<u>BEILAGE 11</u> zum Mitteilungsblatt 20. Stück, Nr. 117.13 - 2011/2012 20.06.2012

Curriculum

für das Bachelorstudium

Technische Mathematik

Kennzahl L 033 201

Datum des Inkrafttretens

 Oktober 2012

Curriculum für das Bachelorstudium

Technische Mathematik

Inhaltsverzeichnis

§ 1	Allgemeines 3 -
§ 2	Qualifikationsprofil 3 -
§ 3	Zulassungsvoraussetzungen3 -
§ 4	Akademischer Grad 4 -
§ 5	Aufbau und Gliederung des Studiums 4 -
§ 6	Studieneingangs- und Orientierungsphase 4 -
§ 7	Auslandsstudien/Mobilität 5 -
§ 8	Lehrveranstaltungsarten 5 -
§ 9	Lehrveranstaltungen der Pflichtfächer 6 -
§ 10	Lehrveranstaltungen der gebundenen Wahlfächer 8 -
§ 11	Freie Wahlfächer 11 -
§ 12	Lehrveranstaltungen mit beschränkter Zahl von Teilnehmerinnen und Teilnehmern 11 -
§ 13	Bachelorarbeit 12 -
§ 14	Verwendung von anderen Sprachen als Deutsch 12 -
§ 15	Prüfungsordnung - 12 -
§ 16	In-Kraft-Treten 12 -
§ 17	Übergangsbestimmungen - 13 -
Anha	ng 1: Äquivalenztabelle Pflichtfächer
Anha	ng 2: Äquivalenzen Vertiefungsfächer 16 -
Anha	ng 3: Äquivalenzen Erweiterungsfächer 17 -
Anha	ng 4: Empfohlene Semesterverteilung der Pflichtfächer 18 -

§ 1 Allgemeines

- (1) Der Umfang des Bachelorstudiums Technische Mathematik beträgt 180 ECTS-Anrechnungspunkte. Dies entspricht einer vorgesehenen Studiendauer von 6 Semestern. Das Bachelorstudium Technische Mathematik ist gemäß § 54 Abs. 1 Universitätsgesetz 2002 (im Folgenden: UG) der Gruppe der ingenieurwissenschaftlichen Studien zugeordnet.
- (2) Das Arbeitspensum für die einzelne Studienleistung wird in ECTS-Anrechnungspunkten angegeben, wobei das Arbeitspensum eines Jahres 1500 Echtstunden zu betragen hat und diesem Arbeitspensum 60 ECTS-Anrechnungspunkte zugeteilt werden. Das Arbeitspensum umfasst den Selbststudienanteil und die Semesterstunden/Kontaktstunden (§ 51 Abs. 2 Z. 26 UG).

§ 2 Qualifikationsprofil

Das Qualifikationsprofil beschreibt die wissenschaftlichen und beruflichen Qualifikationen, die Studierende durch die Absolvierung des Studiums erwerben.

Das Bachelorstudium Technische Mathematik vermittelt Kenntnisse und Fähigkeiten im Bereich der angewandten Mathematik und Statistik. Durch eine wissenschaftlich fundierte Ausbildung bereitet es damit auf eine Tätigkeit in Technik, Wirtschaft und Verwaltung vor, deren moderne Erfordernisse in immer höherem Maße auf mathematischen Methoden basieren. Eine solide mathematische Grundausbildung legt das Fundament für weiterführende Masterstudien.

Absolventen und Absolventinnen erwerben einen breiten Überblick über Werkzeuge und Techniken im Bereich der "anwendbaren Mathematik" und werden in die Lage versetzt, formale und mathematische Strukturen anfallender Praxisprobleme zu erfassen und durch mathematische Modellierung Lösungskonzepte zu erarbeiten. Eng verbunden damit ist die Fähigkeit zur Analyse von Daten und dynamischen Vorgängen. Damit sollen das Verständnis der Mechanismen der Datenerzeugung verbessert und rationale Entscheidungsfindungen unterstützt werden.

Nach gemeinsamen mathematischen Grundvorlesungen bietet sich die Möglichkeit zur Vertiefung in den Schwerpunkten Angewandte Analysis und Numerik, Diskrete Mathematik und Optimierung sowie Angewandte Statistik. Dies wird ergänzt durch Kenntnisse in Programmiersprachen und mathematischer Software sowie in allgemeinbildenden Fächern.

Diese Ausbildung macht die Absolventinnen und Absolventen vielseitig einsetzbar im Finanz- und Versicherungswesen, in Technologieunternehmen sowie im Consultingbereich.

§ 3 Zulassungsvoraussetzungen

Es gelten die Bestimmungen des UG betreffend die Zulassung zum Bachelorstudium.

§ 4 Akademischer Grad

Absolventinnen und Absolventen dieses Bachelorstudiums wird der akademische Grad "Bachelor" mit dem Zusatz "of Science" (abgekürzt: "BSc") verliehen. Im Falle der Führung ist dieser akademische Grad dem Namen nachzustellen.

§ 5 Aufbau und Gliederung des Studiums

Fach	Fachbezeichnung	ECTS- Anrechnungs- punkte
Pflichtfächer	Analysis (Grundlagen)	24
	Analysis und Anwendungen	20
	Diskrete Mathematik	16
	Lineare Algebra	16
	Optimierung und Programmierung	21
	Stochastik	25
	Seminar mit Bachelorarbeit	13
Gebundene Wahlfächer	Eines der Vertiefungsfächer: Angewandte Analysis Angewandte Statistik Diskrete Mathematik	24
	Eines der Erweiterungsfächer: Feministische Wissenschaft/Gender Studies Informatik Informationstechnik Mathematik im Kontext Sprache und Kommunikation Wirtschaft und Recht	12
Freie Wahlfächer	Freies Wahlfach	9
	Summe (ECTS-AP):	180

§ 6 Studieneingangs- und Orientierungsphase

Die Studieneingangs- und Orientierungsphase (STEOP) gemäß § 66 UG vermittelt der oder dem Studierenden einen Überblick über die wesentlichen Inhalte des Studiums und dessen weiteren Verlauf und schafft eine sachliche Entscheidungsgrundlage für die persönliche Beurteilung ihrer oder seiner Studienwahl. Die aus den einführenden und das Studium besonders kennzeichnenden Fächern zu entnehmenden Lehrveranstaltungen der Studieneingangs- und Orientierungsphase sind in § 9 ausgewiesen.

§ 7 Auslandsstudien/Mobilität

Es wird empfohlen, ein Semester an einer ausländischen Universität zu absolvieren. Die Anerkennung von im Ausland positiv absolvierten Prüfungen erfolgt durch die Studienprogrammleiterin bzw. den Studienprogrammleiter (siehe auch § 78 Abs. 5 UG).

§ 8 Lehrveranstaltungsarten

- (1) Vorlesungen (VO) sind Lehrveranstaltungen, bei denen die Wissensvermittlung durch Vortrag der Lehrenden erfolgt. Die Prüfung findet in einem einzigen (schriftlichen und/oder mündlichen) Prüfungsakt statt.
- (2) Prüfungsimmanente Lehrveranstaltungen sind Lehrveranstaltungen, in denen die Beurteilung nicht in einem einzigen Prüfungsakt erfolgt, sondern auf Grund von schriftlichen und/oder mündlichen Beiträgen der Teilnehmerinnen und Teilnehmer während der Lehrveranstaltung oder bei schriftlichen Arbeiten oder Projekten (Bachelorarbeiten, Seminararbeiten oder Arbeiten vergleichbaren Aufwands) bis zum Ende des auf die Abhaltung der Lehrveranstaltung folgenden Semesters. Prüfungsimmanente Lehrveranstaltungen sind:
 - a) Übungen (UE)
 In Übungen sind konkrete Aufgaben zu lösen.

b) Praktikum (PR)

In Praktika werden konkrete praktische Aufgabenstellungen, fallweise in Arbeitsgruppen, bearbeitet. Auf die Entwicklung der Fähigkeit, im Team zu arbeiten, ist Bedacht zu nehmen.

c) Proseminar (PS)

Proseminare sind Vorstufen der Seminare. Sie vermitteln Grundkenntnisse des wissenschaftlichen Arbeitens, führen in die Fachliteratur ein und behandeln exemplarische Probleme des Faches durch Referate, Diskussionen, Fallerörterungen und schriftliche Arbeiten.

d) Vorlesung mit Übungen (VU)

Vorlesungen mit Übungen setzen sich aus einem Vorlesungsteil und einem Übungsteil zusammen, die didaktisch eng miteinander verknüpft sind und gemeinsam beurteilt werden.

e) Seminar mit Bachelorarbeit (SB)

Das Seminar mit Bachelorarbeit dient der wissenschaftlichen Diskussion. Von den Studierenden werden eigene Beiträge geleistet. Das Seminar mit Bachelorarbeit wird durch die Bachelorarbeit und einen Vortrag darüber abgeschlossen.

Für Lehrveranstaltungen, die aus anderen Curricula übernommen werden, gelten die Definitionen der jeweiligen Curricula.

§ 9 Lehrveranstaltungen der Pflichtfächer

Pflichtfächer sind die das Studium kennzeichnenden Fächer, über die Prüfungen abzulegen sind.

Analysis (Grundlagen)	LV-Art	SSt	ECTS-AP
Analysis 1	VO+UE	4+2	5+3
Analysis 2	VO+UE	4+2	5+3
Analysis 3	VO+UE	4+2	5+3
		Summe: 18	Summe: 24

Analysis und Anwendungen	LV-Art	SSt	ECTS-AP
Gewöhnliche Differentialgleichungen	VU	3	5
Numerik 1	VU	3	5
Einführung in die Funktionalanalysis	VU	3	5
Funktionentheorie	VU	3	5
		Summe: 12	Summe: 20

Diskrete Mathematik	LV-Art	SSt	ECTS-AP
Einführung in die Technische Mathematik (STEOP, siehe § 6)	VU	1	1
Algebraische Strukturen	VO+UE	3+1	4+2
Kombinatorische Strukturen	VO+UE	3+1	4+2
Zahlentheorie	VO+UE	1,5+0,5	2+1
		Summe: 11	Summe: 16

Lineare Algebra	LV-Art	SSt	ECTS-AP
Lineare Algebra 1	VO+UE	4+2	5+3
Lineare Algebra 2	VO+UE	4+2	5+3
		Summe: 12	Summe: 16

Optimierung und Programmierung	LV-Art	SSt	ECTS-AP
Lineare Optimierung	VO+UE	2+1	3+2
Nichtlineare Optimierung	VO+UE	3+1	4+2
Einführung in die strukturierte und objektbasierte Programmierung	VO+PR	2+2	2+4
Mathematische Software 1	PR	1	2
Mathematische Software 2	PR	1	2
	_	Summe: 13	Summe: 21

Stochastik	LV-Art	SSt	ECTS-AP
Stochastik 1	VO+UE	2+1	3+2
Stochastik 2	VO+UE	2+1	3+2
Schätz- und Testtheorie	VU	3	5
Lineare Modelle	VU	3	5
Statistische Verfahren und Datenanalyse	VU	3	5
		Summe: 15	Summe: 25

Seminar mit Bachelorarbeit	LV-Art	SSt	ECTS-AP
Seminar mit Bachelorarbeit	SB	1	3+10
		Summe: 1	Summe: 13

Die der Studieneingangs- und Orientierungsphase zugeordnete Lehrveranstaltung ist "Einführung in die Technische Mathematik".

§ 10 Lehrveranstaltungen der gebundenen Wahlfächer

Gebundene Wahlfächer sind jene Fächer, die die Studierenden aus den vom Curriculum vorgegebenen Fächern auswählen können. Es sind insgesamt 36 ECTS-Anrechnungspunkte an gebundenen Wahlfächern zu absolvieren.

Die gebundenen Wahlfächer unterteilen sich in

- ein Vertiefungsfach (24 ECTS-Anrechnungspunkte) und
- ein Erweiterungsfach (12 ECTS-Anrechnungspunkte).

Als Vertiefungsfach ist eines der Fächer

- Angewandte Analysis
- Angewandte Statistik
- Diskrete Mathematik

zu wählen. Aus dem gewählten Vertiefungsfach sind Lehrveranstaltungen im Ausmaß von 24 ECTS-Anrechnungspunkten aus Tabelle 1 zu absolvieren. In diesem Rahmen besteht die Möglichkeit, Lehrveranstaltungen im Ausmaß von insgesamt maximal 6 ECTS-Anrechnungspunkten aus anderen Vertiefungsfächern zu wählen. Jedenfalls muss ein Proseminar gewählt werden.

Als Erweiterungsfach ist eines der Fächer

- Feministische Wissenschaft/Gender Studies
- Informatik
- Informationstechnik
- Mathematik im Kontext
- Sprache und Kommunikation
- Wirtschaft und Recht

zu wählen. Aus dem gewählten Erweiterungsfach sind Lehrveranstaltungen aus Tabelle 2 im Ausmaß von 12 ECTS-Anrechnungspunkten zu absolvieren. In diesem Rahmen besteht die Möglichkeit, Lehrveranstaltungen im Ausmaß von insgesamt maximal 6 ECTS-Anrechnungspunkten aus anderen Erweiterungsfächern und aus den Vertiefungsfächern zu wählen.

Ein etwaiger Überhang an ECTS-Anrechnungspunkten in den gebundenen Wahlfächern kann für die freien Wahlfächer verwendet werden.

Tabelle 1: Vertiefungsfach (24 ECTS-AP)

	LV-Bezeichnung	LV-Art	SSt	ECTS-AP
	Differenzengleichungen	VU	3	5
	Kontrolltheorie	VU	3	5
	Numerik 2	VU	3	5
Angewandte Analysis	Variationsrechnung	VU	3	5
	AK der Analysis *	VV	3	5
	AK der Numerik *	VU	3	5
	Proseminar Angewandte Analysis	PS	2	4
	Adaptive and Statistical Signal Processing	VK	2	4
	Computational Statistics	PR	2	4
	Finanzmathematik	VU	3	5
A	Multivariate Datenanalyse	VU	4	6
Angewandte Statistik	Räumliche Datenanalyse	VU	3	5
	Statistische Prozesskontrolle	VU	3	5
	Zeitreihen	VU	3	5
	AK der Statistik *	VU	3	5
	Proseminar Angewandte Statistik	PS	2	4
	Algorithmen und Datenstrukturen	VO+UE	2+2	2+4
	Algorithmische Graphentheorie	VO+UE	2+1	3+2
	Computational Geometry	VU	3	5
	Endliche Körper und Codierungstheorie	VO+UE	2+1	3+2
Diskrete	Mathematische Methoden der Kryptographie	VO+UE	2+1	3+2
Mathematik	Spieltheorie	VO+UE	2+1	3+2
	Symbolic Computation	VO+UE	2+1	3+2
	AK der Diskreten Mathematik *	VU	3	5
	AK der Optimierung *	VU	3	5
	Proseminar Diskrete Mathematik	PS	2	4

^{*} AK ... Ausgewählte Kapitel

Tabelle 2: Erweiterungsfach (12 ECTS-AP)

	LV-Bezeichnung	LV-Art	SSt	ECTS-AP	
Feministische Wissenschaft/ Gender Studies	Lehrveranstaltungen aus dem Wahlfachstudium "Feministische Wissenschaft/Gender Studies"				
	Datenbanken	VO+UE	2+2	2+4	
Informatik	Einführung in die Theoretische Informatik	VO+UE	2+2	2+4	
IIIIOIIIIatik	Knowledge Engineering	VO+UE	2+2	2+4	
	Systemsicherheit	VO+UE	2+2	2+4	
	Digitale Signalverarbeitung	VO+KU	2+2	3+3	
Informations-	Nachrichtentechnik	VO+KU	2+2	3+3	
technik	Regelungstechnik	VO+KU	2+2	3+3	
	Systemtheorie	VO+KU	2+2	3+3	
	Einführung in die Philosophie	UE	3	6	
Mathematik	Geschichte der Mathematik	PS	2	3	
im Kontext	Geometrie als Sprache der Mathematik	VO	2	3	
	Philosophie der Mathematik	VO	2	3	
Sprache und	English for Computing	VK	2	3	
Kommunikation	Lehrveranstaltungen aus dem Angebot des SchreibCenter				
	Einführung in die BWL	VO	2	4	
Mr. d. al. a	Entrepreneurship	VO	2	4	
Wirtschaft und Recht	Grundbegriffe des öffentlichen und privaten Rechts	VO	2	4	
	Privates Wirtschaftsrecht	VO	2	4	

§ 11 Freie Wahlfächer

Freie Wahlfächer sind jene Fächer, die Studierende frei aus dem Lehrangebot anerkannter in- und ausländischer Universitäten wählen können. Lehrveranstaltungen, die zur Erlangung der Studienberechtigung oder zur Erlangung der allgemeinen bzw. besonderen Universitätsreife absolviert wurden, sind davon ausgenommen. Es sind 9 ECTS-Anrechnungspunkte an freien Wahlfächern zu absolvieren.

§ 12 Lehrveranstaltungen mit beschränkter Zahl von Teilnehmerinnen und Teilnehmern

(1) Für die im Folgenden genannten Lehrveranstaltungen gilt die jeweilige maximale Zahl von Teilnehmerinnen und Teilnehmern:

Übungen: 25 Praktikum: 25 Proseminare: 20

Vorlesung mit Übungen: 25 Seminar mit Bachelorarbeit: 20

Für Lehrveranstaltungen, die aus anderen Curricula übernommen werden, gelten die Maximalzahlen der jeweiligen Curricula.

- (2) Wenn bei diesen Lehrveranstaltungen die Zahl der Anmeldungen die Zahl der vorhandenen Plätze übersteigt, erfolgt die Aufnahme nach folgendem Verfahren:
 - 1. Bei Überschreitung der maximalen Zahl von Teilnehmern und Teilnehmerinnen werden Studierende des Bachelorstudiums Technische Mathematik gegenüber Studierenden anderer Studien bevorzugt.
 - 2. Nach Maßgabe der finanziellen Mittel werden Parallelveranstaltungen für die jeweilige Lehrveranstaltung eingeführt.
 - 3. Sollte die Anzahl der Anmeldungen zu Lehrveranstaltungen die Zahl der verfügbaren Plätze dennoch überschreiten, erfolgt die Platzvergabe nach Reihung anhand der Anzahl der erworbenen ECTS-Anrechnungspunkte aus Lehrveranstaltungen des Bachelorstudiums Technische Mathematik. Abgeschlossene Lehrveranstaltungen aus anderen Studien sind hierbei nicht zu berücksichtigen. Bei gleicher Zahl an ECTS-Anrechnungspunkten entscheidet das Los.

Für Lehrveranstaltungen, die aus anderen Curricula übernommen werden, gelten die Aufnahmebestimmungen der jeweiligen Curricula.

§ 13 Bachelorarbeit

- (1) Bachelorarbeiten sind eigenständige schriftliche Arbeiten, die im Rahmen von Lehrveranstaltungen abzufassen sind.
- (2) Im Rahmen der Lehrveranstaltung "Seminar mit Bachelorarbeit" (§ 9) ist eine Bachelorarbeit abzufassen. Die Bachelorarbeit wird zusätzlich zur Lehrveranstaltung, in deren Rahmen sie verfasst wird, mit 10 ECTS-Anrechnungspunkten bewertet.

§ 14 Verwendung von anderen Sprachen als Deutsch

Lehrveranstaltungen können in englischer Sprache abgehalten werden. Auf Antrag des/der Studierenden können mit Zustimmung der Lehrveranstaltungsleiterin oder des Lehrveranstaltungsleiters Prüfungen sowie die Bachelorarbeit in Englisch abgelegt bzw. abgefasst werden.

§ 15 Prüfungsordnung

- (1) Das Bachelorstudium wird durch die Vorlesungsprüfungen (Abs. 2) und die positive Beurteilung der Lehrveranstaltungen nach Abs. 3 abgeschlossen.
- (2) Die Beurteilung von Vorlesungen erfolgt aufgrund einer schriftlichen und/oder mündlichen Vorlesungsprüfung.
- (3) Übungen, Praktika, Proseminare, Vorlesungen mit Übungen und das Seminar mit Bachelorarbeit haben prüfungsimmanenten Charakter; es besteht Anwesenheitspflicht. Überdies werden von den Studierenden die aktive Teilnahme am Diskussions- und Reflexionsprozess sowie Prüfungen, schriftliche Arbeiten und/oder mündliche Präsentationen erwartet.
- (4) Die jeweiligen Prüfungs- und Beurteilungsmodalitäten für Vorlesungsprüfungen und die Lehrveranstaltungen nach Abs. 3 sind gemäß Satzung der Universität Klagenfurt vom Lehrveranstaltungsleiter bzw. von der Lehrveranstaltungsleiterin zu Beginn der Lehrveranstaltung bekannt zu machen.
- (5) Für die Durchführung und Wiederholung von Prüfungen gelten die Bestimmungen der Satzung der Universität Klagenfurt.
- (6) Für die zur Studieneingangs- und Orientierungsphase zugeordnete Lehrveranstaltung "Einführung in die Technische Mathematik" gelten die Bestimmungen des § 66 Abs. 1a UG iVm der Satzung der Universität Klagenfurt.

§ 16 In-Kraft-Treten

Dieses Curriculum tritt nach der Kundmachung im Mitteilungsblatt der Universität Klagenfurt mit 1. Oktober 2012 in Kraft und gilt für alle Studierenden, die ab dem Wintersemester 2012/13 ihr Bachelorstudium beginnen.

§ 17 Übergangsbestimmungen

- (1) Studierende, die vor dem Wintersemester 2012/13 ihr Bachelorstudium begonnen haben, sind berechtigt, ihr Studium nach den bisher für sie geltenden Vorschriften in einem der vorgesehenen Studiendauer zuzüglich eines Semesters entsprechenden Zeitraum, d.h. bis längstens 30. April 2016, abzuschließen. Wird das Studium nicht fristgerecht abgeschlossen, ist die oder der Studierende für das weitere Studium dem neuen Curriculum unterstellt. Im Übrigen sind die Studierenden berechtigt, sich jederzeit freiwillig dem neuen Curriculum zu unterstellen.
- (2) Die spezifischen Bestimmungen über die Gleichwertigkeit von positiv beurteilten Prüfungen des bisher geltenden und des neuen Curriculums sind dem Anhang zu entnehmen.

Anhang 1: Äquivalenztabelle Pflichtfächer

Bachelorstudium Technische Mathematik (2012)		Bachelorstudium Technische Mathematik und Date	enanalyse (2	003)	
Lehrveranstaltung	SSt	ECTS- AP	Lehrveranstaltung	SSt	ECTS- AP
Analysis 1	4VO+2UE	8	Analysis I	4VO+2UE	8
Analysis 2	4VO+2UE	8	Analysis II	4VO+2UE	8
Analysis 3	4VO+2UE	8	Analysis III	4VO+2PS	7
Numerik 1 und Einführung in die Technische Mathematik	3VU 1VU	6	Numerische Mathematik	4VK	6
Einführung in die Technische Mathematik	1VU	1	Einführung in die Technische Mathematik	2VK	2
Algebraische Strukturen	3VO+1UE	6	Algebra	3VO+1UE	5
Kombinatorische Strukturen	3VO+1UE	6	Kombinatorik und Graphentheorie	3VO+1UE	5
Zahlentheorie und Einführung in die Technische Mathematik	1,5VO+0,5UE 1VU	4	Zahlentheorie	3VO	3
Lineare Algebra 1	4VO+2UE	8	Lineare Algebra und Geometrie I	4VO+2UE	8
Lineare Algebra 2	4VO+2UE	8	Lineare Algebra und Geometrie II	4VO+2UE	8
Lineare Optimierung	2VO+1UE	5	Operations Research I	2VO+1UE	4
Nichtlineare Optimierung	3VO+1UE	6	Operations Research II	2VO+1UE	4
Einführung in die strukturierte und objektbasierte Programmierung	2VO+2PR	6	Einführung in die strukturierte und objektbasierte Programmierung (ESOP)	2VO+2PR	6
Mathematische Software 1+2 und Einführung in die Technische Mathematik	1PR+1PR 1VU	5	Mathematische Software	1VO+2PR	5
Stochastik 1	2VO+1UE	5	Stochastik I	2VO+1UE	4
Stochastik 2	2VO+1UE	5	Stochastik II	2VK	3
Schätz- und Testtheorie	3VU	5	Statistische Verfahren und Datenanalyse I	3VK	4,5
Lineare Modelle	3VU	5	Lineare und nichtlineare Regressionsanalyse	3VK	4,5
Statistische Verfahren und Datenanalyse	3VU	5	Statistische Verfahren und Datenanalyse II	3VK	4,5
Seminar mit Bachelorarbeit	1SB	13	Projektpraktikum + Projektseminar (Bachelorarbeit)	2PR+2SE	21,5

Das Pflichtfach "Analysis und Anwendungen" gemäß § 9 kann von Studierenden, die das Bachelorstudium Technische Mathematik und Datenanalyse vor dem 1. Oktober 2012 begonnen haben, durch das Pflichtfach "Datenanalyse" ersetzt werden:

Datenanalyse	LV-Art	SSt	ECTS-AP	
Numerik 1 (Curriculum 2012)	VU	3	6	
Diskrete Mathematik (Curriculum 2003)	VO+UE	4+2	5+3	
Multivariate Datenanalyse (Curriculum 2003)	VK	4	6	
oder Algorithmen und Datenstrukturen (Curriculum 2003)	VO+UE	2+1(2)		
oder Höhere Matrizentheorie (Curriculum 2003)	VK	3		
		Summe: 12(13)	Summe: 20	

Positiv absolvierte Lehrveranstaltungen, die gemäß obiger Tabelle für das Pflichtfach "Datenanalyse" anerkannt wurden, können nicht mehr als Teil eines Vertiefungsfaches anerkannt werden.

Anhang 2: Äquivalenzen Vertiefungsfächer

Angewandte Analysis

Positiv absolvierte Lehrveranstaltungen mit 3VK/4,5 ECTS-AP aus dem Vertiefenden Wahlfach "Angewandte Analysis" des Bachelorstudiums Technische Mathematik und Datenanalyse (2003) sind mit 3VU/5 ECTS-AP für das Vertiefungsfach "Angewandte Analysis" des Bachelorstudiums Technische Mathematik (2012) anzuerkennen.

Angewandte Statistik

Positiv absolvierte Lehrveranstaltungen mit 3VK/4,5 ECTS-AP aus dem Vertiefenden Wahlfach "Angewandte Statistik und Finanzstatistik" des Bachelorstudiums Technische Mathematik und Datenanalyse (2003) sind mit 3VU/5 ECTS-AP für das Vertiefungsfach "Angewandte Statistik" des Bachelorstudiums Technische Mathematik (2012) anzuerkennen.

Die positiv absolvierten Lehrveranstaltungen Computational Statistics, 2PR und Multivariate Datenanalyse, 4VK aus dem Pflichtfach "Stochastik" des Bachelorstudiums Technische Mathematik und Datenanalyse (2003) sind für das Vertiefungsfach "Angewandte Statistik" des Bachelorstudiums Technische Mathematik (2012) anzuerkennen.

Diskrete Mathematik

Positiv absolvierte Lehrveranstaltungen mit 2VO/3 ECTS-AP bzw. 3VK/4,5 ECTS-AP aus den Vertiefenden Wahlfächern "Datensicherheit und Kryptologie" und "Operations Research" des Bachelorstudiums Technische Mathematik und Datenanalyse (2003) sind mit 2VO/3 ECTS-AP bzw. 3VU/5 ECTS-AP für das Vertiefungsfach "Diskrete Mathematik" des Bachelorstudiums Technische Mathematik (2012) anzuerkennen.

Folgende positiv absolvierten Lehrveranstaltungen aus den Pflichtfächern des Bachelorstudiums Technische Mathematik und Datenanalyse (2003) sind für das Vertiefungsfach "Diskrete Mathematik" des Bachelorstudiums Technische Mathematik (2012) anzuerkennen:

Lehrveranstaltung Vertiefungsfach			Pflichtlehrveranstaltung			
(Curriculum 2012)	SSt	ECTS- AP	(Curriculum 2003)	SSt	ECTS- AP	
Algorithmen und Datenstrukturen	2VO+2UE	6	Algorithmen und Datenstrukturen und Zahlentheorie	2VO+1UE 1UE	6	
AK der Diskreten Mathematik	3VU	5	Höhere Matrizentheorie	3VK	4,5	

Das gemäß §10 jedenfalls zu wählende Proseminar kann entfallen, falls durch Anerkennung von positiv absolvierten Lehrveranstaltungen aus dem Bachelorstudium Technische Mathematik und Datenanalyse (2003) bereits die mindestens erforderlichen 24 ECTS-AP für das gewählte Vertiefungsfach des Bachelorstudiums Technische Mathematik (2012) erreicht wurden.

Anhang 3: Äquivalenzen Erweiterungsfächer

Informatik

Positiv absolvierte Lehrveranstaltungen aus dem Anwendungsfach "Informatik" des Bachelorstudiums Technische Mathematik und Datenanalyse (2003) sind mit 1,5 ECTS-AP je Semesterstunde für das Erweiterungsfach "Informatik" des Bachelorstudiums Technische Mathematik (2012) anzuerkennen.

Sprache und Kommunikation

Positiv absolvierte Lehrveranstaltungen aus den Pflichtfächern "STEOP und Kompetenzerweiterung" bzw. "Kompetenzerweiterung" des Bachelorstudiums Technische Mathematik und Datenanalyse (2003) sind mit 1,5 ECTS-AP je Semesterstunde für das Erweiterungsfach "Sprache und Kommunikation" des Bachelorstudiums Technische Mathematik (2012) anzuerkennen. Dies gilt nicht für die STEOP-Lehrveranstaltung "Einführung in die Technische Mathematik".

Wirtschaft und Recht

Positiv absolvierte Lehrveranstaltungen aus dem Anwendungsfach "Betriebswirtschaftslehre" des Bachelorstudiums Technische Mathematik und Datenanalyse (2003) sind mit 1,5 ECTS-AP je Semesterstunde für das Erweiterungsfach "Wirtschaft und Recht" des Bachelorstudiums Technische Mathematik (2012) anzuerkennen.

Anhang 4: Empfohlene Semesterverteilung der Pflichtfächer

	LV-Bezeichnung	Semester			(ECTS		
	LV-bezeicimung	1.	2.	3.	4.	5.	6.
Analysis (Grundlagen)	Analysis 1	8					
	Analysis 2		8				
	Analysis 3			8			
			I	ı	I		T
Analysis und Anwendungen	Gewöhnliche Differentialgleichungen				5		
	Numerik 1				5		
	Einführung in die Funktionalanalysis					5	
	Funktionentheorie					5	
				T	I		I
	Einführung in die Technische Mathematik	1					
Diskrete Mathematik	Algebraische Strukturen		6				
	Kombinatorische Strukturen			6			
	Zahlentheorie			3			
			T	1	T	1	1
Lineare Algebra	Lineare Algebra 1	8					
3	Lineare Algebra 2		8				
	Lineare Optimierung		5				
Optimierung und Programmierung	Nichtlineare Optimierung			6			
	Einführung in die strukturierte und objektbasierte Programmierung	6					
	Mathematische Software 1	2					
	Mathematische Software 2		2				
			1	ı	T		ı
	Stochastik 1			5			
Stochastik	Stochastik 2				5		
	Schätz- und Testtheorie				5		
	Lineare Modelle					5	
	Statistische Verfahren und Datenanalyse					5	
Seminar mit Bachelorarbeit	Seminar mit Bachelorarbeit						3+10
	Summe (ECTS-AP):	25	29	28	20	20	13