
Concept Management: Identification and Storage of
Concepts in the Focus of Formal Z Specifications

Daniela Pohl and Andreas Bollin

Alpen-Adria Universität Klagenfurt, 9020 Klagenfurt, Austria
{daniela,andi}@isys.uni-klu.ac.at

http://www.uni-klu.ac.at/tewi/inf/isys/sesc/index.html

Abstract. Concept location is a necessary but all too often laborious task during
maintenance phases. Part of the reasons is that repeatedly the same or similar con-
cepts have to be reconstructed, which is a resource and time-consuming process.
This contribution investigates the situation and suggests a framework that per-
sistently stores conceptual elements and their dependencies in an SQL database.
On the example of formal Z specifications it demonstrates that concept location
is alleviated by simple queries that automatically identify concepts based on the
database entries.

Keywords: Concept location, Formal Z specifications, Maintenance.

1 Introduction

”People like to write code, but they do not like to read somebody else’s code.” This
statement becomes increasingly apparent as the number of software systems in use is
growing – and have to be maintained. Why might this be the case?

In [1, p.242] it is postulated that it is easier to express ones owns concepts and ideas
into the tight formality of a (programming) language than to reconstruct the concepts
the original developer had in mind from the formal expressions formulated in low level
code. This observation is above all true when the text or code expresses a concept pre-
viously unknown to the reader – which is often the case in maintenance situations. In
the lucky case there are at least high-level specification documents around, but, without
supporting tools, the identification of the relevant information stays a hard business.

Maintenance activities are often formulated in terms of adding/changing/deleting
features or concepts [2], and concept location techniques play an important role, in soft-
ware as well as in specification maintenance. Formal specification frameworks provide
excellent support for editing and verification, but they do not provide concept location
facilities. A (semi-) automatic identification of concepts is missing and, for formal spec-
ifications, also the possibility to store the, often cumbersome, reconstructed concepts to
be found in the documents.

The objective of this contribution is to demonstrate that not so much has to be done
in order to identify and store concepts. We introduce a generic model that is able to
deal with documents and concepts of different types. As a proof of concept a prototype
for formal Z specifications [3] has been implemented. But the basic ideas also apply to
other artifacts ... from natural language descriptions to program code.

L.A. Maciaszek, C. González-Pérez, and S. Jablonski (Eds.): ENASE 2008/2009, CCIS 69, pp. 248–261, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Identification and Storage of Concepts in the Focus of Formal Z Specifications 249

The paper is structured as follows. Sec. 2 discusses the related work. Sec. 3 derives
the requirements for a framework that is able to persistently store identified concepts.
With the necessary basics in concept location of Sec. 4 in mind, Sec. 5 introduces the
key ideas behind our suggested framework. Sec. 6 evaluates its functionality in respect
to correctness and time complexity. The contribution closes with a short summary and
an outlook of work to be done.

2 Related Work

Due to the size of today’s systems, maintenance and reverse engineering activities are
usually supported by tools and frameworks.

At first, there are SW-Engineering frameworks that can also be used for reverse en-
gineering activities [4,5,6,7,8]. Usually, they enable the reconstruction or extractions
of diagrams from code, and thus establish links between different representations sup-
porting round-trip engineering. Their disadvantage is that they are limited to a very
specific notation (e.g. UML) or assume that the code has already been written within
the framework.

Another group is that of explicit reverse engineering tools. There, the input is the
code or an abstract representation of it, and they sustain the process of creating ex-
tractions or views onto the source. Popular representatives are RIGI [9], going back to
the work of Müller, Tilley, and Wong in the early 90s, or Bauhaus [10]. In the mean-
time there are a lot of extensions and, especially for C++ and Java programs, similar
frameworks [11,12,13,14,15,16].

Finally, there are frameworks that focus explicitly on concept location [17,18,19].
They make use of techniques similar to those of reverse engineering environments, but
provide additional support for storing and retrieving previously identified concepts.

Environments for formal specifications have their focus on writing down a syntac-
tically correct specification and providing verification support. They are not meant to
be used for reverse engineering. However, one tool-set that permits looking at a spec-
ification from different angles is VDMTools with its RoseLink feature [20]. It can be
used to generate UML diagrams from VDM specifications. Tools for B also focus on
the creation of the specification. Some representatives, e.g. Atelier-B [21], at least pro-
vide views onto dependencies between the components. In the case of Z the situation
is almost the same. One exception is the ViZ toolkit [22], where the emphasis was laid
on concept location. But ViZ also has its limitations, first and foremost the inability to
persistently store identified concepts.

3 Maintenance Support

The motivation for this work goes back to a project where we tried to improve main-
tenance and re-engineering activities of formal Z specifications. A big advantage of
formal specifications is their semantic density. One can express his or her thoughts pre-
cisely and on a high level of abstraction. But with that, the complexity (and density)
of even small specifications is quite high. As shown in [23], specifications might have
thousands of dependencies between their elements, and comprehension aids are defi-
nitely necessary.

250 D. Pohl and A. Bollin

3.1 RE of Formal Z Specifications

At first sight approaches from the traditional field of software comprehension are not
suitable. Z (among others) is a state-based, declarative specification language, with no
explicit control and data flow – dependencies that are typically utilized when looking
for concepts. But there is a solution to this problem.

In [24, p.60–63] a syntactical approximation to the identification of dependencies
was described, which then enabled the identification of concepts like slices, chunks,
and clusters within formal specifications. ViZ (for Vizualization of Z Specifications)
implements these algorithms and supports typical comprehension activities. But with
its employment the following issues have been observed:

– The same comprehension steps are often carried out more than once - even if there
is additional documentation. So dependencies and concepts identified once have to
be reconstructed again.

– The calculation and identification of concepts is still a time consuming task. More-
over, these calculations and findings are lost when the framework is closed and the
state is not saved for later use.

– It is not sufficient to look at a concept in isolation. Depending on the problem at
hand more than just a single view onto the artifact has to be generated.

To summarize, a framework sustaining comprehension tasks should not ignore the
above observations. It should support the identification of new concepts at different
levels, enable the linkage between them, and be able to store the findings persistently in
a database. Please note that the observations above are not only limited to the field of Z
specifications. They apply to other artifacts, too. Due to the resource-consuming calcu-
lations necessary for dense and complex formal specifications, the storage of concepts
is of major importance in our case.

3.2 Multi-dimensional Problem

The reconstruction of concepts within an artifact is not trivial. In order to reconstruct
(or better approximate) the concepts a former developer had in mind, one has to take
into account that different facets led to the writing of the artifact:

– The environment and context of the problem. There are maybe several assumptions
the developer had to consider and that are not fully documented. So, an artifact only
makes sense when put into the right context.

– The concepts inherent in the language. Different (programming) languages are dif-
ferently suitable for describing problems. In fact, the semantics behind a language
is often used to reduce writing effort. E.g. dependencies do not have to be made ex-
plicit, names are declared once, and it is clear when they are usable and when not.
Those concepts, let us call them ”behind the scenes”, are important for grasping
the whole meaning.

Identification and Storage of Concepts in the Focus of Formal Z Specifications 251

Fig. 1. (Left) An artifact contains concepts in three different dimensions and at different levels.
(Right) Specifications are dismantled into syntactical elements (primes) and then extended by
dependency and scope annotations.

– Concepts made explicit in the source. The concepts mentioned above are problem-
and language-inherent. What is left are those concepts that are visible in the arti-
fact. E.g. a case-statement represents an n-ary decision, and its meaning is clearly
defined. Such concepts are called ”before the scenes”.

When one is at least familiar with the problem field and the environment, the identifica-
tion of the concepts behind and before the scenes might be seen as a multidimensional
problem. Fig. 1 (left side) demonstrates this viewpoint.

The (Syntactic) Representation Level. At first, there is the artifact itself. It has
been written in some pre-defined language, with clearly defined rules for its syntax.
It is assumed that it can be divided into a structured set of basic elements (primes,
statements, paragraphs ...). This sequence of elements, its nouns and verbs, and the
structure make up a lot of the underlying concept(s). Thus, the representation level
deals with the source and the structure of the artifact.

The (Semantic) Model Level. In general, a language comes along with a clearly
defined semantics (e.g. statements have to be put into some order). This implies a spe-
cific meaning and leads to several dependencies and relations between the elements (see
Fig. 1). These rules are not written down in the artifact, but belong to it and make up
another part of the underlying concept(s). They can be seen as named concepts, going
back to the semantic possibilities of the language at hand.

The (Semantic) Concept Level. What is left are the concepts the developer ex-
presses unconsciously. They describe specific aspects of the problem and are recogniz-
able when looking at the artifact from some distance. These mental macros, as Baxter
et. al. [25] call them, express higher-level concepts, and program comprehension tech-
niques are typically used to carve them out. To this dimension belong concepts like
slices [26], chunks [27], clichés [28], and different types of clusters [29].

To exemplify the situation, the calculation of a specification or program slice (stored
in the concept level) depends on the concept of dependencies (model level), the concept
of scope (model level), and the basic elements in the source (representation level). When
these concepts (at different levels) are calculated they can be stored in a database for
later use.

252 D. Pohl and A. Bollin

4 Formal Specification Concepts

The model presented above has been mapped to a database schema and forms the ba-
sis for the concept location process. Though the strength of the framework is to deal
with different types of documents, our experiences arise from the scope of maintaining
formal Z specifications – which also was the starting point of the requirements’ consid-
erations. The specification concepts we are interested in are those as described in more
detail in [22]: slices, chunks, and clusters.

4.1 Conceptual Elements

A formal specification concept is a coherent, abstract (or generic) pattern of specifi-
cation text that is generalized from particular instances of the specification. It can be
understood and recognized as a whole even when standing alone.

As explained in more detail in [22, p.81], the basic elements such concepts are
built upon are called specification primes. Such formal specification primes (also called
prime-objects) also represent the basic entities of a specification. They are built from
literals of the specification and form logic, syntactic, or semantic units. A prime is a syn-
tactically coherent sequence of literals within a specification, forming semantic entities
that can be paraphrased by a short sentence in natural language.

With programming languages, primes would be programming statements. In the case
of formal Z specifications these primes are declarations, definitions, and predicates.
Fig. 1 (to the right) marks the primes by dashed ellipses, e.g. the prime ”name? �∈
known” (the second prime from below).

When primes are combined they do form so-called higher-level primes. The Add
schema operation in Fig. 1 is an example of such a higher-level prime, telling the user
about the things happening when the operation applies.

4.2 Specification Concepts

Concepts within formal specifications are identified in an iterative manner [22, p.83].
Starting with a domain-level request, one forms a mental model of the problem in mind
and concept location is about to begin. Concept candidates are identified and matched
against the model of the problem. When the candidates match, the concept is (very
likely) identified and the elements of the related candidates are tagged. The concept lo-
cation process makes use of the following steps: pattern matching, slicing and chunking,
and cluster identification.

As explained in [30], experienced users first browse the text and try to identify rel-
evant parts by grep-ing for keywords. When this is not successful, more complicated
methods are used. Structures are especially of interest, and clustering is a feasible way
in identifying related regions. The selection might be based on the use of identifiers,
or on the number of dependencies that glue the primes together. Similarly, slices and
chunks can be generated for a point of interest by just looking at specific primes and by
following different types of dependencies.

Specification concepts are identified by looking at dependencies among primes. For
the calculation of slices, chunks, and clusters, control- and data-dependencies are needed,

Identification and Storage of Concepts in the Focus of Formal Z Specifications 253

and though these dependencies are not explicitly available, they can be reconstructed by
looking at pre- and post- conditions. The approach goes back to the work of Oda and
Araki [31] and has been refined in [32,24]. The basic idea is that, within a specific scope,
primes that are part of post-conditions are dependent on primes that contribute to pre-con-
ditions. In order to ease their identification, all primes get tagged with annotations. For
every identifier used in a prime the following meta-information is assigned to the prime:
CI (channel input) when it is an input identifier which is decorated by a ? , CO (channel

output) for an result identifier decorated by an ! , D (declaration) for an identifier that

denotes the identifier’s after-state and which is decorated by a ’ , T (type declaration)
for identifiers that are declared, and U (used) otherwise. So, the two Z primes (of the Add
schema in Fig. 1)

P1 : name? �∈ known
P2 : birthday′ = birthday ∪ {name? �→ date?}

would be tagged as follows. Prime P1 is annotated by {CI �→ {name}, U �→ {known}},
and prime P2 is annotated by{D �→ {birthday}, U �→ {birthday},CI �→ {name, date}}.
Post-condition primes are those primes that have a tag containing a D or CO set. In our
case P2 would be a post-condition prime, prime P1 is a so-called pre-condition prime.

The identification of dependencies is explained in more details in [24, pp.126–132].
However, when the meta-information is stored in the database (and assigned to the
prime objects), the queries are quite simple. Our agents, as introduced in Sec. 5.2, make
use of this meta-information in form of SQL queries.

5 Concept Location Framework

The framework for identifying the different concepts in Z specifications is designed to
cope with different types of artifacts. It implements a traditional client-server architec-
ture pattern based on the EJB Technology. The client is responsible for visualizing the
results and for triggering the concept extraction. On the server side it is designed to
handle different types of artifacts. Whenever a document is stored, different analysis
tasks are started by a scheduler extracting concepts, and the findings are stored in the
database again (see Sec. 5.2).

5.1 Database

The database forms the basis for the management of conceptual elements and their de-
pendencies, sustaining the concept location process of formal Z specification
documents.

There are four areas covered by the database. Three of these areas are related to
the multi-dimensional view as described in Sec. 3.2. The forth area is used for the
management of artifacts within the software engineering life-cycle.

Management/Project Pane. Based on the software engineering process, the Manage−
ment/Project section deals with the management of artifacts within different phases of

254 D. Pohl and A. Bollin

Fig. 2. The four different panes of the database model (Please note that for reasons of space only
the major entities are shown. See [33] for more details.)

the project. There, a Project consists of different Phases. Within each phase Artifacts are
created, most of them depending on each other. Different artifact versions might exist.
Hence, the database schema takes this into account by assigning the ArtifactMetaData
information to an artifact.

(Syntactic) Representation Pane. Every artifact, independently of its nature, consists
of a certain structure. This structure is built upon so called SyntaxElements. SyntaxEle−
ments are characterized by their ElementTypes:

– Content: It represents a pure structural element (so-called basic elements like sen-
tences, expressions, or statements).

– Presentation: Text is often decorated (e.g. by boxes). As sometimes this decoration
carries information, it is also stored.

– Aggregation: It provides the possibility to explicitly mark higher-level concepts that
have been created by the aggregation of basic elements.

Syntax elements carry a lot of information. E.g. they refer to identifiers, define labels,
or describe some input operations. A set of meta-data is introduced to store them. Every
data entry of ElementMetaData belongs to a specific AnnotationType, and so different
(but consistent) categorizations get possible.

Model Concept Pane. A Concept corresponds to one or several syntactical elements
(SyntaxElements). For different types of concepts also different relationships are possi-
ble. This is done by the CombinationType entity. Besides, it is possible to express some

Identification and Storage of Concepts in the Focus of Formal Z Specifications 255

kind of direction or ordering between the related elements. The characterization of a
concept is made up by the ConceptType entity. Concepts also form hierarchies, and to
express these relations, an n-to-m recursive relationship is introduced.

Concept View Pane. The database schema allows for different views onto the con-
cepts, be them explicitly or implicitly available. The main purpose of the View entity
is to cluster related concepts (concepts of the same type) or to form different views
onto the current artifact. This information is, besides the creation date, stored in the
ViewMetaData entity. Every view belongs to a certain category. This classification is
stored in the ViewType.

It is also possible to annotate a view with ViewData entries of specific ViewDataTypes.
Those entries are, e.g., used to store metrics of clusters or other characteristics relevant
for concepts within the view. These steps are carried out by agents like those introduced
in the following section.

5.2 Agents

Our prototype provides different agents: scope agents that regard scope rules of Z,
dependency agents for reconstructing dependencies, and, based on them, slice/chunk/
cluster agents for carving out higher-level concepts.

For the creation of slices or chunks typically two different types of dependencies
(data-, and control-dependencies) and the syntactical environment are necessary. So, at
first, these dependencies have to be extracted, but the extraction is complicated due to
language-specific scope rules. The first task for our framework is therefore to recon-
struct the concepts representing the scope.

In the context of formal Z specifications three types of scopes can be identified (and
are calculated by three agents in our framework). The Declaration Scope represents all
visible declarations for a prime in the specification. The scope is also needed to derive
the syntactical dependencies and thus for building syntactically correct partial specifi-
cation. The State Scope deals with schema inclusions within a specification document
and aggregates the primes of the inclusion and the primes of the including schemata (see
Fig. 1, Add(State) for an example). Finally, the Connectivity Scope merges all primes of
two or more schemata combined via schema operations.

In our framework, at first, the agents launch queries to identify the correct scopes,
then they start reconstructing control- and data dependencies. Sec. 5.3 demonstrates the
simplicity on the example of control dependency identification.

After scope and dependency calculation the Slice and Chunk agents can be activated
by the user. Beginning with a ”point of interest” (a set of primes), the agents calculate
slices and chunks by following the stored control- and data dependencies. The results
are again stored in the database for later use.

The last agent presented here is called Clustering Agent. It is responsible for the
generation of clusters of a specification document. In order to ease deciding about the
most useful number of clusters to be generated, the agent pre-calculates and stores
all variants of them. Every cluster view is then extended by meta-information. This
meta-data describes different types of cluster-metrics, like the partition entropy or the
partition coefficient measure. This information can later help the user to decide about
the usefulness of the clusters.

256 D. Pohl and A. Bollin

Some of the agents are executed in parallel; other agents have to wait. Therefore all
agents are registered in an agent scheduler, which is responsible for the right execution
order.

5.3 Queries for Concept Location

Our framework makes use of a simple idea: the calculation logic is moved from tra-
ditional program code to SQL queries disposed by the agents. The extraction is done
by expressions which are based on the annotations of the primes in the database. For Z
documents the necessary queries are already implemented.

To demonstrate the elegance of the queries we look at the steps necessary to carve
out control dependencies from Z specifications. The relevant primes in the database are
the syntax elements tagged by the Content element type. The extraction-process then
uses the State and Connectivity Scope for the calculation.

Πsid σAnnotationType.name=”D”

((σConcept.id=actConcept ��

(σConceptType.name=”State”ConceptType))

�� SyntaxElement ��

ElementMetaData �� AnnotationType)

(1)

Πsid(σConcept.id=actConcept ��

(σConceptType.name=”State”ConceptType))

[sid �= sid]

Πsid

(σ AnnotationType.name�=”T”or
AnnotationType.name�=”C”orAnnotationType.name�=”D”

SyntaxElement �� ElementMetaData

�� AnnotationType)

(2)

The queries (1) and (2) above extract control–dependencies of the Add schema op-
eration of the ’Birthday Book’-Specification (where act represents the identifier of the
current State Scope). The queries lead to the source (S) and destination (D) primes for
the dependency arcs. In fact, the results of the queries are elements of the SyntaxElement
entity. The agent takes all elements resulting from the first query and connects them
to the resulting elements of the second query. Every pair forms a Concept within the
database. This information is stored in the database and results in the concept entries
Control-Dep. (1) and Control-Dep. (2)) as exemplified in Fig. 1.

The identification of data–dependencies is similar to that of control–dependencies.
Its only difference is related to the U tag, and the consideration of the name of an
identifier. A detailed description of the queries for scope and dependency calculation
can be found in [33, p.102-106].

Table 1. Complexity attributes and calculation time (in seconds)

Specification Lines Pages A4 Primes CD DD ViZ [s] EJB/DB [s] Concepts

BB 40 2 34 10 5 4.6 7.0 36
Cinema 95 4 74 121 43 75.3 43.2 114
Petrol 88 3 65 192 177 152.9 51.9 219

Elevator 193 6 185 1,628 992 1,223.4 709.3 984

Identification and Storage of Concepts in the Focus of Formal Z Specifications 257

6 Evaluation

The evaluation of the framework was carried out in two steps. First, the correctness
of the identified concepts were checked, and, secondly, the usefulness in respect to
performance explored. In fact, both steps also hearken back to results we gained from
the existing ViZ framework.

6.1 Setting and Correctness

The first step was the validation of the concepts that have been identified by the agents
and stored in the database. The evaluation involves specifications of raising sizes, known
as Birthday Book [3], Petrol Station [24], and Elevator [32]. Additionally, a student’s
specification (Cinema) was added to the set. Tab. 1 (left part) summarizes the key at-
tributes in order to assess the complexity of the specifications. It exemplifies the number
of lines, pages (when printed), primes, control- (CD), and data dependencies (DD).

The correctness of the identified concepts was checked in two steps. At first, the new
framework was used to identify dependencies, slices, and chunks. The results were then
exported to a structured file. In a second step these entries have been compared to the
concepts and dependencies identified by the ViZ framework. As Tab. 1 (right column)
demonstrates, this involved 1353 concepts (consisting of slices and chunks for every
prime occurring in the predicate part of every schema) and 3168 dependencies (CD
and DD).

6.2 Performance Considerations

As every dependency and concept has been detected correctly, we were also eager to
see whether the framework scales and improves operating speed. In fact, in our case

Fig. 3. Performance considerations between the ViZ and the EJB framework

258 D. Pohl and A. Bollin

operation time it up to (a) dependency calculation, (b) storage and retrieval, and (c)
concept identification.

In the case of ViZ the calculation of dependencies (and thereinafter slices or chunks)
is time-consuming. ViZ uses an annotated graph to store primes and its connections,
and dependency calculation is based on reachability considerations. It has a runtime
performance of O(n ∗ (m + n ∗ log ∗ n)) (with n related to the number of primes and m
related to the number of dependencies in the specification). The new framework consid-
ers Def-Use equations based on scope relations (that are stored in the database), and its
runtime complexity is in O(n2). Tab. 1 (center part) presents the time needed to calcu-
late all dependencies for the ViZ environment and the EJB based framework (where the
system consisted of a Windows XP Professional OS, Intel Core2 CPU, 2.00GHz, 2 GB
RAM). This difference can also be seen in Fig. 3 (top left). Though ViZ does not store
the elements in a database, the total time is much higher due to the extra time needed
for control and data dependency calculation.

The type of the database access is also crucial for the performance. The most com-
plex artifact in our considerations is the Elevator specification, and it takes about ten
minutes till all dependencies are analyzed (and about 2,600 data-sets are stored for later
use). As a few thousand data-sets are not so much for a database, we were eager to
know why it took so long.

It turned out that a lot of time is lost due to EJB’s synchronization between the
database and Java’s objects. The overhead is about one-third of the time. Furthermore,
there is very high execution time latency between EJB and its corresponding JDBC
queries. As explained in more details in [34, p.234], in our setting JDBC scales about
six times better than EJB. Fig. 3 (top right) demonstrates this time-differences on the
example of the elevator specification.

The calculation of concepts like slices or chunks implies looking at a specific prime
and following the relevant dependencies. Fig. 3 (bottom left) shows that ViZ is defini-
tively faster than the new environment. There, all possible slices for three different
specifications have been generated once and the total time measured. ViZ is much faster,
which is not surprising as it’s internal graph already contains the dependencies as arcs
and they do not have to be read from a database. However, the new framework stores the
slice as a view for later use, and calculated once, it does not have to be (re-)calculated
again.

Considering the above observations, the new framework seems to be an improvement
in the case of concept location environments for Z specifications. Fig. 3 (bottom right)
demonstrates this by accumulating the time till all possible slices have been calculated
once. ViZ is faster at the beginning, as it does not store the elements in a database,
but the new framework invests in storing the syntactical elements in the database and
assigns scope information to it. This investment pays back when dependencies are to
be calculated, and it outpaces ViZ. Retrieving the concepts then is slower, but merely
depends on the number of elements to be retrieved by a select operator. In addition to
that, they have only to be retrieved once, as after retrieval they are stored as a view in
the database. Here the strengths of a relational database pay off.

Though the new framework is faster, we conclude from the analysis above that the
use of EJB is less suitable. It brings maintenance advantages, but, as also addressed in

Identification and Storage of Concepts in the Focus of Formal Z Specifications 259

[34], one has to expect performance loss that should not be neglected. For this reason we
are currently working on a new release of the framework that replaces the middleware
technology by JDBC.

7 Conclusions

This paper introduces the problem of concept location within state-based specifications
and motivates for a framework that persistently stores concepts for later use and fast ac-
cess. Starting with a thorough analysis of concept location aspects, a database schema
has been developed which, thereinafter, forms the basis for our concept location frame-
work for formal Z specifications.

The paper then introduces the key ideas behind our prototype. Besides storing con-
cepts, it is based upon the idea of individual agents that quickly identify different rela-
tions among syntactical elements (of our specification) stored in the MySQL database.
Their elegance originates from the fact that an SQL database is very efficient in looking
for specific relations between elements, and thus most of the calculation logic could be
put into slim SQL queries.

The evaluation is based on a comparison with ViZ, an already existing concept lo-
cation framework for Z specifications. The evaluation shows that it produces the same
results than ViZ, but calculation times varied. The performance of the framework was
strongly influenced by EJB. The analysis of JDBC and EJB shows a high factor of per-
formance loss when using EJB. JDBC scales about six times better than EJB in terms of
runtime. Additionally, EJB implements an intermediate layer and, therefore, runs into
performance latencies. It is going to be replaced by JDBC in the next release of our
framework.

References

1. Mittermeir, R.T., Bollin, A.: Demand-driven Specification Partitioning. In: Proceedings of
the 5th Joint Modular Languages Conference (2003)

2. Wilde, N., Scully, M.C.: Software Reconnaissance: Mapping Program Features to Code.
Journal of Software Maintenance: Research and Practice 7, 49–62 (1995)

3. Spivey, J.: The Z Notation: A Reference Manual, 2nd edn. Prentice Hall International, En-
glewood Cliffs (1992)

4. Rational-XDE: IBM Rational XDE DeveloperWorks Home Page,
www.ibm.com/developerworks/rational/products/xde/ (Page last visited:
March 2009)

5. Eclipse-GMT: Homepage,
http://www.eclipse.org/gmt/ (Page last visited: March 2009)

6. Nickel, U., Niere, J., Wadsack, J., Zündorf, A.: Roundtrip Engineering with FUJABA.
In: Ebert, J., Kullbach, B., Lehner, F. (eds.) Proceedings of 2nd Workshop on Software-
Reengineering (WSR), Bad Honnef, Germany (August 2000)

7. Jouault, F.: Loosely Coupled Traceability for ATL. In: Proceedings of the European Confer-
ence on Model Driven Architecture (ECMDA 2005), Workshop on Traceability (2005)

8. MetaEdit+: Homepage, www.metacase.com (Page last visited: March 2009)

www.ibm.com/developerworks/rational/products/xde/
http://www.eclipse.org/gmt/
www.metacase.com

260 D. Pohl and A. Bollin

9. Müller, H.A., Tilley, S.R., Wong, K.: Understanding Software Systems Using Reverse Engi-
neering Technology Perspectives from the Rigi Project. In: CASCON 1993, October 1993,
pp. 217–226 (1993)

10. Koschke, R.: Software Visualization for Reverse Engineering. In: Diehl, S. (ed.) Dagstuhl
Seminar 2001. LNCS, vol. 2269, pp. 524–527. Springer, Heidelberg (2002)

11. Ferenc, R., Beszedes, A., Tarkiainen, M., Gyimothy, T.: Columbus – Reverse Engineering
Tool and Schema for C++. In: IEEE International Conference on Software Maintenance,
Montreal, Canada, pp. 172–181 (2002)

12. Korshunova, E., Petkovic, M., van den Brand, M.G.J., Mousavi, M.R.: CPP2XMI: Reverse
Engineering of UML Class, Sequence, and Activity Diagrams from C++ Source Code (Tool
Paper). In: Working Conference on Reverse Engineering (WCRE 2006), Benevento, Italy
(2006)

13. Computer Human Interaction and Software Engineering Lab (CHISEL): SHriMP Home-
page, www.thechiselgroup.org/shrimp (Page last visited: October 2008)

14. Holt, R.: PBS – The Portable Bookshelf Homepage,
http://www.swag.uwaterloo.ca/pbs/intro.html (Page last visited: Octo-
ber 2008)

15. Ebert, J., Kullbach, B., Riediger, V., Winter, A.: GUPRO – Generic Understanding of Pro-
grams – An Overview. Electronic Notes in Theoretical Computer Science 72(2) (2002)

16. Holt, R., Schürr, A., Sim, S.E., Winter, A.: GXL Graph Exchange Library Homepage,
http://www.gupro.de/GXL/ (Page last visited: April 2008)

17. Chen, K., Rajlich, V.: RIPPLES: Tool for Change in Legacy Software. In: IEEE International
Conference on Software Maintenance, p. 230. IEEE Computer Society, Los Alamitos (2001)

18. Xie, X., Poshyvanyk, D., Marcus, A.: 3D Visualization for Concept Location in Source
Code. In: Proceedings of 28th IEEE/ACM International Conference on Software Engineering
(ICSE 2006), May 20–28, pp. 839–842 (2006)

19. Poshyvanyk, D., Marcus, A.: Combining Formal Concept Analysis with Information Re-
trieval for Concept Location in Source Code. In: Proceedings of the 15th IEEE International
Conference on Program Comprehension (ICPC 2007), June 26–29, pp. 37–48 (2007)

20. Agerholm, S., Larsen, P.G.: Applied Formal Methods – FM-Trends 98. In: Hutter, D.,
Traverso, P. (eds.) FM-Trends 1998. LNCS, vol. 1641, pp. 326–339. Springer, Heidelberg
(1999)

21. Engineering, C.S.: The Atelier-B Homepage,
http://www.atelierb.eu/index-en.php (Page last visited: June 2009)

22. Bollin, A.: Concept Location in Formal Specifications. Journal of Software Maintenance and
Evolution: Research and Practice 20(2), 77–104 (2008)

23. Bollin, A.: The Efficiency of Specification Fragments. In: Proceedings of the 11th IEEE
Working Conference on Reverse Engineering (2004)

24. Bollin, A.: Specification Comprehension – Reducing the Complexity of Specifications. PhD
thesis, Universität Klagenfurt (April 2004)

25. Baxter, I.D., Yahin, A., Moura, L., SantAnna, M., Bier, L.: Clone Detection Using Abstract
Syntax Trees. In: Proceedings of the International Conference on Software Maintenance, pp.
368–377. IEEE Computer Society, Los Alamitos (1998)

26. Weiser, M.: Program Slices: Formal, Psychological, and Practical Investigations of an Auto-
matic Program Abstraction Method. PhD thesis, University of Michigan (1979)

27. Burnstein, I., Roberson, K., Saner, F., Mirza, A., Tubaishat, A.: A Role for Chunking and
Fuzzy Reasoning in a Program Comprehension and Debugging Tool. In: TAI 1997, 9th In-
ternational Conference on Tools with Artificial Intelligence, November 1997. IEEE press,
Los Alamitos (1997)

www.thechiselgroup.org/shrimp
http://www.swag.uwaterloo.ca/pbs/intro.html
http://www.gupro.de/GXL/
http://www.atelierb.eu/index-en.php

Identification and Storage of Concepts in the Focus of Formal Z Specifications 261

28. Broad, A., Filer, N.: Applying Case-Based Reasoning to Code Understanding and Gen-
eration. In: Proceedings of the Fourth United Kingdom Case-Based Reasoning Workshop
(UKCBR4), University of Salford, Salford, England, September 1999, pp. 35–48 (1999)

29. Wiggerts, T.: Using Clustering Algorithms in Legacy System Remodularization. In: Proceed-
ings of the 4th Working Conference on Reverse Engineering (WCRE 1997). IEEE Press, Los
Alamitos (1997)

30. Rajlich, V., Wilde, N.: The Role of Concepts in Program Comprehension. In: International
Workshop on Program Comprehension, pp. 271–278. IEEE Computer Society, Los Alamitos
(2002)

31. Oda, T., Araki, K.: Specification slicing in a formal methods software development. In: Sev-
enteenth Annual International Computer Software and Applications Conference, November
1993, pp. 313–319. IEEE Computer Socienty Press, Los Alamitos (1993)

32. Chang, J., Richardson, D.: Static and Dynamic Specification Slicing. In: Proceedings of the
Fourth Irvine Software Symposium, Irvine, CA (April 1994)

33. Pohl, D.: Specification Comprehension – Konzeptverwaltung am Beispiel zustandsbasierter
Spezifikationen (in German). Master’s thesis, University of Klagenfurt, Software Engineer-
ing and Soft Computing (Juli 2008)

34. Pohl, D., Bollin, A.: Database-Driven Concept Management – Lessons Learned from Using
EJB Technologies. In: 4th International Conference on Evaluation of Novel Approaches to
Software Engineering (May 2009)

	Concept Management: Identification and Storage of Concepts in the Focus of Formal Z Specifications
	Introduction
	Related Work
	Maintenance Support
	RE of Formal Z Specifications
	Multi-dimensional Problem

	Formal Specification Concepts
	Conceptual Elements
	Specification Concepts

	Concept Location Framework
	Database
	Agents
	Queries for Concept Location

	Evaluation
	Setting and Correctness
	Performance Considerations

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

