource which goes to the RESOURCES
class as USERS already contains one method. ChangeIP is
moved to ADDRESSES, DeassignResource is moved to class
Unused. For the Disconnect operation we have the choice
between a delegation to three classes (either RESOURCES,
ADDRESSES, or Unused) that already contain operations.
Thus the value of C has to be calculated for these three op-
tions:

5 This might be the case as the initial distribution of methods to
empty classes is non-deterministic and the values of Inter-Schema Cou-
pling between some of the operation schemas can be the same.
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Fig. 2 Applying rules 14 to 16 leads to a more balanced static UML Diagram for the Access Control system specification (see Appendix). Please
note that the annotations containing the predicates, even though exported by the ViZ environment, have been omitted for reasons of readability.

– C(Disconnect,AssignResource) = 0.250.
– C(Disconnect,ChangeIP) = 0.235.
– C(Disconnect,DeassignResource) = 0.125.

In order to keep coupling for the classes at a maximum,
Disconnect is moved to RESOURCES as a second method
(as it already contains AssignResource). After applying rule
number 15, the assignment of methods to classes looks as
follows:

– USERS contains {AddPermission}.
– RESOURCES contains {AssignResource,Disconnect}.
– ADDRESSES contains {ChangeIP}.
– Unused contains {DeassignResource}.

We are now able to apply rule 16 to the UML diagram.
At first, we try to swap the methods so that we manage to
increase the average values of coupling. Swapping and del-
egation only makes sense for classes that contain more than
one method, so we are looking at the RESOURCE class.

– The method AssignResource could be swapped with the
method AddPermission of the USERS class. As the val-
ues for coupling are C(Disconnect,AssignResource) =
0.250 and C(Disconnect,AddPermission) = 0.267, a
swap of the methods would indeed increase the value
of coupling in total a bit.

– The method Disconnect could be either swapped with
ChangeIP or with the method DeassignResource. How-
ever, there is no variation of the swaps that does increase
the values of coupling anymore.

The next step of Rule 16 is to try to delegate some of
the methods to other classes and thus to increase the value
of coupling on class level.

– Disconnect could be either moved to the ADDRESSES
or Unused class. Moving it to ADDRESSES would mean
that C decreases from 1.0 to 0.235 for the class named
ADDRESSES and that C increases from 0.267 to 1.0 for
the class named RESOURCES. The difference is ∆ =
−0.032. The delegation does not improve the situation
as a whole. Moving Disconnect to Unused would de-
crease C from 1.0 to 0.125 for the Unused class and in-
crease it from 0.267 to 1.0 for the RESOURCES class.
The difference is ∆ = −0.142, and a delegation is of no
use again.

– Delegating AssignResource to the USERS class as a al-
ternative step would be possible, but is does not change
the value for coupling (as ∆ = ±0).

So, in both cases, the delegation does not maximize the
values of coupling in the mean. With no more swaps or del-
egations possible we are done. The resulting diagram is dis-
played in Fig. 2.
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4.2 Discussion and Improvements

By following the rules 14 to 16 we end up in a transforma-
tion that maximizes the values for schema coupling in ev-
ery class. The approach is based on the assumption that the
structure of the specification and the structure of the result-
ing implementation are, at least along general lines, com-
parable. Though this might not be the case in all situations,
there are empirical evidences that at least the measures are
correlated [4]. So, the approach presents a heuristic that is
worth to be applied. Also the problems of scalability are in-
fluenced positively.

With the introduction of a threshold value ρ we are ad-
ditionally able to control how many methods in the system
class are to be delegated. Thus, an increase in the number of
schema operations is not so much a problem anymore. Two
other aspects of scalability are not addressed in this paper,
but they can also be dealt with easily:

– When the specification is big and when it contains a lot
of given sets or free-types, then the number of classes
is very high. One solution to this problem is to extend
Rules 3 and 10 by a simple manual step: as the map-
ping strategy uses classes as types, the user should de-
cide about which of the given sets or free-types to map
to classes and which to ignore (treating them as basic
types). This extension could keep the resulting UML di-
agram smaller and also help shifting the view onto the
specification a bit (depending at the situation at hand).

– When there are a lot of associations, then it would be
possible to introduce association classes (between the
classes representing given sets or free-types) to the UML
model. This increases the number of classes, but in sev-
eral situations this eases the mapping process of oper-
ations. Schema operations quite often only modify one
state identifier in the state space, and here an association
class could easily be used to hold such (getter and setter)
methods.

Complex specifications still lead to complex diagrams,
but as the classes are constructed in such a way that their in-
ternal connectivity is at a maximum, the resulting diagrams
are, at least from a measurement perspective, not the worst
ones.

One final limitation of the approach remains: when the
values for coupling are all the same or when there are a lot
of empty class fragments, then the assignment (due to rule
16) is at random first (in our case this happened with the
assignment of DeassignResource to the Unused class). So,
it is up to the user to reformat the resulting UML diagram - a
drawback developers have to deal with anyway in situations
when there are several class-candidates.

5 Conclusion and Outlook

This paper presents a set of rules for transforming formal
Z specifications to UML in order to open the documents
to a wider range of stakeholders. Existing approaches pro-
duce very useful UML diagrams, but the assignment of op-
erations to classes still follows a simple heuristic, namely
that of looking how often the operations refer to specific
state-identifiers. As an extension to this strategy this contri-
bution recommends to make use of slice-based measures. It
introduces a coupling-based measurement method for the re-
lated schema operations and suggests to map the operations
to classes in such a way that the average values for Inter-
Schema Coupling stay at a, on the class level, high value.

The approach enables a wider range of analysis tech-
niques and extensions that will be looked at in the future
(and that will eventually be integrated into the ViZ environ-
ment6 in one of the next releases). At first, the technique
can be combined with existing techniques (like that of Idani
in [15]) and thus help in producing additional variations of
the resulting UML diagrams. Secondly, the generated UML
diagrams can be assessed, either by looking at code smells
(like large or lazy classes), by looking at exceptionally high
values of coupling between some of the classes, or by com-
bining the approach with a high-level treatment of object-
oriented analysis and design. The results can then be used to
reflect on the original specification itself.

There are still limitations that should not be concealed.
As with other approaches the issue of inherent complexity
is hard to solve automatically. Some improvements are pos-
sible, e.g. by different views onto parts of the specification
or by making use of association classes whenever possible.
The transformation rules do not necessarily lead to UML
representations as generated by experienced developers by
hand, but the approach provides a good picture of what is
in the specifications and it puts the rules for the generation
on a measurement-based solid ground. With that, it enables
external validation steps and it supports the comprehension
process of the involved stakeholders.
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Appendix - Access Control Specification

The Access Control Specification is a sample specification
(after Kim in [19]) for demonstrating the transformation pro-
cess. Please note that the specification is not meant to be
complete (e.g. an operation for creating resources would be
needed, also the initialization could be handled in a different
manner).

[USERS,RESOURCES,ADDRESSES]

AccessControl
Permitted : USERS ↔ RESOURCES
Assigned : USERS 7→ RESOURCES
IpAddress : ADDRESSES 7→ RESOURCES
Unused : PRESOURCES

Assigned ⊆ Permitted
Unused ∩ (ran Assigned) = ∅

InitAccessControl
AccessControl

Permitted = ∅
Assigned = ∅
IpAddress = ∅
Unused = ∅
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AddPermission
∆AccessControl
user? : USERS
resource? : RESOURCES

(user? 7→ resource?) ̸∈ Permitted
Permitted′ = Permitted ∪ {user? 7→ resource?}
Assigned′ = Assigned
IpAddress′ = IpAddress
Unused′ = Unused

ListUsers
ΞAccessControl
resource? : RESOURCES
st! : PUSERS

st! = dom(Permitted ◃ {resource?})

AssignResource
∆AccessControl
user? : USERS
resource? : RESOURCES

(user? 7→ resource?) ∈ Permitted
user? ̸∈ dom Assigned
Assigned′ = Assigned ∪ {user? 7→ resource?}
Permitted′ = Permitted
IpAddress′ = IpAddress
Unused′ = Unused

ChangeIP
∆AccessControl
ip? : ADDRESSES
resource? : RESOURCES

ip? ̸∈ dom IpAddress
resource? ∈ ran IpAddress
resource? ∈ ran Permitted
IpAddress′ =

{i : ADDRESSES; r : RESOURCES |
(i, r) ∈ IpAddress ∧ r ̸= resource?}
∪{ip? 7→ resource?}

Permitted′ = Permitted
Assigned′ = Assigned
Unused′ = Unused

DeassignResource
∆AccessControl
user? : USERS
resource? : RESOURCES

resource? ̸∈ Unused
(user?, resource?) ∈ Assigned
Assigned′ = Assigned \ {user? 7→ resource?}
Unused′ = Unused ∪ {resource?}
Permitted′ = Permitted
IpAddress′ = IpAddress

Disconnect
∆AccessControl
addr? : ADDRESSES
resource? : RESOURCES

resource? ∈ Unused
(addr?, resource?) ∈ IpAddress
IpAddress′ = IpAddress \ {addr? 7→ resource?}
Permitted′ = Permitted
Assigned′ = Assigned
Unused′ = Unused


