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Abstract—A variety of angular position sensors make use of field patterns that are rotated together with a rotor with respect
to a stator. The determination of the relative angular displacement of the rotor is then determined using at least two e.g.
magnetic field sensors that spatially sample from the field pattern. In the sensor model we include spatial dependencies of
random deviations by means of a Gaussian random field. Based on this, an approach for fast determination of D-optimal
designs is presented. These results show that the commonly used distributions of magnetic field sensors are actually optimal
for the determination of inphase and quadature signals in the presence of spatial correlations, provided that the number
of field sensors is higher or equal to three. However, in the uncorrelated case, the common solutions are not the only
optimal solutions. Furthermore, it is shown by means of numerical studies that the optimal design with respect to the
determination of the rotational angle may deviate from the common solution depending on the nature of the random field.
It is found that a restriction to symmetric designs is not necessary. Thus, the design space can be extended to allow for
further improvements of such angular position sensors.

Index Terms—D-optimal Design, angular position sensor

I. INTRODUCTION

Non-contact measurement of angular positions of-
fers advantages such as low wear, low acoustic noise
generation, insensitivity to vibrations and contaminations,
etc. Due to the intrinsic robustness, non-contact angular
positions sensors based on magnetic sensors are very
popular. In such sensors a field pattern, which is typically
generated using a permanent magnet, is rotated together
with a shaft in order to determine the relative angular
displacement between the rotor/shaft and the stator. The
sensor output is calculated from measurements obtained
with magnetic field sensors. Commonly, sensors such
as anisotropic magnetoresistive sensors (AMR, e.g. [1]),
giant magnetoresistive sensors (GMR, e.g. [2]), tunneling
magnetoresistive sensors (TMR, e.g. [3]) and Hall effect
sensors (e.g. [4]) are used. Illustrations of the according
principles are shown in Fig. 1. Similar approaches are
also found in non-magnetic sensors, e.g. in capacitive and
optical sensors. Frequently, the magnetic field observed
at the locations of the magnetic field sensors shows
an almost sinusoidal variation over the relative angular
rotation of the magnet. The magnetic field sensors are
usually placed in such a way, that the obtained signals
are phase shifted by 90o, such that an inphase and a
quadrature signal can be determined. This approach is
illustrated in Fig. 2. In this paper we investigate the
optimal choice of the sensor design, i.e. if the commonly
used choice of the location and/or the orientation of the
magnetic field sensors is optimal or if better solutions
can be found.

II. SENSOR MODEL AND OPTIMIZATION
PARAMETERS

A simple measurement model for the relation be-
tween the magnetic field measured with a magnetic field
sensor and the relative rotation θ of a magnet is given by

S(θ) = Asin(θ − ϕ) + w (1)

where S is the magnetic field sensor output signal, θ
the relative angular position, A the amplitude, and ϕ a
phase shift linked to the sensor location/orientation (com-
pare [2]). The term w summarizes random deviations
and noise. Typically, both the amplitude and the phase
shift have to be considered as unknown. Thus, at least
two magnetic field sensor are required. Typcially, the
actual number of field sensors is even higher in order
to compensate non-ideal effect. Thus, a measurement
vector S(θ,η), representing the measurement as obtained
from several sensors located on the integrated circuit, is
obtained.

S(θ,η) = A(η) sin(θ −ϕ(η)) + w (2)

The design parameter vector η comprises all information
describing the configuration, such as the magnetic sensor
location on the silicon die, the orientation of the magne-
tization of a fixed layer, etc. The vector w represents
the random deviations from the ideal model. The con-
tributions to this vector are from random measurement
noise but also from other sources, as will be discussed
in section IV.

In classical optimal design (e.g. [5], [6]), it is aimed
to find the configuration ηopt that maximizes the Fisher
Information I of the configuration. The inverse of the
Fisher Information I represents a lower bound for the



Fig. 1. Examples for magentic angular position sensors. In Hall sensors the magnetic field strength translates into a proportional voltage signal.
When the magnet and thus the field is rotated, an approximately sinusoidal variation is observed near the axis of rotation. In magnetoresisitive
sensors such as AMR, GMR and TMS the sensors resistance depends on the angle between a free layer and a reference orientation. As the free layer
follows the rotation of the strong external magnet, the resistance changes with the rotation. Bridge circuits are then used to obtain corresponding
voltage signals, as shown in Fig. 2. While the periodicity for AMR sensors is 180o, the periodicity of the other sensors is 360o.

Fig. 2. Example signals as obtained for a rotation of a magnet
for different sensor elements. Depending on e.g. the location of the
sensors or the orientation of a pinned layer fixed layer, the signal gets
phase shifted. Having two linearily independet signals, the angle can
be determined even when the amplitude of the signals is unknown.

variance of any unbiased estimator for the parameter in
question, i.e.

var(θ̂) ≥ 1

I(θ,η)
(3)

with the Fisher Information given by

I(θ,η) = −E
[
∂2 ln p(x; θ,η)

∂θ2

]
(4)

and the optimal design

ηopt = arg max
η∈H

I(θ,η) (5)

where H represents the design space. If the uncertainty
of the measurements w can be modeled using an jointly

Gaussian distribution

W ∼ N (0,C) (6)

where C represents the covariance matrix of the (zero
mean) random deviation vector, then the Fisher Informa-
tion can be obtained from

[I(θ,η)]ij =

[
∂h(θ,η)

∂θi

]T
C−1(θ,η)

[
∂h(θ,η)

∂θj

]
+

1

2
tr

[
C−1(θ,η)

∂C(θ,η)

∂θi
C−1(θ,η)

∂C(θ,η)

∂θj

]
(7)

In the given problem the approach has two draw-
backs: First, as (3) is just a lower bound there is no
guarantee that an algorithm exists that actually gets close
to it, i.e. is not guaranteed that the estimator variance of
the so found design can actually attain the lowest possible
value. This is particularly relevant as signal processing on
small integrated sensor devices typically has quite limited
computational power. Secondly, the Fisher Information
depends on the unknown angular position. The classical
approach to use locally optimal designs is not applicable
as the value for the angle can vary over a wide range.
Another approach to overcome the second issue is to
use Bayesian optimal design, where the expectation of
a utility function U is maximized [7],

ηopt = arg max
η∈H

∫
S

∫
θ

U(η, θ,S)p(θ,S|η)dθdS (8)

where p(θ,S|η) denotes the joint probability density
function for the observed data S and the parameter θ for



a given design η. The utility function is usually based on
the posterior probability density p(θ|S,η).

For sensors, a natural choice for the utility function
is the mean square error of the estimator, such that the ex-
pectation for the mean square error would be minimized.
However, in order to determine the mean square error,
an estimator needs to be known already in the design.
If we restrict the estimators to be of simple nature, e.g.
linear in the data, the Bayesian Minimum Mean Square
Error estimator (BMMSE) could be used. Even though
the estimator itself is simple (of low computational cost),
the determination of it is not, as can be seen e.g. in [8]
where this approach is applied to fast reconstruction in
Electrical Capacitance Tomography. Considering that we
would have to perform this approach for every candidate
design, the computation effort gets quite high. Further-
more, the linear estimators are not applicable to model
(2) due to the substantial non-linearity. Thus, we could
only use piecewise linearization, which further increases
the complexity.

A variety of other utility functions have been de-
veloped e.g. using the Kullback-Leibler divergence, for
which

U1(η) =

∫
S

∫
θ

log p(θ|S,η)p(S, θ|η)dθdS (9)

is maximized. A recent review on Bayesian methods is
provided in [7]. Bayesian design has mostly been limited
to simple models (e.g. low dimensional linear and non-
linear fixed effects models) because of the computational
challenges of performing the integration of (8) or (9) and
maximization thereof; and the use of standard optimiza-
tion algorithms, such as the NewtonRaphson method,
to find the optimal design may be inappropriate. Even
though novel computational strategies to speed up the
process to solve Bayesian optimal design problems have
been suggested, they still use comparatively expensive
methods such as Markov Chain Monte Carlo and Se-
quential Monte Carlo methods [9].

Besides the Bayesian approach, a maximin approach
(e.g. [10]) may be used, i.e. maximizing the minimum
of the determinant of the information matrix over all
possible values for the parameter θ.

ηopt = arg max
η∈H

min
θ∈Θ

I(θ,η) (10)

However, the problem remains that there is no guarantee
that the lower bound can be attained.

For angular position sensors we suggest a differ-
ent approach based on the assumption that an accurate
determination of the inphase and quadrature (I/Q) con-
tributions will allow for an accurate estimation of the
angular position θ. As will be demonstrated, in this case
it is possible to actually attain the lower bound - yet
for the I and Q contributrions but not directly for the

angle θ. Additionally, the computational complexity of
the approach is quite low.

III. OPTIMAL DESIGN FOR INPHASE AND
QUADRATURE CONTRIBUTIONS

The model (2) may be rewritten as

S(θ,η) = IA(θ,η) · cos(ϕ(η))+ (11)
+QA(θ,η) · sin(ϕ(η)) + w

= H(η)

[
IA
QA

]
+ w = H(η)θ + w (12)

where IA and QA represent the inphase and quadrature
contributions of the observed measurement vector S.
Please note that the individual magnetic fields sensors
may observe individual amplitudes. However, this may be
corrected by individual gain factors, such that common
values for IA and QA can be used as given in (11). The
values for IA and QA are summarized in the vector (θ).

Once we have estimate the IA and QA contributions
θ, the estimate for the angle θ is obtained using

θ = atan2(QA, IA) = atan2(θ2, θ1) (13)

where atan2 is arctangent function with two arguments,
i.e. the arctangent function including the appropriate
assignment of the quadrant of the computed angle.

In contrast to a direct optimization for the angle θ,
we now have to determine a vector of unknowns. Con-
sequently, the Fisher Information becomes a matrix. For
this class of problems, however, the equality condition
holds:

var(θ̂i) =
[
I−1
]
ii

(14)

with
θ̂ = (HTC−1H)−1HTC−1S (15)

When the covariance C does not depend on θ, the Fisher
Information

I = (HTC−1H) (16)

does also not depend on θ, as H does not depend on
θ. Therefore, no maximization of averaging over θ is
needed, and a solution will be optimal (in the chosen
sense) for all θ.

However, as we now estimate two parameters, a de-
sign will in general not be optimal for the determination
of both parameters within θ. A balancing between the
parameters is needed. Common approaches are to look
at the determinant of I (D-optimality) or the trace of
KI−1 (A-optimality). The first approach bears the risk
that the estimates may have strongly correlated errors.
The second approach requires a weighing matrix K, if
the parametes are of different nature. As this is not the
case in the given problem, K can be choosen as identity



matrix. However, for the experimental results reported in
this paper, only D-optimality was used and the objective
function Γ is given by

Γ(η) =
∣∣I(η)−1

∣∣ (17)

as our objective function and the optimal design is given
by

ηopt = arg min
η∈H

Γ(η) (18)

The optimal design can be found using numeric optimiza-
tion, e.g Nelder-Mead method [11]. Random deviations
as described in section IV are modeled and summarized
using random fields, which allows for an optimization
that is based on a comparatively simple model and thus
for a fast determination of D-optimal designs.

IV. MODELING OF RANDOM DEVIATIONS

Looking at (7) we see that we need to know the
sensitivity of our magentic field sensors with respect to
the parameter of interest but also the covariance matrix
of the measurements given by C. Possible contributions
to C are:

• Magnet alignment
– Axial displacement
– Radial displacement
– Inclination

• Magnet Magnetization Defects
• Disturbers

– External fields
– Ferromagnetic materials in the vicinity

• Sensor elements
– Measurement noise
– Offset, gain errors, e.g. due to process variations
– Piezo-resistive effect
– Piezo-Hall Effect

Except for measurement noise the sources of uncertainty
will typically affect not just a single sensor element but
lead to correlated effects on the entire sensor array.

For example, piezoresistive [12] and the piezo-Hall
effect [13] are related to mechanical stress. The electric
field ~E is given by

~E = ρ̆ ~J −
(
K̆ ~B

)
× ~J (19)

where ρ̆ represents the resistivity tensor, ~J the current
density, ~B the magnetic flux density, and K̆ the Hall
coefficients tensor. This relation gets disturbed by devi-
ations of the resistivity ρ due to the piezoresistive effect

δρ̆ =
∆ρ̆

ρ0
= Π̆σ̆ (20)

where Π̆ and represents the tensor of piezoresisitve
coefficients; and

δK̆ =
∆K̆

K0
= P̆ σ̆ (21)

where Π̆ represents the tensor of the piezo-Hall coef-
ficients; ρ0 and K0 are the scalar resistivity and Hall
coefficient for the unstrained case [14]. As stress can have
significant influence on the performance of integrated
sensors [15], it is important to be considered.

Consequently, the distribution of stress will lead to
a corresponding distribution of stress induced deviations
from the nominal behavior. The correlation can be deter-
mined experimentally (e.g. [14]), but also using Finite
Element Method (FEM) simulation. Fig. 3 shows an
example. Clearly, points that are in vicinity to each othe
experience similar displacement and similar stress.

Fig. 3. Simplified FEM Model of an integrated circuit within a
package. Due to different thermal properties (but also due to process
related effects), substantial deformation and stress is present across the
circuit. However, the stress at close locations is similar.

As a consequence stress induced deviations are sub-
ject to spatial correlations. Fig. 4 illustrates the impact
of temperature variation on the stress over a integrated
sensor. If the temperature is unknown, it might be treated
as a random variable. With this approach, also the stress
distribution and finally the deviations due to piezore-
sistive and piezo-Hall effect become random variables.
However, as the stress at different locations will not be
independent, the deviations of the measurement signals
will also not be independent. Therefore, this must be
considered in the covariance matrix of the measurements.
We suggest to use a Gaussian random field to model this
relation. The covariance matrix C is then a function of
the design parameters

Ci,j = cov(wi, wj) = f(ηi,ηj) (22)



Fig. 4. Temperature dependent deformation of a silicon die (compare
Fig. 5). If we treat the unknown temperature as a random variable, also
the stress deviation becomes a random variable. The stress changefor
points in close vicinity to each other will be similar.

where ηi represents the part of the parameter vector η
that correspond to the ith sensor element; e.g. for a Hall
sensor this ηi may be the cartesian coordinates of the
sensor locations. If the random field is stationary and
isotropic, then the covariance for different locations only
depends on the Euclidian distance between the parameter
vectors,

Ci,j = cov(w1, w2) = f(||ηi − ηj ||) (23)

In case of Hall sensors, this could be

Ci,j = cov(w1, w2) = f(||~xi − ~xj ||) (24)

where ~xi represents the coordinates of the ith sensor
within the silicon die.

A common choice for the covariance function be-
tween two observations made with two sensors is the
squared exponential

Cij = σ2
fe
−
||ηi−ηj ||

2

2l2 (25)

σ2
f is the variance of a measurement and l is a length

parameter that is found based on simulation results or
experimental evaluation according to [16].

It may also be useful to consider model errors by
an appropriate choice of C. For example, a metamodel
may be used to reduce quantization noise in a FEM
model. However, the errors introduced by the metamodel
will also be similar for points in close vicinity to each
other, as shown in Fig. 5. Even though the deviations are
systematic, it may be useful to consider this in the choice
of l in model (25)

V. OPTIMIZATION APPROACH AND RESULTS

In general, analytic solutions for (18) are hard to
find. Therefore, except for simple cases, we use a numeric
optimization approach. For the results shown in this paper

Fig. 5. Example of using a metamodel to reduce quantization noise.
If the field is obtained using FEM simulations (e.g. due to the presence
of ferromagnetic material in the environment), quantization noise is
introduced. This can be estimated using the deviation with respect to a
smoothed model, e.g. a polynomial metamodel. However, this will also
introduce deviations. Within the vicinity around a certain location, the
deviation will be similar.

we use the Nelder-Mead algorithm [11] with randomized
start vectors in order to find the optimal design. An
analytic solution for the placement of two magnetic
sensors and uncorrelated random deviations if provided
in the Appendix.

Different scenarios have been studied. Fig. 6 shows
solutions for the uncorrelated case, i.e. C as identity
matrix. For two sensor elements, a phase shift of 90o

is obtained, for three sensors a phase shift of 60o as
expected. However, for four sensors, a phase shift of
90o between all magnetic field sensors is not a unique
optimum solution, any solution where two sensors in
pairs are separated by 90o is also optimal.

If we look at the objective function it turns out
that there is not a unique solution even in the case of
three sensors (compare Fig. 7). However, if we intro-
duce a random common offset to the sensor elements,
the objective function changes significantly. Only one
solution with a phase shift of 120o remains (please note
the exchangeability of the individual sensors, therefore
the objective function has two peaks, but the solutions
are equivalent).

When we increase the number of sensors it turns out



Fig. 6. Example solutions for the uncorrelated case. (a) Two sensors. The optimal solution is found for a phase difference of 90o. (b) Three
sensors. Besides the phase difference of 120o, also a phase difference of 60o is optimal. (c) Four sensors. Two pairs with a phase shift of 90o are
found as optimal solution. However, the phase shift between the pairs is arbitrary.

Fig. 7. Surface plot of the objective function in the case of three
sensor elements, one sensor element is fixed at ϕ0=0). (a) Uncorrelated
random deviations. Clearly, there is no unique optimum. Besides the
solution shown in Fig.6, where the separation is 60o, also a separation
of 120o is optimal. (b) Correlation due to common offset. In this case,
only a separation of 120o is optimal. In both cases, the target function
is non-convex so that in the general case is not guaranteed that the
numeric optimization procedure will find the global optimum.

that we obtain a uniform distribution of the sensors when
the I/Q approach is used. However, the minimax approach
on the angle θ actually gives different results. With
respect to the error of θ both designs have practically
equal performance when we use the estimator according
to (15). Although no significant reduction of uncertainty
is achieved, this means that non-uniform distributions of
sensors can achieve the same performance as uniform
distributions. As the restriction to use such regular de-
signs can be omitted, new design options are provided,
which may allow to make better use of the area of the
silicon die.

The results for the different scenarios are summa-
rized in Table I.

Fig. 8. Example location of three magnetic field sensors (marked as
pentagrams). For the given signal model, the uniform distribution of
the sensors is actually optimal. However, this does not hold for other
numbers of magnetic field sensors.

TABLE I
RESULTS FOR DIFFERENT SENSOR CONFIGURATIONS USING THE I/Q

APPROACH AND THE MINIMAX APPROACH. EXCEPT IN CASE OF
CORRELATIONS DESCRIBED BY A RANDOM FIELD AND ONLY TWO

MAGNETIC FIELD SENSORS, THE UNIFORM/0/90 DEGREE
DISTRIBUTION OF SENSOR ELEMENTS IS ACTUALLY OPTIMAL. THE

MINIMAX APPROACH DOES NOT PROVIDE USEFUL RESULTS FOR THE
CASE WITH ONLY TWO SENSORS. IN THE CASE OF MORE SENSORS
IT TURNS OUT THE THE OPTIMUM SOLUTION IS NON-UNIFORM IN
THE CASE OF CORRELATIIONS DESCRIBED BY A RANDOM FIELD.

VI. CONCLUSION

We present a fast approach to find D-optimal designs
for angular position sensors. Optimization results show
that commonly used designs of magnetic field sensors
are actually optimal for the determination of inphase
and quadature contributions in the case of uncorrelated
measurements. However, these designs are not the only
optimal designs, which opens up the design space. In



the presence of spatial correlations, it was found that
the uniform sensor distribution is optimal with respect to
the determination of inphase and quadrature contributions
when the number of sensors is higher or equal to three.
It was also found that other designs (e.g. obtained using
the minimax approach with respect to the determinateion
of the angle) achieve practically equivalent performance
also in this case, which again opens up the space of
practiacally useful designs.

APPENDIX

For certain simplified cases, analytic solutions can be
found. This holds for two sensor elements, uncorrelated
measurements and a parameter vector η only comprising
shift angles, such that

S(θ, ϕ) = A · sin(θ + ϕ) + w = h(θ, ϕ) + w (26)

The I/Q model becomes

S(θ, ϕ) = QA(θ) · cos(ϕ) + IA(θ) · sin(ϕ) + w (27)

In this case IA would represent the cosine and QA the
sine-part of the measurement angle. For design optimisa-
tion we need the derivative of the (spatial) signal S with
respect to the parameter of interest and we obtain

H =
dh(θ)

dθ
=
[
sin(ϕ) cos(ϕ)

]
(28)

and the model can be written as

S(θ,ϕ) = H

[
QA
IA

]
+ w (29)

with θ =
[
QA IA

]T
. With two sensor elements we

obtain

H =
dh(θ)

dθ
=

[
sin(ϕ1) cos(ϕ1)
sin(ϕ2) cos(ϕ2)

]
(30)

In the desired case to find the most optimum angular
positions for these two angular sensors we need to find
the Fisher-Information I(θ) which has to be maximum:

I(θ) =
HT ·H
σ2

(31)

Since we only need the maximum of I, σ is only a scaling
factor and can be omitted for this optimization and take
the determinant:

det(HT ·H) = 1− cos(2ϕ1 − 2ϕ2) (32)

The maximum is given when ϕ1 and ϕ2 have a difference
of π

2 , such that the cosine function has a value equal to
-1 and det(HT · H) = 1 − cos(2ϕ1 − 2ϕ2) attains the
maximum value of 2.
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