
Slice-based Formal Specification Measures –
Mapping Coupling and Cohesion Measures to Formal Z

Andreas Bollin
Alpen-Adria Universität Klagenfurt

Klagenfurt, Austria
Andreas.Bollin@uni-klu.ac.at

Abstract

This paper demonstrates that existing slice-based measures can reasonably be mapped to the
field of state-based specification languages. By making use of Z specifications this contribution
renews the idea of slice-profiles and derives coupling and cohesion measures for them. The measures
are then assessed by taking a critical look at their sensitiveness in respect to modifications on the
specification source. The presented study shows that slice-based coupling and cohesion measures
have the potential to be used as quality indicators for specifications as they reflect the changes in the
structure of a specification as accustomed from their program-related pendants.

1 Introduction

In one of the rare articles concerning the relation between specifications and code, Samson, Nevill, and
Dugard [13] demonstrate a strong quantitative correlation between size-based specification metrics and
the related pendant of software code. Their assumption is that a meaningful set of (complexity and
quality) measures could help in estimating product measures and development effort at a much earlier
stage. Complexity can be described by size-based attributes, but is it reasonable to measure the quality
of a specification? This contribution takes a closer look at this problem.

Quality considerations are sophisticated. Besides the question of what a ”good specification” looks
like, quality-based measures (as in use with program code) are not so easily transformed to specifications.
One reason is that such measures are usually based on control/data dependency considerations – concepts
that are either not at all or only implicitly available. However, various authors demonstrated in [11, 4, 10,
17] that a reconstruction of the necessary dependencies ameliorates the situation and enables continuative
techniques like slicing and chunking. And with that, slice-based measures (which are often taken as the
basis for quality considerations) can be mapped to formal specifications, too. What would be the benefits
of such measures?

As presumed by Samson et. al., with experiences from a large collection of specifications and imple-
mentations at hand, product and development estimates could be calculated at much earlier stages. But
there is another benefit. When the measures are sensitive and react instantly to changes in the specifica-
tions, considerations, e.g. concerning deterioration effects, could be made, too.

The main objective of this contribution is now to investigate whether slice-based quality measures
can reasonably be transformed to formal specifications. It does not invent new measures, but it maps
the ideas behind the definitions of coupling and cohesion measures to the world of formal specification
languages. Additionally, it looks for possible limitations. Based on Z [14], the mapping is described in
some details and the outcome is assessed in respect to its expressiveness and sensitiveness.

This paper is structured as follows: Section 2 introduces specification slices and takes them as the
basis for the slice-based measures mentioned above. Section 3 discusses the effects on the measures by
making use of sample specifications, and Section 4 concludes the work with a short outlook.

Slice-based Formal Specification Measures A. Bollin

2 Background

The motivation behind analyzing slice-based coupling and cohesion measures goes back to a paper of
Meyers and Binkley [8]. In their empirical study they take a closer look at these measures and demon-
strate that the values of coupling and cohesion can also be used for assessing deterioration effects. As
formal specifications evolve, too, it would be interesting to see whether changes in the specification code
show a similar behavior of these measures. As a necessary first step, a reasonable transformation of the
original definitions of the measures to the world of formal specifications has to be found. This section
demonstrates how this can be done for Z [14].

2.1 Slice-based Coupling and Cohesion

Coupling is a measure for the strength of inter-component connections, and cohesion is a measure for the
mutual affinity of sub-components of a component. Within the range of this contribution we are interested
in how these measures are calculated and what they indicate. As adumbrated in the introduction, a
practical way in calculating coupling and cohesion measures is to make use of slices.

Weiser [15, 16] introduced five slice-based measures for cohesion: Tightness, Coverage, Overlap,
Parallelism, and Clustering. Ott and Thuss [12] partly formalized these measures, and this contribution
makes use of their formalization. Coupling was originally defined as the number of local information
flow entering (fan-in) and leaving (fan-out) a procedure [7]. Harman et. al demonstrate in [6] that it
can also be calculated via slicing. Furthermore, they show that the use of slices not only enables the
detection of coupling, it can also be used to determine the ”bandwidth” of the existing information flow.
Their notion of information flow is also used in this contribution.

2.2 Specification Slices and Slice Profiles

For the calculation of coupling and cohesion measures, sets of slices and their intersections (comparable
to the use of slice profiles in [12]) are needed. For state-based specifications the technique of slicing
was introduced by Oda and Araki [11], informally redefined by Chang and Richardson [4], and then
refined by Bollin [1]. His Java prototype has been extended in the recent years. It now supports slicing,
chunking, and concept location of Z specifications [3]. The technical details of the identification of
dependencies are not relevant within the scope of this paper, but the basic idea is quite simple:

First, the specification is dismantled into its basic elements called primes1 by making use of the CZT
parser [9]. The primes are mapped to a graph called SRN (for Specification Relationship Net). Then,
by following the approach of Chang and Richardson and Bollin [4, 1] control and data dependencies are
reconstructed (via a syntactical approximation to the semantical analysis). The SRN gets annotated by
this dependency information, yielding an Augmented SRN (ASRN for short).

The ASRN serves the same purpose as the system dependence graph used by the approaches de-
scribed in [8, p.4]. Based on this data structure, slicing works as follows: a set of vertices (representing
the point of interest) in the ASRN is taken as starting point, and, by following the dependencies existing
in the graph, further primes are aggregated, resulting in the designated specification slice. The trans-
formation between a specification Ψ and its ASRN is defined in a bijective manner. So, when talking
about a specification it can be either the textual representation (consisting of a set of primes) or its ASRN
representation (consisting of vertices representing the primes).

1Basically, primes are the predicates of the specification and are later represented as vertices in an augmented graph. When
they represent predicates of the precondition of a schema they are called precondition primes, and when they form predicates
that represent after-states they are called postcondition primes.

Slice-based Formal Specification Measures A. Bollin

Harman et. al [6] and Ott and Thuss [12] use different types of slices for their calculation of coupling
and cohesion values. This situation is dealt with hereinafter by generating two variants of the static
specification slices: for coupling the slices are calculated by following the dependencies in a transitive
backward manner, for the values of cohesion the slices are calculated by combining the dependencies
in a forward and backward manner. Specification slices and slice profiles (the collection of slices for a
specific schema operation) are then defined as follows:

Definition 1. Static Specification Slice. Let Ψ be a formal Z specification, ψ one schema out of Ψ, and V a set
of primes v out of ψ . SSlicefb(ψ,V) is called static forward/backward specification slice of ψ for primes V. It is
calculated by generating a transitive forward and backward slice with V as the starting point of interest. When the
slice is generated in a transitive and backward manner, it is called static backward slice SSliceb(ψ,V).

Definition 2. Slice Profile, Slice Intersection, Slice Union. Let Ψ be a formal Z specification, ψ one schema out
of Ψ, and V the set of primes v representing all postcondition primes in ψ . The set of all possible static specification
slices (SSlicefb(ψ,{v}) or SSliceb(ψ,{v}), with v∈V) is called Slice Profile (SP(ψ)). The intersection of the slices
in SP(ψ) is called Slice Intersection (SPint(ψ)). The union of all slices in SP(ψ) is called Slice Union (SU(ψ)).

2.3 Cohesion

With the introduction of slice profiles it is possible to provide the definitions of cohesion measures (as
introduced in the work of Ott and Thuss [12]). The values for cohesion are calculated only for a given
schema. As slices and slice profiles might contain primes from other schemata (due to inter-schema
dependencies), the following definitions restrict the set of primes in the slice profile to the schema.

Definition 3. Tightness. Let Ψ be a formal Z specification, ψ one schema out of Ψ, SP(ψ) its slice profile, and
SPint(ψ) its slice intersection. Then Tightness τ(ψ) is the ratio of the size of the slice intersection to the size of ψ .
It is defined as follows:

τ(ψ) =
| SPint(ψ)∩ψ |

| ψ |
Definition 4. MinCoverage, Coverage, MaxCoverage. Let Ψ be a formal Z specification, ψ one schema out
of Ψ, and SP(ψ) its slice profile containing n slices. MinCoverage Covmin(ψ) expresses the ratio between the
smallest slice SPi−min in SP(ψ) and the number of predicate vertices in ψ . Coverage Cov(ψ) relates the sizes of
all possible specification slices SPi (SPi ∈ SP(ψ)) to the size of ψ . MaxCoverage Covmax(ψ) expresses the ratio
of the largest slice SPi−max in the slice profile SP(ψ) and the number of vertices in ψ . They are defined as follows:

Covmin(ψ) =
1
| ψ | | SPi−min∩ψ | Cov(ψ) =

1
n

n

∑
i=1

| SPi∩ψ |
| ψ | Covmax(ψ) =

1
| ψ | | SPi−max∩ψ |

Definition 5. Overlap. Let Ψ be a formal Z specification, ψ one schema out of Ψ, SP(ψ) its slice profile containing
n slices, and SPint its slice intersection. Then Overlap O(ψ) measures how many primes are common to all possible
specification slices SPi (SPi ∈ SP(ψ)). It is defined as follows:

O(ψ) =
1
n

n

∑
i=1

| SPint ∩ψ |
| SPi∩ψ |

Tightness measures the number of primes that are common to every slice. The definition is based on
the size2 of the slice intersection. Coverage is split into three different measures: Minimum Coverage
looks at the size of the smallest slice and relates it to the size of the specification, Coverage looks at
the size of the slices, but it takes all slices and compares them to the size of the specification, and
Maximum Coverage looks at the size of the largest slice and relates it to the size of the specification.
Finally, Overlap looks at the slice intersection and determines how many primes are common to all
slices.

2Please note that within the context of all definitions size counts the number of primes in the ASRN.

Slice-based Formal Specification Measures A. Bollin

2.4 Coupling

The calculation of coupling follows the definitions to be found in [6]. First, Inter-Schema Flow z is
specified. It describes how many primes of the slices in the slice union are outside of the schema. Inter-
Schema Coupling then computes the normalized ratio of this flow in both directions.

Definition 6. Inter-schema Flow and Coupling. Let Ψ be a formal Z specification and ψs and ψd two schemata
out of Ψ. Inter-Schema Flow between the two schemata z(ψs,ψd) is the ratio of the primes of SU(ψd) that
are in ψs and that of the size of ψs. Inter-Schema Coupling between the two schemata C(ψs,ψd) measures the
Inter-Schema Flow in both directions. They are defined as follows:

z(ψs,ψd) =
| SU(ψd)∩ψs |

| ψs | C(ψs,ψd) =
z(ψs,ψd) × | ψs | + z(ψd,ψs) × | ψd |

| ψs |+ | ψd |
Schema coupling is calculated by considering the Inter-Schema Coupling values to all other schemata.

Definition 7. Schema Coupling. Let Ψ be a formal Z specification and ψi one schema in Ψ. Then Schema
Coupling χ(ψi) is the weighted measures of the Inter-Schema Coupling of ψi to all other n schemata ψj in Ψ\ψi.
It is defined as follows:

χ(ψi) =
∑n

j=1 C(ψi,ψj) × | ψj |
∑n

j=1 | ψj |
With the measures in this section it is possible to assign attributes to a formal Z specification. How-

ever, with the mapping a connection to quality has been so far not empirically justified. On the other
hand, the slice-based measures have carefully been transformed to Z. There is a chance that, when ob-
serving changes of these values for a given specification, one might defer useful properties.

3 Sensitivity of Slice-based Measures

By following the strategy that Thuss and Ott [12] used for their validations, we now investigate the
sensitivity of the measures with respect to representative changes of the specifications. The advantage is
that for such a study only small-sized sample specifications are necessary to explore the effects.

3.1 Sensitivity of Cohesion

The first objective is to determine whether the transformed measures for cohesion are sensitive to changes
in the internal structure of the specification. The following operations are considered:

O1 Adding a precondition-prime. This means that this prime ”controls” the evaluation of the other
primes in the schema. With it, the internal semantic connections are extended. Mapped to a
potential implementation, this could mean that an if-clause is added to the code, enveloping all
other statements in the method. This operation should slightly increase coverage.

O2 Adding a prime that specifies an after-state and that is not related to all the other predicates in the
schema. In this case the predicate introduces new ”trains of thought”. Mapped to a subsequent
implementation, this could mean that a new output- or state-relevant statement (not or only frac-
tionally related to the other statements) is added. With it, a new slice is added to the slice-profile.
The slice intersection is very likely smaller than before, thus reducing the values for cohesion.

O3 Adding a prime that specifies an after-state and that is furthermore related to all other primes in
the schema. In this case the predicate extends existing ”trains of thought” (as there are references
to all existing ones). Mapped to a possible implementation, it is very likely that a new output- or
state-relevant statement, related to all other statements, is added. If at all, this increases the set of
intersection slices. And with that, it also raises the values of coupling.

Slice-based Formal Specification Measures A. Bollin

Figure 1: Z specifications of raising sizes. On the left side of the table the slices (and thus the slice-
profile) are visualized, on the right side the values for cohesion are presented.

Based on the assumption that schema operations are often mapped to methods (or procedures) as
described in operations O1 to O3, the following working hypothesis can be posted:

Hypothesis 1. A structural change of type O1, O2 or O3 in a schema operation influences the values
for cohesion. Adding a predicate prime to the schema according to operations O1 or O3 increases the
values (or leaves them unchanged), adding a prime according to operation O2 decreases the values (or
leaves them unchanged). Reversing the operations also reverses the effect on the measures.

There are situations where, due to a large number of dependencies, a method or a schema operation
already has reached the maximum values for cohesion. These special cases are the reason why the values
might also be unchanged (and Sec. 3.3 reconsiders this issue in more details).

Hypothesis 1 is now checked by using small sample schema operations (called Test1 to Test7 in
Fig. 1). At first let us start with a simple Z schema operation called Test1. It contains a prime that
increases the value of n by one. As there is only one slice, the slice intersection only contains one
element. The values of cohesion are all 1. Then another prime (m′ = m+1, prescribing an after-state) is

Slice-based Formal Specification Measures A. Bollin

added to the schema (which is an operation of class O2), yielding operation Test2. With this new prime
a new ”functionality” has been introduced to the schema. The values for cohesion are reduced as the
slice intersection is empty. Tightness and Overlap are zero, the rest of the values are equal to 1

2 . Then,
in Test3, the prime delta? > 0 is added to the schema. This prime is a precondition prime and thus the
operation belongs to class O1. With this, all the values of cohesion increase. As the slice intersection
contains one prime only (delta? > 0), its size is #SPint(ψ) = 1. With that, the values for cohesion result
in: τ = 1

3 , Covmin = 1
3 ×2, Cov = 1

2 × (2
3 + 2

3), Covmax = 1
3 ×2, and O = 1

2 × (1
2 + 1

2).
Test4 adds another precondition prime set? 6=∅ to the schema (operation O1). This yields an increase

in the values of cohesion. The reason is the increase in size of the slice intersection. Test5 adds another
prime containing an after state identifier to the schema operation. The prime p′ = p+delta? is not related
to the other primes prescribing after-states, so this change is an operation of class O3. The size of the
slice intersection stays the same, only the size of the schema increases. As a result the values for cohesion
decrease.

Now let us take a look at situations when predicates that are partly related to existing predicates
are added to the schema. Test6 is an extension of Test4, but this time the new prime p′ = p + n uses
the identifier n which is also defined by the postcondition prime n′ = n + delta?. On the other hand it
does not refer to the third postcondition prime m′ = m− delta?, and so the operation belongs to class
O2. The values for cohesion consequently decrease. On contrary, Test7 is a modification of Test3. The
prime m′ = m−n is added, and so it is related to all other postcondition primes in the schema. With this
operation the values for cohesion increase, again.

Due to reasons of space the example schemata above only contain simple predicates. But they are
sufficient to demonstrate the influence of structural changes. In Z there are several schema operators
that complicate the situations, but by further analyzing the formulas of the measures one observes the
following behavior:

• Cohesion will increase when (a) at least one postcondition exists and a precondition prime is added,
(b) a postcondition prime that is related to some, but not to all, other postcondition primes in the
schema is added, (c) a postcondition prime that is not related to the other postcondition primes is
removed.

• Cohesion stays the same when (a) a postcondition prime that is related to all other existing postcon-
dition primes is added or removed and the other existing primes are already fully inter-related, (b)
a pre- or postcondition prime is added and there is no postcondition prime.

• Cohesion will decrease when (a) a postcondition prime that is not related to the other postcondition
primes is added, (b) a precondition prime is removed and there is at least one postcondition prime,
(c) a postcondition prime that is related to the other postcondition primes is removed.

The values for a derived implementation would very likely react to these changes in the same way, so
the sample specifications and the analysis of the formulas seems to confirm our working hypothesis. The
measures are sensitive to changes in the underlying specification, and the observed changes are in such
a way that an increase in internal connectivity also leads to an increase of the values of the measures.
Conversely, a decrease in connectivity also leads to a decrease of the values of cohesion.

3.2 Sensitivity of Coupling

The next step is the evaluation of coupling. As mentioned above, specification coupling measures the
mutual interdependence between different schemata. According to Harman et. al [6] it is an advantage
to use slice-based measures as they measure the ”bandwidth” of the information flow. In our case, this

Slice-based Formal Specification Measures A. Bollin

Figure 2: Z example for analyzing the effect of slice-based coupling and values for coupling and cohesion
for the six Z schemata (omitting the FullDB operation schema).

flow is defined as the relative amount of the size of a set of slices of one schema that lies inside another
schema. This flow depends upon control- and data-relationships, so an increase in the number of these
dependencies should increase the value of coupling. Reducing the number of relations should decrease
the value of coupling. There are no differences between the definitions of the measure, be it for traditional
programs or be it for formal specifications.

The next hypothesis focuses on the sensitiveness to structural changes within a formal Z specification.
Especially, an increase (or decrease) in inter-schema relations should be reflected correctly3.

Hypothesis 2. A change in the number of relations between two schemata in a formal specification
generally leads to a change in the value of coupling. Adding a predicate prime to one schema that
introduces new dependencies to primes in the other schema increases the value of coupling (or leaves it
unchanged). Reversing the change also reverses the effect on the measure.

For our considerations we now make use of a small specification (see Fig. 2) which is an extension
(and intentionally unfinished version) of the birthday-book specification out of Spivey [14, pp.3–6].

The specification consists of one state space called BB (for Birthday Book) which stores the names of
friends, their birthday dates, and a small gift. Consequently, there are two operations (Add and AddGift)
for adding them to the database. The operations are not total, but are sufficient for our examinations. In
order to analyze the effect of added pre- and postcondition primes, these operations are available in two
versions. Finally, there is an operation called Success which should (later on) indicate the success of an
operation. However, at the moment this operation is not related to any of the other operations.

The values of schema coupling are summarized in Fig. 3. As expected, the Success operation has a
value of coupling equal to zero. There are no connections to the state space BB and also no connections

3Again, there are situations where, due to a high number of dependencies, the value of coupling might stay unchanged.

Slice-based Formal Specification Measures A. Bollin

Figure 3: Values for Inter-Schema Flow z(ψ1,ψ2) and Inter-Schema Coupling C(ψ1,ψ2). The abbrevi-
ations S1 to S6 refer to the schema names mentioned in Fig. 2.

to the other operation schemata. On the other hand, the values for the other operations differ (though their
syntactical composition is more or less equivalent). With n = 6 operations there are 15 different combi-
nations and thus possibly 15 values for Inter-Schema Coupling. Within the scope of this contribution we
will focus on three combinations that are of most interest in this schema constellation.

As a first example we look at the operations Add and Add2. The difference between them is made up
by just one prime, namely name′ = name∪{n?} at line 18. In fact, in the context of the specification this
postcondition prime is redundant (as the state invariant at line 6 would guarantee that the added name is
also in the set of names). But syntactically this prime is sufficient to increase the set of dependencies.
Both operations include the state-space, which means that there is a relation between the postcondition
primes and the invariant. This introduces a new ”flow of control”, which increases the bandwidth and
thus the value for coupling (from 0.724 to 0.737 in Fig. 2).

Fig. 3 presents the values for Inter-Schema Flow and Coupling, and they make this difference more
visible. Inter-Schema Flow z(BB,Add) is |SU(Add)∩BB|

|BB| , which is 1 (so the slices of Add(S2) cover 100%

of the state space BB(S1)). z(Add,BB) is |SU(BB)∩Add|
|Add| , where SU(BB)∩Add covers the primes at lines

{6,10,11} (due to data dependency between line 6 and line 11). With this, the Inter-Schema Flow is 3
4 .

(Please note that due to the schema inclusion the Add schema consists of 4 predicates!) Now, looking at
Inter-Schema Coupling, the value is 1×1+3/4×4

1+4 , which is 0.8. Similarly, one can calculate the value for
the coupling between BB(S1) and Add2(S3), which is 0.833. The new dependency between the invariant
at line 6 and line 18 led to the situation that the slice contains one more prime. For similar situations we
might infer that the introduction of postcondition primes will (very likely) raise the value of coupling.

Another situation occurs when looking at the operation schemata AddGift and AddGift2. In relation to
the state schema the second variant of the operation contains an additional prime at line 35. However, the
point of departure is not the same. In this case the prime is a precondition prime that does not influence
any primes outside the schema – at first sight. On closer examination it is clear that the postcondition
primes in this schema are control dependent upon this prime, and a slice ”reaching” the schema operation
will have to include this prime, too. It grows in size, meaning that more ”bandwidth” is spent on it. In
similar situation we can infer that the value of coupling will also increase as the value for the Inter-
Schema Flow increases from n

m to n+1
m+1 .

The above specification does not show that the value for coupling can also decrease. This is the case
when we introduce a postcondition prime that is not related to the primes in the other schema(ta). Then,
in case of a state schema, there is no data-dependency between the primes. And in the case of another
operation schema there is neither control nor data-dependency. As the size of the schema increases,
Inter-Schema Flow decreases from n

m to n
m+1 .

On the syntactical level there is no difference between Add and AddGift. Both consist of a precon-
dition prime, three postcondition primes, and include the state. This equivalence can be seen in Fig. 2

Slice-based Formal Specification Measures A. Bollin

as the values for cohesion are the same. But it gets interesting when comparing them to AddGift2. The
value for Inter-Schema Coupling between Add (S2) and AddGift (S5) is 0.750, whereas the value for
Add (S2) and AddGift2 (S6) is 0.778. So, there is a slightly higher value of coupling between Add and
AddGift2. The reason for this is a semantic difference: the data relationship between the lines 11 and 34.
This simple example demonstrates that the idea of the ”bandwidth” is quite applicable in this situation.

Though the above example is simple, it is able to demonstrate the effects on the value for coupling
in the case of structural changes of schema operations. The second working hypothesis seems to be
confirmed, at least from the analytical part of view.

3.3 Limitations

Though the above hypotheses seem to be confirmed, there are limitations. More precisely, the problems
are that (a) the specifications might be too dense, (b) only part of the ”bandwidth” is regarded, and (c)
the dependency reconstruction does not work correctly. What seems to corrupt the measures is in fact
not a real problem.

In [2] the effect and efficiency of slicing has been investigated, and it turned out that slicing has dis-
advantages when the specifications are too dense. In about 60-70% of all cases slicing led to a reduction
in the size of the specification, which also means that in some situations there has been no reduction at
all. The slices then contained all other primes – indicating that nearly every prime is related to all other
primes. However, this effect decreases on average with raising sizes of the specifications (our experience
relies on more than 45.000 lines of specification text), and it is only a problem with text-book examples
that consist of a view schema operations only.

The next concern is that coupling is not sensitive to changes that lead to an increase in the number
of relations between the same primes. Irrespective the number of dependencies between two primes,
only the occurrence of the primes is counted by the size-operator. Bandwidth does not increase then.
The presented notion of coupling works well on a syntactical level, but not necessarily as expected
on a semantic level. The last measure (comparing AddGift and AddGift2) was sensitive because one
prime has (intentionally) been omitted from both schemata: normally, an author of these operations
would have added the line date′ = date as predicates to the schemata. This would have introduced
data-dependencies from both schemata to the Add schema, and there would have been no difference in
Inter-Schema Coupling anymore. In fact, this can not be seem as a real problem, it is as coupling is
defined. Nevertheless, one has to keep in mind that there might be more dependencies as expected.

Finally, slicing only works fine when the specifications are ”well-formed”. This means that they
consist of separable pre- and postconditions primes. When such a separation is not possible, then the
outcome is vitiated. Diller mentions in [5, p.165] that in most cases this separation can be done (which
means that a syntactical approximation to the semantic analysis is possible), but this does not prevent
from cases where pre- and postconditions are interwoven and not separable.

4 Conclusion and Outlook

This contribution introduces the notion of specification slice-profiles that are then used for the calculation
of slice-based specification measures. The way of calculating these measures for Z (namely coupling and
cohesion) is new and it is based on the use of (reconstructed) control and data dependency information.
The objective of this work is to investigate if such a mapping is meaningful. For this, the contribution
takes a set of small specifications as a basis, and the sensitivity of the measures is then analyzed by
changing internal and external properties of the specifications.

Slice-based Formal Specification Measures A. Bollin

The evaluation shows that the measures reflect the changes in the structure of the specification as
expected. Especially the values for cohesion seem to be a good indicator for changes in internal proper-
ties. Coupling is, due to the use of unions of slices a bit less sensitive, but it also reacts when there are
dramatic structural changes. All in all, the measures proof useful.

The understanding of the behavior of the measures was a first, necessary step. The next steps will
be to include different ”real-life” specifications and to perform an empirical study that demonstrates that
the measures are not just proxies for other, eventually size- based, measures. In case of confirming their
unique features again, this could be a step towards taking specifications as quality indicators quite at the
beginning of the SW-development cycle.

References
[1] Andreas Bollin. Specification Comprehension – Reducing the Complexity of Specifications. PhD thesis,

Universität Klagenfurt, April 2004.
[2] Andreas Bollin. The Efficiency of Specification Fragments. In Proceedings of the 11th IEEE Working

Conference on Reverse Engineering, 2004.
[3] Andreas Bollin. Concept Location in Formal Specifications. Journal of Software Maintenance and Evolution:

Research and Practice, 20(2):77–104, March/April 2008.
[4] Juei Chang and Debra J. Richardson. Static and Dynamic Specification Slicing. Technical report, Department

of Information and Computer Science, University of California, 1994.
[5] Antoni Diller. Z – An Introduction to Formal Methods. John Wiley and Sons, 2nd edition, 1999.
[6] Mark Harman, Margaret Okulawon, Bala Sivagurunathan, and Sebastian Danicic. Slice-based measurement

of coupling. In Proceedings of the IEEE/ACM ICSE workshop on Process Modelling and Empirical Studies
of Software Evolution. Boston, Massachusetts, pages 28–32, 1997.

[7] S. Henry and D. Kafura. Software structure metrics based on information flow. IEEE Transactions on
Software Engineering, 7(5):510–518, 1981.

[8] Timothy M. Meyers and David Binkley. An empirical study of slice-based cohesion and coupling metrics.
ACM Transactions on Software Engineering and Methodology (TOSEM), 17(1), December 2009.

[9] Tim Miller, Leo Freitas, Petra Malik, and Mark Utting. CZT Support for Z Extensions. In Proc. 5th Interna-
tional Conference on Integrated Formal Methods (IFM 2005), pages 227 – 245. Springer, 2005.

[10] Roland T. Mittermeir and Andreas Bollin. Demand-driven Specification Partitioning. Lecture Notes in
Computer Science, 2789:241–253, 2003.

[11] Tomohiro Oda and Keijiri Araki. Specification slicing in a formal methods software development. In 17th An-
nual International Computer Software and Applications Conference, IEEE Computer Socienty Press, pages
313–319, November 1993.

[12] Linda M. Ott and Jeffrey J. Thuss. Slice based metrics for estimating cohesion. In In Proceedings of the
IEEE-CS International Metrics Symposium, pages 71–81. IEEE Computer Society Press, 1993.

[13] W.B. Samson, D.G. Nevill, and P.I. Dugard. Predictive software metrics based on a formal specification. In
Information and Software Technology, volume 29 of 5, pages 242–248, June 1987.

[14] J.M Spivey. The Z Notation: A Reference Manual. Prentice Hall International, 2nd edition, 1992.
[15] Mark Weiser. Program slices: formal, psychological, and practical investigations of an automatic program

abstraction method. PhD thesis, University of Michigan, 1979.
[16] Mark Weiser. Program slicing. In Proceedings of the 5th International Conference on Software Engineering,

pages 439–449. IEEE, 1982.
[17] Fangjun Wu and Tong Yi. Slicing Z Specifications. SIGPLAN Not., 39(8):39–48, 2004.

